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Abstract

We address the challenging problem of learning motion representations using deep
models for video recognition. To this end, we make use of attention modules that
learn to highlight regions in the video and aggregate features for recognition. Specifi-
cally, we propose to leverage output attention maps as a vehicle to transfer the learned
representation from a flow network to an RGB network. We systematically study the
design of attention modules, develop a novel method for attention distillation, and eval-
uate our method on major action recognition benchmarks. Our results suggest that our
method improves the performance of the baseline RGB network by a significant mar-
gin while maintains similar efficiency. Moreover, we demonstrate that attention serves
a more robust tool for knowledge distillation in video domain. We believe our method
provides a step forward towards learning motion-aware representations in deep mod-
els and valuable insights for knowledge distillation. Our project page is available at
https://aptx4869lm.github.io/AttentionDistillation/

1 Introduction
Action recognition in videos has emerged as a key challenge for deep models. This task
requires the understanding of both spatial and temporal cues and the best methods for extract-
ing and fusing them. The two-stream architecture [37], exemplified by the I3D model [3], has
proven to be a effective framework for addressing these challenges. Fusing two modalities
of appearance and motion is conceptually appealing, yet it is computationally expensive. A
two-stream model can be 100 times slower than its single RGB stream version [5]. Moreover,
learning motion-aware video features from RGB frames remains a challenging problem [8].
In this context, we address the following research questions: Does a deep model need an
explicit flow channel to capture motion patterns? How can we bridge the gap between an
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RGB stream network and its two stream version without incurring the extra computational
cost? Several previous works have addressed the challenge of learning a video representa-
tion that encodes motion information using a single RGB stream [5, 19, 39, 40, 42]. Our
work shares the same motivation, but pursues a very different approach.

We present a novel video representation learning method called attention distillation.
Our method makes use of an explicit probabilistic attention model, and leverages motion
information available at training time to predict the motion-sensitive attention features from
a single RGB stream. In addition to their utility in visualizing and understanding learned
feature representations, we argue that attention models provide an attractive vehicle for map-
ping between sensing modalities in a task-sensitive way. Once learned, our model requires
only RGB frames as inference inputs, and jointly predicts appearance and motion attention
maps for action recognition. We conduct extensive experiments and demonstrate that our
attention distillation enables more accurate action recognition across several video datasets,
while remaining very efficient.

Our main contributions are summarized as follows:

• We propose a novel method for learning motion-aware video representations from
RGB frames. Our method distills motion knowledge into an RGB network by mim-
icking the attention map of a reference flow network.

• Our method achieves consistent improvements of∼ 1% across major datasets, includ-
ing UCF101 [38], HMDB51 [21], EGTEA [22], and 20BN-V2 [29], with almost no
extra computational cost.

• We study different choices of attention modules for action recognition, and demon-
strate that attention serves as a more robust vehicle for knowledge distillation in com-
parison to previous feature distillation methods.

2 Related Works

2.1 Action Recognition

Action recognition is well studied in computer vision [34]. Recent efforts focus on devel-
oping novel deep models for action recognition. For example, recent works [3, 14, 41] pro-
posed to make use of 3D convolutional networks to capture spatio-temporal features beyond
a single frame. However, their performance using video frames alone falls far behind their
two stream versions [3]. Our work seeks to address the problem of recovering the motion
cues encoded in videos from RGB frames alone. There are several recent attempts in this
direction. Bilen et al. [1] proposed a dynamic image network that makes use of the param-
eters of a ranking machine that captures the temporal evolution of the video frames. Ng
et al. [31] proposed to jointly predict action labels and flow maps from video frames using
multi-task learning. This idea is extended by Fan et al. [7], where they fold the TV-L1 flow
estimation [32] into their TVNet. Without using flow, Tran et al. [42] demonstrated that fac-
torized 3D convolutions (2D spatial convolution and 1D temporal convolution) can facilitate
the learning of spatio-temporal features. A similar finding was also presented by Xie et al.
[46]. Our method shares the same motivation as these approaches, yet takes a vastly differ-
ent route. We explore attention mechanisms for video recognition, and propose to distill the
predicted attention from a flow network to an RGB network.
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2.2 Knowledge Distillation

