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Abstract

Video super-resolution plays an important role in surveillance video analysis and
ultra-high-definition video display, which has drawn much attention in both the research
and industrial communities. Although many deep learning-based VSR methods have
been proposed, it is hard to directly compare these methods since the different loss func-
tions and training datasets have a significant impact on the super-resolution results. In
this work, we carefully study and compare three temporal modeling methods (2D CNN
with early fusion, 3D CNN with slow fusion and Recurrent Neural Network) for video
super-resolution. We also propose a novel Recurrent Residual Network (RRN) for effi-
cient video super-resolution, where residual learning is utilized to stabilize the training of
RNN and meanwhile to boost the super-resolution performance. Extensive experiments
show that the proposed RRN is highly computational efficiency and produces temporal
consistent VSR results with finer details than other temporal modeling methods. Besides,
the proposed method achieves state-of-the-art results on several widely used benchmarks.
Code is available at https://github.com/junpan19/RRN.

1 introduction
Super-resolution is a traditional yet still dynamic topic in low-level vision field, which aims
at producing a high-resolution image from the corresponding low-resolution counterparts. It
has drawn much attention in recent years due to the increasing demand in mobile phones
and ultra-high-definition displays. Single-image super-resolution (SISR) has achieved sig-
nificant improvements over the last few years, which benefits greatly from progress in deep
learning. Recently, more attentions have been shifted to the video super-resolution (VSR)
since a video sequence should contain more abundant information. In contrast with SISR,
which relies on natural image priors and self-similarity within images for recovering the
missing details, VSR is able to utilize additional temporal information from the neighboring
frames for further improving the quality of SR.
Previous VSR works divide into two categories: 1) explicit motion compensation based
methods [1, 13, 20, 23, 26] and 2) implicit motion compensation based methods [4, 8, 12,
16, 25, 27]. As for explicit motion compensation based methods, kappeler et at. proposes

c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Caballero, Ledig, Aitken, Acosta, Totz, Wang, and Shi} 2017

Citation
Citation
{Kappeler, Yoo, Dai, and Katsaggelos} 2016

Citation
Citation
{Sajjadi, Vemulapalli, and Brown} 2018

Citation
Citation
{Tao, Gao, Liao, Wang, and Jia} 2017

Citation
Citation
{Xue, Chen, Wu, Wei, and Freeman} 2019

Citation
Citation
{Fuoli, Gu, and Timofte} 2019

Citation
Citation
{Haris, Shakhnarovich, and Ukita} 2019

Citation
Citation
{Jo, Wugprotect unhbox voidb@x penalty @M  {}Oh, Kang, and Jooprotect unhbox voidb@x penalty @M  {}Kim} 2018

Citation
Citation
{Kim, Lim, Na, and Kim} 2018

Citation
Citation
{Wang, Chan, Yu, Dong, and Changeprotect unhbox voidb@x penalty @M  {}Loy} 2019

Citation
Citation
{Yi, Wang, Jiang, Jiang, and Ma} 2019

https://github.com/junpan19/RRN


2 T. ISOBE: REVISITING TEMPORAL MODELING FOR VIDEO SUPER-RESOLUTION

to warp all neighboring frames to the reference frame based on the offline estimated optical
flow; VESCPN [1] is the first end-to-end video SR method by jointly training optical flow
estimation and spatial-temporal networks. However, these works are not ideal for VSR since
inaccurate motion estimation and alignment would result in errors and deteriorated super-
resolution performance. Besides, the computation of optical flow often introduces heavy
computational load, which restricts deploying these methods in real systems.