Our attention distillation method is inspired by knowledge distillation, first proposed by [2]
for model compression and further popularized by [16]. Some recent works [10, 13, 27]
explored knowledge distillation across modalities. The most relevant works are [5, 39].
They both addressed the challenge of video representation learning via knowledge distilla-
tion. They assume that the reference flow network has better performance than the RGB
stream network, and seek to regularize the learning of the RGB stream by distilling features
from the flow network to the RGB stream. However, for recently developed large scale video
datasets (e.g., Kinetics [20], Charades [36]) and egocentric video datasets (e.g., EGTEA [22]
and EPIC-Kitchens [6]), the RGB stream has better performance than the flow stream. Fea-
ture distillation methods also suffer from the potential threat of “overwriting” the features
from RGB stream with the features from flow stream. This is related to the pitfall of catas-
trophic forgetting [9]. In contrast, we propose to distill attention maps– which are indicators
of important regions for recognition. This design choice stems from the key challenge of
video representation learning–motion is substantially different from appearance and both
modalities are important for recognition. Our experimental results in Sec. 4 demonstrate that
our method can overcome the disadvantages of previous feature distillation methods.

2.3 Attention for Recognition

Attention has been widely used for visual recognition. We focus on selective visual attention
that highlights discriminative regions. This is very different from the recent efforts on self-
attention, i.e., self-similarity [12, 43, 49]. Recently, selective attention has been explored in
deep models for object recognition [30] and image captioning [47]. Attention enables these
models to “fixate” on image regions, where the decision is made based on a sequence of fix-
ations. Several attention mechanisms are proposed for deep models. For example, [35] inte-
grated soft attention in LSTMs for action recognition. [24] further extends [47] into videos.
Specifically, they combined LSTMs with motion-based attention to infer the location of the
actions. [11] modeled top-down and bottom-up attention using bilinear pooling. [44] pro-
posed a residual architecture for soft attentions. Our previous work [22, 23] considered atten-
tion as a probabilistic distribution for egocentric action recognition. Our recent work [25]
made use of motor attention for action anticipation. In this paper, we demonstrate that a
useful probabilistic attention model can be obtained without access to a prior distribution
from human gaze data. We also provide a systematical study of the utility of probabilistic
attention model in action recognition.

3 Distilling Motion Attention for Actions
In this section, we present our method of attention distillation. We start with an overview of
the key ideas, followed by a detailed description of the components in our method. Finally,
we describe our network architecture and discuss the implementation details.

3.1 Overview

For simplicity, we consider an input video with a fixed length of T frames. Our method can
easily generalize to multiple videos, e.g., for mini-batch training. We denote the input video
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Figure 1: Overview of our method. Our model (c) takes multiple RGB frames as inputs and
adopts a 3D convolutional network as the backbone. It outputs two attention maps using the
attention module (b), based on which the action labels are predicted. The motion map is
learned by mimicking the attention from a reference flow network (a). The appearance map
is learned to highlight discriminative regions for recognition. These two maps are used to
create spatio-temporal feature representations from video frames for action recognition.

as x = {x1,x2, ...,xT}, where xt is a frame of resolution H×W with t as the frame number.
Given x, our goal is to predict a video-level action label y. We leverage the intermediate
output of a 3D convolutional network φ to represent x. This is given by a 4D tensor φ(x) of
the size Tφ ×Hφ ×Wφ ×Cφ . Cφ is the feature dimension of 3D grids Tφ ×Hφ ×Wφ from the
video x. Our method consists of three key components:
• Attention Generation. Our model first predicts an attention map A based on φ(x) using
the attention mapping function FA. A is a 3D tensor of size Tφ ×Hφ ×Wφ . Moreover, A is
normalized within each temporal slice, i.e., ∑w,hA(t,w,h) = 1. A is thus a sequence of 2D
attention maps A(t) defined over Tφ steps.
• Attention Guided Recognition. Based on the attention map A and the feature map φ(x),
our model further applies a recognition module FR to predict the action label y. Specifically,
this module uses A to selectively pool features from φ(x), followed by a classifier that maps
the result feature vectors to the action label y.
• Attention Distillation. To regularize the learning, we assume that A will receive super-
vision from a teacher model that outputs a reference attention map Ã. The teacher model
comes from the flow stream and is equipped with the same attention module for recognition.