Another branch of VSR explores advanced temporal modeling frameworks to utilize
motion information in an implicit manner. Typically, there temporal modeling framework
have been widely used: 2D with early fusion CNN [8, 24, 25, 27], 3D CNN with slow fu-
sion [11, 12, 16] and Recurrent Neural Network (RNN) [4, 9, 10, 20]. Although extensive
experiments have been reported on the aforementioned methods, it is hard to directly com-
pare the effectiveness of these temporal modeling approaches because they adopt different
training sets and loss functions to develop their model, which significantly influences the
quality of the estimated high-resolution frames. For example, [12] trained their model on
the private dataset and supervised an elaborately designed Huber Loss. [8] developed their
model on Vimeo-90k [26] dataset and supervised by L1 Loss. Moreover, different network
depth also limits the direct comparison among these temporal modeling methods, e,g. [12]
adopted 52 layers in their large model and [25] exploited more deep network.
In this paper, we comprehensively investigate the effectiveness of different temporal model-
ing approaches on the VSR task by using the fixed loss function (L1 Loss) and training data.
Specifically, we explore three commonly used temporal modeling methods: 1) 2D CNN with
early fusion, 2) 3D CNN with slow fusion and 3) RNN. Inspired by [18], we design the 2D
CNN with several modified 2D residual blocks. As for 3D CNN, we further modify these
2D residual blocks to 3D residual blocks. We also incorporate such residual connection into
the hidden state of the recurrent network and propose Recurrent Residual Network (RRN)
for video super-resolution. In the proposed hidden state, the identity branch not only car-
ries rich image details from the previous layers to the next layers but also helps to avoid
gradient vanishing in RNN training. For fair comparison of these temporal modeling meth-
ods, we evaluate these models on widely used benchmarks with the same network depth.
The experimental results show that Recurrent-based methods are highly efficient and effec-
tive in dealing with the VSR problem. Besides, the proposed RRN achieves state-of-the-art
performance on three benchmarks. To sum up, we make the following contributions:

• We carefully study three commonly used temporal modeling methods (2D CNN with
early fusion, 3D CNN with slow fusion, and RNN) for the VSR problem.

• We propose a novel hidden state for the recurrent network, which achieves the best
performance among all temporal modeling methods. To more surprise, the proposed
method outperforms the previous state-of-the-art methods on all three public bench-
marks.

2 Related work

Single image super-resolution. With the development of deep learning, the convolutional
neural network method has achieved dramatic advantages against conventional methods in
single image super-resolution (SISR). In [3], Deng et at. first proposed to use a 3-layer
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Figure 1: × 4 VSR results for the scene Calendar in Vid4 [19] dataset. Our method produces sharper
edges and more detailed textures than other state-of-the-art methods.

end-to-end convolutional neural network to fill the missing details of the interpolated low-
resolution images and showed promising results. Since then, there have been numerous
learning-based SISR methods [7, 14, 15, 22, 29, 30] constantly emerging. VDSR [14] fur-
ther improved CNN depth by stacking more convolutional layers with global residual learn-
ing. DRCN [15] first proposed to reduce model parameters with recursive learning in deep
CNN. However, DRCN also suffers from performance degradation problems when increas-
ing more convolutional layers (up to 16 convolutional recursions). To further increase CNN
depth, DRRN [22] was proposed with local residual learning and global residual learning
strategy. Much deeper CNN, including RDN [30], DBPN [7], RCAN [29] were then intro-
duced, which outperformed previous works by a large margin. In this paper, we also enjoy
the merits of residual learning and incorporate residual connection in the Recurrent neural
network (RNN). The proposed RRN not only carries rich details from the previous layers
to later layers in the hidden state, where information can be stably propagated even through
a large number of convolutional layers but also carries on historical information through a
long range of time steps as the additional complementary information for the later time step.
Video super-resolution. Temporal modeling plays a key role in VSR. Previous works per-
forming temporal aggregation fall into three branches: 1) 2D CNN with early fusion [8, 24,
25, 27] 2) 3D CNN with slow fusion [12, 16] and 3) RNN based [4, 20] methods. TDAN [24]
and EDVR [25] aggregated multi-frames features with several 2D convolutional layers on the
top of the feature-wise alignment. PFNL [27] captured long-range dependencies through a
kind of non-local operation, and then aggregated the correlations maps with several 2D con-
volutional layers.Kim et at. used several stacked 3D convolutional layers to extract both
spatial and temporal information within a temporal sliding window in a slow fusion manner
and implemented this fashion over the entire video sequence. DUF [12] estimated dynamic
filters with stacked 3D convolutional layers for implicit motion compensation and upsam-
pling. With the advanced temporal modeling strategy, CNN based methods show superior
performance on several benchmarks. However, the overlap of sliding windows leads to re-
dundant computation, which limits the VSR efficiency. As for recurrent based methods, both
historical information across time step and current information between consecutive frames
can be used to enhance details for an LR frame. In [20], Sajjadi et at. proposed to conduct
motion estimation and warp operation between the previous frame and current frame, and
then super-resolve the aligned frame in a recurrent manner. However, inaccurate motion es-
timation would cause severe artifacts and increase the risk of error accumulation. Recently,
Fouli et at. proposed RLSP [4], which propagated historical information in feature space
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Figure 2: Schematic illustration of three commonly used temporal modeling frameworks (A: 2D CNN
with early fusion, B: 3D CNN with slow fusion, C: RNN). D is the proposed RRN.