Fig. 1 presents an overview of our method. Our model takes multiple video frames x
as inputs, and learns to predict two attention maps based on φ(x): AM for motion attention
and AA for appearance attention. Based on these two maps, the model further aggregates
visual features that will be passed into the final recognition sub-network. During training,
we match AM to the attention map ÃM from the reference flow network. For testing, only
the input video is required for recognition. Our model also outputs two attention maps that
can be used to visualize and diagnose recognition performance. We now detail the design of
our key components.
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3.2 Attention Generation
We explore two different approaches for generating an attention map from the features φ(x),
including soft attention [44] and its probabilistic version [22].
Soft Attention. Attention maps can be created by a linear function of wa ∈ RCφ over the
feature map φ(x),

FA(φ(x)) = so f tmax(wa ∗φ(x)), (1)

where ∗ is the 1x1 convolution on 3D feature grids. Softmax is applied on every time slice
to normalize each 2D map.
Probabilistic Soft Attention. An alternative approach is to further model the distribution of
linear mapping outputs as discussed in [22], namely

A∼ p(A) = so f tmax(wa ∗φ(x)) (2)

where we model the distribution of A. During training, an attention map can be sampled
from p(A) using Gumbel Softmax trick [18, 28]. We follow [22] to regularize the learning
by adding additional loss term of

LR = ∑
t

KL [A(t)||U ] , (3)

where KL[·] is the Kullback-Leibler divergence and U is the 2D uniform distribution (Hφ ×
Wφ ). This term matches each time slice of the attention map to the prior distribution. It is
derived from variational learning and accounts for (1) the prior of attention maps and (2)
additional regularization by spatial dropout [22]. During testing, we directly plug in p(A)
(the expected value of A) for approximate inference.

Note that for both approaches, we restrict FA to a linear mapping without a bias term.
In practice, this linear mapping avoids the trivial solution of generating a uniform attention
map by setting w to all zeros. This all-zero solution almost never arises during training when
using a proper initialization of w.

3.3 Attention Guided Recognition
Our recognition module makes use of an attention mapA to select features from φ(x). Again,
we consider two different models for the attention guided recognition.
Attention Pooling. Inspired by [26, 44], we design the function FR as

ỹ = FR(φ(x),A) = so f tmax
(

W T
r (A⊗φ(x))

)
(4)

where ⊗ denotes the tilted multiplicationA⊗φ(x) = ∑t,h,wA(t,h,w)φ(x)t,h,w,c. This opera-
tion is equivalent to weighted average pooling with the weights shared across all channels.
Residual Connection. Using the attention map to re-weight features helps to filter out back-
ground noise, yet may also increase the potential risk of missing important foreground fea-
tures. This drawback was discussed in [44]. We follow their solution of using a residual
connection to the attention map, given by

ỹ = FR(φ(x),A) = so f tmax
(

W T
r ((A+ I)⊗φ(x))

)
, (5)

where I is a 3D tensor of all ones. Intuitively, this operation further adds average pooled
features to the representation before the linear classifier. By adding the residual term, the
features learned by the network are preserved.
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3.4 Attention Distillation
The key to our approach lies in the use of attention distillation during training. Specifically,
we assume that a reference flow network is given as the teacher network. The teacher model
also uses an attention mechanism for recognition. Moreover, its motion attention map ÃM

is used as additional supervisory signal for training our RGB network. This RGB network
is thus the student model that mimics the motion attention map. With probabilistic attention
modeling, the imitation of the attention maps is enforced by using the loss

LA = ∑
t

KL
[
AM(t)||ÃM(t)

]
. (6)

This loss minimizes the distance between the attention maps at every time step t. In our
implementation, our teacher flow network is trained with the same attention mechanism.
Once trained, the weights of the teacher model remain fixed during the learning of the student
model. At testing time, only the student model (RGB network) is used for inference.