and without explicit motion estimation. Related to [4], our method also propagates historical
information in feature space. However, in [4], they adopt seven simply connected convolu-
tional layers as the hidden state, which is difficult to preserve texture details when propagate
so many layers in the hidden state. In addition, RLSP fed three consecutive frames into each
hidden state. With more input frames, the hidden state would easily suffers from error accu-
mulation, especially when there is large motion between consecutive frames. In this work,
we exploit two frames (previous and current) as hidden state input, and incorporate identity
mapping in hidden state to preserve the texture details through so many layers.

3 Methodology

3.1 Overview

In this section, we introduce the overall system pipeline and detailed configurations of the
temporal modeling methods. The whole system consists of two parts: a temporal model-
ing network which takes consecutive frames as input and integrates them with the reference
frame, and a loss function to optimize the network utilizing motion information in an implicit
manner. We comprehensively study and compare three temporal modeling methods, includ-
ing 2D CNN with early fusion, 3D CNN with slow fusion and RNN. Schematic illustration
of these networks is shown in Fig. 2 (a), (b) and (c), respectively. The detailed architecture
about the proposed hidden state is shown in Fig. 2 (d).

3.2 Network Design

We consider three types of deep neural networks: (1) 2D CNN (2) 3D CNN and (3) RNN. For
2D CNN, the input frames are first concatenated along the channel axis, and then aggregated
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with a stack of 2D convolutional layer. 3D CNN takes a video sequence as input and then
exploits a stack of 3D convolutional layer to extract the spatial-temporal information from
the video sequence. Comparing to the CNN methods, RNN takes fewer frame as the hidden
state input and handles a long video sequence with a recurrent manner.

2D CNN with early fusion. Inspired by [18], we design the 2D CNN with several modi-
fied 2D residual blocks, where each block consists of a 3×3 convolutional layer followed by
ReLU [5]. Such model takes 2T + 1 consecutive frames as input. The aggregation process
can be formulated as:

Rt =Wnet2D{Wf usion2D[It−T , . . . , It+T ]} (1)

Where [·, ·, ·] denotes the concatenation operation. The input tensor shape of Wf usion2D is
NC×H×W , where N = 2T +1, C is the number of color channels, and H, W are the height
and weight of the input LR frames, respectively. Wf usion2D and Wnet2D represent a set of
weights (the biases are omitted to simplify notations) of the early fusion layer and 2D CNN,
respectively. The shape of the produced residual map is Rt is H×W ×Cr2, where r is the
upscale factor. The high-resolution residual maps R↑t is obtained by adopting depth-to-space
operation [21]. Finally, the high-resolution image ŷt is obtained by adding the predicted
high-resolution residual map R↑t to a bicubic up-sampled high-resolution reference image I↑t
at the end of the network.

3D CNN with slow fusion. In 3D CNN, we modify the 2D convolutional layers in the
2D residual blocks to 3×3×3 convolutional layers for extracting spatial-temporal informa-
tion. We use the same network depth for both 2D and 3D CNN for a fair comparison. In
contrast with 2D CNN, 3D CNN takes a video sequence as input and extracts the spatial-
temporal information in a slow fusion manner. Specifically, a 3-dimensional filter moves
both in temporal and spatial axis directions to extract both spatial and temporal information.
Typically, the temporal dimension depth of 3D filter is much smaller than the length of the
input sequence. Such slow fusion process can be described as:

Rt =Wf usion3D{Wnet3D{It−T :t+T}} (2)

Where Wnet3D and Wf usion3D represent a set of weights (the biases are omitted to simplify
notations) of 3D CNN and the later fusion layer, respectively. The input tensor shape of
Wnet3D is C×N×H×W , where C is the number of color channels, N = 2T +1, and H, W
are the height and weight of the input LR frames, respectively. To prevent the number of
frames from decreasing, we add two frames with pixel value of zero in the temporal axis.