3.5 Our Full Model
Putting everything together, we summarize our full model with probabilistic soft attention
and attention distillation. Specifically, our model estimates the two probabilistic attention
maps AM ∼ FM

A (φ(x)) (motion) and AA ∼ FA
A(φ(x)) (appearance). These maps are further

used to predict the action labels. This is given by

ỹ = FM
R (φ(x),AM)+FA

R(φ(x),AA) (7)

where each FR follows Eq 4. We use equal weighting for FM
R and FA

R. We found that tuning
the weights has negligible effect on the performance in practice.
Loss Function. Our training loss is defined as

L=CE(ỹ,y)+λ1 ∑
t

KL
[
AM(t)||ÃM(t)

]
+λ2 ∑

t
KL
[
AA(t)||U

]
, (8)

where CE is the cross entropy loss between the predicted labels ỹ and the ground-truth y.
Thus, the loss consists of three terms. The first cross entropy term is to minimize the error
for classification. The second KL term (from Eq. 6) enforces that the motion attention AM

should mimic the attention map ÃM from the reference flow network. Finally, the third KL
term (from Eq. 3) regularizes the learning of the appearance attention. The coefficients λ1
and λ2 are used to balance the three terms. We choose λ1 = 1 and λ2 = 1/(Tφ ×Wφ ×Hφ ).

3.6 Implementation Details
Network Architecture. Our model uses I3D network [3] as the backbone. I3D has five 3D
convolution blocks, and three of them are composed of multiple Inception Modules. For
all attention modules, the intermediate feature φ is obtained from the outputs of the 4th
convolutional block. The attention map is used to select the final network feature from the
last Inception module of the 5th convolutional block.
Data Preparation. We down-sample all frames to 320× 256 with a frame rate of 24 Hz.
For training, we compute optical flow using TV-L1 [32]. We apply several data augmenta-
tion techniques, including random flipping, cropping and color perturbation to prevent over-
fitting. Our model takes 24 consecutive frames as inputs, and all input frames are cropped to
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224×224 for training. For testing, we evaluate our model on full resolution clips (320×256)
and aggregate scores from all clips to produce the video-level results.
Training and Inference Details. All of our models are trained using SGD with momentum
of 0.9. The weights are initialized from Kinetics pre-trained models provided by the authors
of [3]. Our models are trained with a batch size of 64 on 4 GPUs. The initial learning rate is
0.01 with a decay rate of 10 when the loss starts to saturate. We set weight decay to 4e-5 and
enable batch norm [17]. We also adopt dropout rate 0.7. At inference time our model does
not need optical flow, and runs at the same speed as the RGB network.

4 Experiments
We now present our experiments and results. We start with a systematical evaluation of
attention guided action recognition, followed by our main results on several public datasets.

4.1 Datasets and Metrics
We make use of four action recognition datasets for our experiments: UCF101, HMDB51,
EGTEA Gaze+ (egocentric videos) and 20BN-V2. UCF101 [38] has 13,320 videos from
101 action categories. HMDB51 [21] includes 6,766 videos from 51 action categories.
EGTEA [22, 23] contains 10,321 videos from 106 action categories. We evaluate mean class
accuracy and report the results using the first split of these three datasets. 20BN-V2 [29]
has over 220K videos from 174 fine-grained action categories. We use their training and
validation split, and report top-1/top-5 accuracy.

4.2 Attention Guided Action Recognition
We start from an ablation study of attention-guided action recognition. Specifically, we
evaluate different combinations of attention modules and compare their results to those from
models without attention. Our experiments show that the proper design of the attention
mechanism can consistently improve the performance of action recognition across multiple
datasets. We now present our baselines and results.
Baselines. We consider the different combinations of how the model generates attention
maps (Soft vs. Probabilistic Attention) and how the attention maps are used for recognition
(Attention Pooling vs. Residual Connection). In addition, we also show how the approach to
combining motion attention and appearance attention affects the recognition performance.
The valid combinations include the following:

• Soft-Atten combines soft attention and attention pooling for recognition similar to [26].

• Soft-Res is the residual attention in [44] that adds residual connection to Soft-Atten.

• Prob-Atten combines probabilistic attention with attention pooling as in [22].

We note that the combination of Prob+Res is invalid, as it violates the probabilistic modeling
of attention. In practice, we also found its training to be unstable. Therefore, we report the
results of three valid designs for both RGB and flow stream and the vanilla I3D models (our
backbone) using the same input sequence length (24 frames) in Table 1. Adding attention
to the backbone recognition network almost always improves the performance. Importantly,
Soft-Res decreases the performance of RGB stream on HMDB51 and Soft-Atten decreases
the performance of RGB stream on HMDB51 and UCF101. More interestingly, Prob-Atten
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Method UCF101 HMDB51 EGTEA
Flow I3D 94.0 73.9 38.3

Flow Soft-Atten 94.7 74.1 39.1
Flow Soft-Res 95.2 74.4 39.5

Flow Prob-Atten 94.9 74.2 40.4
RGB I3D 94.8 70.9 47.3

RGB Soft-Atten 94.7 70.8 48.6
RGB Soft-Res 94.9 70.1 48.6

RGB Prob-Atten 95.1 71.3 49.1
Table 1: Evaluations of attention modules. We compared 3 different design choices with
RGB/flow stream on three datasets. Prob-Atten provides a consistent performance boost on
both streams and across datasets.

Method UCF101 HMDB51
Dynamic Image [1] 90.6 61.3
ActionFlowNet [31] 83.9 56.4

TVNet [7] 94.5 71.0
I3D RGB* [3] 94.8 70.9
FeatMatch [48] 94.3 70.7

MARS [5] 94.6 72.3
Ours (Prob-Distill) 95.7 72.0

Two Stream ResNeXt [5] 95.6 74.0
MARS+Flow ResNeXt [5] 94.9 74.5

Two Stream I3D* 96.7 74.8
Prob-Distill+Flow I3D* 97.4 75.7

Table 2: Action recognition results on UCF101 and HMDB51 datasets. We compare the
results of our model with previous works. Our model outperforms state-of-the-art methods
that use only RGB stream and the same input sequence length by ∼ 1%. *For fair compari-
son, we report results of I3D models that use 24 frames as inputs–the same as our model.

is the most robust design choice, despite the lack of human gaze as a supervisory signal as
in [22]. Across all of the modalities and datasets, Prob-Atten can consistently improve the
recognition accuracy (+0.3%/0.4%/1.8%) for the RGB stream and (+0.9%/0.5%/2.1%)
for the flow stream. The performance boost from the attention module is larger for the
flow stream in comparison to the RGB stream. Moreover, attention modules provide more
significant boost for egocentric actions (EGTEA). We conjecture that the explicit modeling
of attention helps to suppress background objects in first person video.

4.3 Attention Distillation for Action Recognition

We now evaluate our method of attention distillation. In this setting, we assume a refer-
ence flow network with attention module is given at training time. We attach motion and
appearance attention modules to our RGB backbone. Both attention heads follow the same
attention module design as the reference network. The flow attention is asked to mimic the
motion attention map from the reference flow network. During testing our model does not
need optical flow, and runs at the same speed as the RGB network (about 100 times faster
than a two stream network [5]). We present our results for action recognition, and contrast
our method with feature distillation methods [5, 48].
Impact of Attention Distillation. Table 2 compares our results with previous methods
on UCF101/HMDB51. We denote our models using Prob-Atten for distillation as Prob-
Distill. Prob-Distill outperforms all previous state-of-the-art methods of motion represen-
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Method Top-1/Top-5 Acc Temporal Footprints
TRN RGB [50] 48.8 / 77.6 5 sec

TRN RGB+Flow [50] 55.5 / 83.1 5 sec
I3D RGB 47.3 / 76.1 1 sec
I3D Flow 46.7 / 75.9 1 sec

Ours (Prob-Distill) 49.9 / 79.1 1 sec
Two Stream I3D 53.7 / 82.5 1 sec

Prob-Distill+Flow I3D 54.6 / 83.0 1 sec
Table 3: Action recognition results on on 20BN-V2 dataset [29]. Our model achieves the
best performance among networks that uses RGB frames. Fusing our model with a flow
network also outperforms two stream baseline by a significant margin.

tation learning. Specifically, our results are at least 1.2% better than previous state-of-the-
art methods for learning motion-aware video representations from RGB frames, including
Dynamic Image [1], ActionFlowNet [31] and TVNet [7]. Our model also outperforms
MARS [5], our direct competitor, by 0.9% on UCF101 and performs on-par with MARS on
HMDB51 when using a similar sequence length, despite the fact that MARS uses a stronger
backbone network. It is worth noting that this performance boost is significant for action
recognition. In contrast, with 50 more layers, ResNet101 is only 0.7% better than ResNet50
on HMDB51 [15]. Moreover, Prob-Distill also outperforms another feature distillation
method – FeatMatch [48] by a significant margin (+1.4%/1.3% on UCF101/HMDB51).
These results support our argument that distilling attention maps is more robust than distill-
ing network features for motion representation learning. Finally, a late fusion of our model
with a reference flow network helps to further boost the performance.