RNN. Typically, a hidden state at time step t takes three parts as input: (1) the previous
output ot−1, (2) the previous hidden state features ht−1 and (3) two adjacent frames I{t−1,t}.
Intuitively, in an video sequence, pixels within successive frames usually bear a strong sim-
ilarity. The high-frequency texture details in t-th time step should be further refined by bor-
rowing the complementary information from the previous layer. However, RNN in VSR [4]
also suffers gradient vanishing issue as many other video processing tasks [2, 6, 28]. To
address this issue, we propose a novel recurrent network, termed as Residual Recurrent Net-
work (RRN), which adopts residual mapping between layers with identity skip connections.
Such design ensures a fluent information flow and has the ability to preserve the texture infor-
mation over long periods making RNN easier to process a longer sequences, and meanwhile
reduce the risk of gradient vanishing in training. At time step t, the RRN uses following
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Figure 3: (a): Qualitative results for different temporal modeling methods on Vid4 [19] and
SPMCS [23] dataset for 4×VSR. (b): Information flow over time for 2D CNN, 3D CNN and RNN on
the Calendar sequence.

equations to generate output ht and ot for the next time step t+1:

x̂0 = σ(Wconv2D{[It−1, It ,ot−1,ht−1]}) x̂k = g(x̂k−1)+F(x̂k−1),k ∈ [1,K]

ht = σ(Wconv2D{x̂K}) ot =Wconv2D{x̂K}
(3)

Where σ (·) represents the ReLU function. g(x̂k−1) denotes an identity mapping in k-th
residual block: g(x̂k−1) = x̂k−1, and F(x̂k−1) denotes the residual mapping to be learned.

4 Experiment

4.1 Dataset
Previous works use different training sets and different down-sampling kernels, which re-
stricts fair comparisons. In this work, we adopt Vimeo-90k [26] as the training set. Vimeo-
90k is a public dataset for video restoration tasks, including video denoising, deblocking as
well as super-resolution. Vimeo-90k contains around 90k 7-frame video clips with various
motions and diverse scenes. To develop our model, the low-resolution patches in the size of
64×64 are obtained by applying Gaussian blur with σ = 1.6 to a high-resolution frame and
further downsampling by 4× scale factor. We evaluate the developed models on Vid4 [19],
SPMCS [23] and UDM10 [27] datasets. Vid4 consists of four scenes with various motion
and occlusion. SPMCS and UDM10 are the recently proposed validation sets, which contain
diverse senses with considerable high-resolution frames than Vid4.

4.2 Implementation Details
We consider two models which have different network depth for all temporal modeling
method. As for 2D CNN, 2D CNN-S, 2D CNN-L adopt five and ten 2D residual blocks,
respectively. As for 3D CNN, 3D CNN-S and 3D CNN-L adopt five and ten 3D residual
blocks, respectively. The channel size for 2D CNN and 3D CNN is set to 128. For a fair
comparison with the CNN based methods, we also adopt five and ten residual blocks as the
hidden state for RRN-S and RRN-L, respectively. Each block consists of a convolutional
layer, a ReLU layer and following another convolutional layer. The channel size of convolu-
tional layer is set to 128. At the time step t0, the previous estimation is initialized with zero.
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Method
2D CNN

S
3D CNN

S
RRN

S
2D CNN

L
3D CNN

L
RRN

L
Blocks 5 5 5 10 10 10
Input Frames 7 7 recurrent 7 7 recurrent
# Param. [M] 2.8 5.5 1.9 4.3 9.9 3.4
FLOPs [GMAC] 395 1852 108 480 3640 193
Vid4 (Y) 26.72 27.08 27.38 26.96 27.25 27.69
SPMCS (Y) 29.05 29.42 29.48 29.51 29.64 29.84
UDM10 (Y) 37.67 38.12 38.33 38.15 38.43 38.97
Runtime [ms] 97 558 30 116 1045 45

Table 1: Comparison of PSNR values on Vid4 [19], SPMCS [23] and UDM10 [27] and runtime
between different temporal modeling methods for × 4 VSR. Y denotes the evaluation on luminance
channel. Runtime is calculated on an LR image of size 320×180. Red text indicates the best and blue
text indicates the second best performance. Best view in color.

To train the CNN based models, the learning rate is initially set to 1× 10−4 and 1× 10−3

for 2D CNN and 3D CNN, respectively, and multiplied by 0.1 after 10 epochs. The training
step completes after 30 epochs. To train the RNN based model, the learning rate is initially
set to 1× 10−4 and later down-scaled by a factor of 0.1 every 60 epoch till 70 epochs. All
models are supervised by pixel-wise L1 loss function with Adam [17] optimizer by setting
β1 = 0.9, β2 = 0.999 and weight decay of 5×10−4. We set the size of mini-batch as 64 and
4 for CNN based and RNN based methods, respectively. The L1 loss is applied on all pixels
between the ground truth frames y?t and the network’s output ŷt , defined by L = ‖y?t − ŷt‖.
All experiments are conducted using Python 3.6.4 and Pytorch 1.1.

4.3 Comparison with different temporal modeling methods

In this part, we compare three temporal modeling approaches, including 2D CNN, 3D CNN
and RNN on Vid4 [19], SPMCS [23] and UMD10 [27] datasets. The quantitative and qual-
itative results are shown in Tab. 1 and Fig. 3, respectively. We also present the trade-off
between runtime and accuracy in Tab. 1.
In CNN-based methods, 3D CNN-S and 3D CNN-L outperform 2D CNN-S and 2D CNN-L
by a large margin. However, VSR with 3D CNN is very time-consuming as shown in Tab. 1,
where 3D CNN-L is almost ten times slower than 2D CNN-L on processing an LR frame
of size 320× 180. Comparing with CNN based methods, RNN is highly computational
efficiency and achieves excellent results with fewer parameters. RRN-L is 0.44, 0.20 and
0.54 dB higher than 3D CNN-L on Vid4, SPMCS and UDM10, respectively, and meanwhile
being more than 23× faster. Moreover, RNN-S and RNN-L can produce a 720p video se-
quences in 33fps and 22fps, respectively. The qualitative results also show that RRN-L can
produce finer details and fewer artifacts than 2D CNN-L and 3D CNN-L. In addition, we
visualize the temporal profiles in Fig. 5. RRN-L produces temporal consistent frames and
suffers less flickering artifacts than other temporal modeling methods.
To investigate the information flow of different temporal modeling methods for handling a
long video sequence, we plot the PSNR over time for Calendar sequence in Vid4. As shown
in Fig. 3 (b),the RNN-based method falls behind the CNN-based methods at the first five
frames. By accumulating information over time, the RNN-based method outperforms CNN-
based methods from the fifth frame. More interestingly, the CNN-based methods suffer from
performance degradation at the fifth frames, but the RNN-based method keeps improving,
which demonstrates that the information accumulation in the previous hidden state provides
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Figure 4: Qualitative comparison on the UDM10 [27] and SPMCS [23] datasets for 4× VSR. Zoom
in for better visualization.

a complementary information for recovering missing details.

Necessity of residual connection in the hidden state of RNN. To investigate the ne-
cessity of residual learning in the hidden state, we create a simple baseline by removing by
simply stacking the convolutional layer in a hidden state. The advanced model is obtained by
incorporating the identity mapping in a hidden state. The PSNR (dB) and SSIM results on
Vid4 are shown in Tab. 2. The quantitative results are measured on the luminance (Y) chan-
nel. As shown in Tab. 2, the best performance of the baseline model is 27.09 dB in PSNR,
which uses three blocks as the hidden state. However, it suffers from gradient vanishing
when increasing the number of blocks to the number of four. With the help of a residual
connection in the hidden state, stable improvement is achieved when increasing the number
of blocks. These results illustrate that identity mapping can not only stabilize training but
also boost the VSR performance. Note that the performance of RRN can be further improved
by adopting more blocks.
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Figure 5: Visualization of temporal consistency for the Photography sequence in UDM10 [27]. The
temporal profile is produced by recording a single-pixel line (green line) spanning time and stacked
vertically.

Blocks 2 3 4 5 6 7 8 9 10
RRN w/o residual 26.70/0.8050 26.75/0.8108 ∗ ∗ ∗ ∗ ∗ ∗ ∗
RRN w/ residual 26.97/0.8119 27.09/0.8286 27.20/0.8334 27.38/0.8385 27.42/0.8434 27.53/0.8433 27.65/0.8468 27.67/0.8476 27.69/0.8488

Table 2: Ablation on the residual learning in the hidden state of RRN. “∗” represents that the model
in training suffers from gradient vanishing.