Table 3 presents our results on a large scale dataset—20BN-V2. With 1/5 of the tem-
poral receptive field as TRN [50], our model with RGB frames outperforms TRN RGB by
1.1%/1.5% in top-1/top-5 accuracy. And our method improves the backbone by 2.6%/3.0%
in top-1/top-5 accuracy. Further fusion of our model with a flow network improves the results
by a large margin (+4.7%), again outperforming the two stream baseline.
Learning from a Weak Flow Network. Crasto et al. [5] pointed out that their model ran into
a failure mode when the reference flow network has worse performance than the RGB net-
work. To support our claim that attention distillation can leverage a flow-based teacher net-
work even when the flow network does not provide strong baseline performance, we report
the results of our model on the EGTEA Gaze+ dataset. Due to severe ego-motion, flow-
based models are less effective than RGB models on this dataset. For instance, I3D Flow is
9% worse than I3D RGB (38.3% vs. 47.3%). Despite a much weaker teacher model, Prob-
Distill achieves 49.5%, outperforming the best attention-based I3D models for both RGB
(Prob-Atten 49.1%) and Flow (Prob-Atten 40.4%). This indicates that even with a weak
teacher model, our proposed method is a robust approach to video representation learning.
Distillation without Forgetting. Feature distillation might “overwrite” the features from
RGB stream with the features from flow stream. This is evidenced by the result that fusing
MARS with reference flow stream network lags behind the two stream version of the net-
work (MARS + Flow ResNeXt vs. Two Stream ResNeXt in Table 2). In contrast, fusing
our Prob-distill model with a reference flow model (Prob-Distill + Flow I3D in Table 2) fur-
ther improves the accuracy and outperforms the two-stream I3D model (+0.5% on UCF101,
+0.7% on HMDB51 and +0.9% on 20BN-V2). These results indicate that our attention dis-
tillation model does not simply copy the feature from the reference flow network, as the
distilled RGB model can still preserve meaningful appearance features.

Note that our single-stream (Prob-Distill) results still lag behind the two stream networks
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Figure 2: Visualization of attention maps (Ours vs. Soft-Atten using the same I3D backbone).
For each video clip, we re-interpolate the attention maps and plot them on the first and last
frame. Red regions indicate higher value of attention. Our model produces appearance and
motion attention maps that are qualitatively different and index key action regions.

when using the same input sequence length (Two Stream I3D*). This gap reveals that our
model does not fully capture the concepts of motion that are encoded in the two stream
networks. Nonetheless, we believe that our model provides a key step forward for learning
motion-aware representations from RGB frames. Note that some most recent works achieved
better performance on the benchmark datasets using more advanced network structure [15,
33, 45, 46], additional features [4], or a longer temporal footprint [3, 5]. In this context,
our work provides a novel method for learning video representations and a robust strategy
for knowledge distillation. In supplementary materials, we provide additional analysis to
show how the learned attention maps help to localize the spatial extent of actions. We also
demonstrate how motion information is encoded in the distilled model.
Visualization of Attention Maps. To better understand our model, we visualize both motion
and appearance attention maps from our model. We also compare these maps with atten-
tion maps created by our Soft-Atten models from RGB and flow streams in Fig 2. Notice
that these two attention maps are qualitatively different across all methods. The appearance
attention is likely to cover foreground objects or actors, while the motion attention focuses
on the moving parts. Moreover, the appearance attention from our model can better localize
the foreground regions of actions than those of Soft-Atten from the RGB stream, while the
motion attention from our model remains similar to the Soft-Atten from the flow stream. We
also find that the attention maps from our model are more “diffused”. This is because the
regularization by a uniform distribution in Prob-Atten leads to smoother attention maps.

5 Conclusions
In this paper, we presented a novel method of attention distillation for action recognition.
We provided extensive experiments to evaluate our method. Our results demonstrate that
proper design of the attention module helps to improve recognition performance. In addi-
tion, attention maps from RGB and flow networks are qualitatively different, suggesting
that these networks capture different aspects of the video. We also showed that our method
achieves competitive results for action recognition across datasets, and that attention dis-
tillation is more robust for learning a motion-aware video representation. We believe our
work provides valuable insights into attention based recognition, and a step towards learning
spatio-temporal video features via knowledge distillation.
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Foundation Award 1936970 and a gift from Facebook. YL acknowledges the support from
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