4.4 Comparison with state-of-the-art methods

We compare our best model (RRN-L) with eight state-of-the-art VSR approaches: SPMC [23],
TOFlow [26], FRVSR [20], DUF [12], RBPN [8], EDVR [25], RLSP [4] and PFNL [27].
SPMC, TOFlow and FRVSR apply for explicit motion estimation and compensation. EDVR
conducts motion alignment in feature level. RBPN also computes optical flow but uses it as
additional input instead of explicit motion compensation. DUF and PFNL use an advanced
temporal integration network to utilize motion information in an implicit way. RLSP is the
most related work, which also propagates historical information in feature space. However,
the design of the hidden state of RLSP is simple, which easily causes gradient vanishing
problem (see Tab 2). Most of the previous methods use different training sets and dif-
ferent down-sampling operations. For fair comparison, we fix the down-sampling filters,
i.e.σ = 1.6, and carefully re-implement these methods on the public Vimeo-90k dataset.
The quantitative results on Vid4, SPMCS and UDM10 are shown in Tab. 3. We can see that
methods with explicit motion compensation do not perform very well. By carefully analyz-
ing, the occlusion or complex motion easily influences the per-pixel motion estimation, such
as optical flow. Inaccurate motion estimation would introduce artifacts which deteriorate
super-resolution performance. As shown in Tab. 3, our method outperforms the CNN-based
methods [8, 12, 23, 25, 26, 27] by a large margin, and meanwhile runs been 70× and 6×
faster than the recent proposed RBPN and PFNL, respectively. Comparing with other RNN-
based methods [4, 20], our method outperforms FRVSR by a large margin even with fewer
parameters and 2× faster. Our method achieves comparable runtimes with RLSP, but it
outperforms RLSP by 0.21, 0.25 and 0.48 dB in PSNR on Vid4, SPMCS and UDM10, re-
spectively. Qualitative comparisons are presented in Fig. 4. The proposed method produces
sharper edges and finer details than other VSR methods. In addition, our method produces
temporal-consistent results than the previous methods, as shown in Fig. 5
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Method Bicubic SPMC† [23] TOFLOW [26] FRVSR [20] DUF [12] RBPN [8] EDVR [25] RLSP [4] PFNL [27] RRN-L (Ours)
# Param. [M] N/A - 1.4 5.1 5.8 12.8 20.1 4.3 3.0 3.4
Runtime [ms] N/A - 1658 129 1393 3482 621 50 295 45
Vid4 (Y) 21.80/0.5426 25.52/0.76 25.85/0.7659 26.48/0.8104 27.38/0.8329 27.17/0.8205 27.35/0.8264 27.48/0.8388 27.16/0.8365 27.69/0.8488
Vid4 (RGB) 20.37/0.5106 -/- 24.39/0.7438 25.01/0.7917 25.91/0.8166 25.65/0.7997 25.83/0.8077 25.69/0.8153 25.67/0.8189 26.16/0.8209
SPMCS (Y) 23.29/0.6385 -/- 27.86/0.8237 28.16/0.8421 29.63/0.8719 29.73/0.8663 -/- 29.59/0.8762 29.74/0.8792 29.84/0.8827
SPMCS (RGB)) 21.83/0.6133 -/- 26.38/0.8072 26.68/0.8271 28.10/0.8582 28.23/0.8561 -/- 27.25/0.8495 27.24/0.8495 28.28/0.8690
UDM10 (Y) 28.47/0.8523 -/- 36.26/0.9438 37.09/0.9522 38.48/0.9605 38.66/0.9596 -/- 38.48/0.9606 38.74/0.9627 38.96/0.9644
UDM10 (RGB) 27.05/0.8267 -/- 34.46/0.9298 35.39/0.9403 36.78/0.9514 36.53/0.9462 -/- 36.39/0.9465 36.91/0.9526 37.03/0.9534

Table 3: Quantitative comparison (PSNR(dB) and SSIM) on Vid4 [19], SPMCS [23] and
UDM10 [27] for 4×VSR, respectively. ‘†’ means the values are taken from original publications
or calculated by provided models. Y and RGB indicate the evaluation on luminance channel or RGB
channels, respectively. Runtime is calculated on an LR image of size 320×180. Red text indicates the
best and blue text indicates the second best performance.Best view in color.

5 Conclusion
Video super-resolution is an important task, which has drawn much attention in both research
and industrial communities. We comprehensively investigate and compare three commonly
used temporal modeling methods for video super-resolution, including 2D CNN with early
fusion, 3D CNN with slow fusion and RNN. For a fair comparison, all models are developed
on the public Vimeo-90k dataset with the fixed down-sampling filters and loss function.
Extensive experiments on Vid4, SPMCS and UDM10 benchmarks, demonstrate RNN is
highly efficient and benefit in dealing with the VSR problem. In addition, we also propose
a novel hidden state structure for recurrent network, termed as RRN. The proposed method
achieves state-of-the-art performance on three benchmarks.
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