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Abstract

Dropout is a popular regularization technique in deep learning. Yet, the reason for its
success is still not fully understood. This paper provides a new interpretation of Dropout
from a frame theory perspective. By drawing a connection to recent developments in
analog channel coding, we suggest that for a certain family of autoencoders with a lin-
ear encoder, optimizing the encoder with dropout regularization leads to an equiangular
tight frame (ETF). Since this optimization is non-convex, we add another regularization
that promotes such structures by minimizing the cross-correlation between filters in the
network. We demonstrate its applicability in convolutional and fully connected layers in
both feed-forward and recurrent networks. All these results suggest that there is indeed
a relationship between dropout and ETF structure of the regularized linear operations.

1 Introduction
Deep neural networks are powerful computational models that have been used extensively for
solving problems in computer vision, speech recognition, natural language processing, and
many other areas [30, 32, 33, 53, 61]. The parameters of these architectures are learned from
a given training set. Thus, regularization techniques for preventing overfitting of the data are
very much required [22, 35]. Such methods include Batch Normalization [31], Weight decay
[34], `1 regularization on the weights [48, 62] and Jacobian regularization [45, 50].

One of the most popular strategies is Dropout, which randomly drops hidden nodes along
with their connections at training time [29, 51]. During training, in each batch, nodes are
kept with a probability p, which causes them to be eliminated with probability q = 1− p
(with their corresponding input and output weights). The weights of the remaining nodes
are trained by back-propagation regularly. At inference time, the outputs of the layer(s)
on which Dropout was applied are multiplied by p. Though very useful, Dropouts explicit
regularization is not fully understood yet. Such an understanding is required to exploit the
full potential of Dropout, and to deepen our knowledge in neural networks.

This work approaches Dropout from a signal processing and information theory perspec-
tive. It draws a connection between Dropout in a denoising autoencoder (DAE) and signal
recovery from erasures in the analog domain (see Fig. 1). In this “analog coding” problem,
a signal passes through an encoder A and then disrupted by an additive noise and part of its
values are nullified. Once received, it is recovered by passing through a decoder B. The goal
is to find the pair (A,B), which recovers the input signal with a minimal `2 error.
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Figure 1: (left) a DAE variant (see [2]) with a linear encoder; (right) a signal encoding
scheme in an analog channel with a decoder that performs least squares based inversion.
S(p) is a sampling pattern with a sampling ratio p and w ∈ Rp·n is an additive noise.

.

To draw a connection to Dropout, we make the following steps. First, we examine a
specific case, where the encoding A is performed by a (linear) matrix multiplication F , and
the recovery is done by solving a least squares problem with the given measurements and
Fs, the subset of columns from the matrix F corresponding to the kept measurements. It
has been suggested in a recent work that frames with MANOVA distribution [17], minimize
the expected `2 error in this setting [23]. Though not proven formally, various empirical
measurements lead to the conjecture that ETFs have MANOVA distribution in their sub-
matrices, and thus minimize the `2 error in the above setup [24, 25].

Next, we draw a relationship to DAE (briefly illustrated in Fig. 1). Considering an au-
toencoder with a linear encoder and a Dropout regularization applied on it, we get a very
similar structure to the analog coding problem. Thus, if the decoder solves the least squares
problem, then an ETF is likely to be a global minimum in the encoder optimization.

Last, we notice that the representation learned by autoencoders may be used for clas-
sification, e.g., in a semi-supervised learning setup, where the learned encoder serves as a
feature extractor. This leads to the conjecture that promoting structure of an ETF in some
layers of the network might turn useful for classification tasks as well. This provides a first
step towards using frame theory for understanding and improving neural networks.

We support our claim by experiments done on various data-sets for image classification
and word level prediction. We measure the effect of the ETF regularization when used
as a sole regularizer, and when combined with Dropout. For fully connected (FC) layers,
we promote an ETF structure for the weight matrix directly by reducing the correlation
between its rows. We demonstrate this regularization for both feed-forward and recurrent
(LSTM) networks. For convolutional layers, we do not use their corresponding Toeplitz
matrix. Instead, for simplicity, the coherence between the convolution kernels is minimized.

2 Related works
This section discusses some previous works that analyze dropout. A detailed description of
dropout and autoencoders appears in the sup. mat.

One disadvantage of Dropout, is that it slows down the training time. Wang and Manning,
have implied that Dropout makes a Monte Carlo assessment of the layers output and thus
reduced the training time [57]. Frazier-Logue and Hanson suggest that Dropout is just a
special case of a stochastic delta rule, where each weight is parameterized as a random
variable with a mean and variance of its own. Their method leads to faster convergence than
using Dropout [18]. Hara et al. compared training with Dropout to ensemble learning, where
several sub-networks are learned independently, and then the final result is an aggregation of
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all of them [27]. Baldi et al. [3, 41] introduced a general formalism for studying Dropout in
networks with the sigmoid activation function. They showed that for a shallow network the
expected output of a network with dropout can be approximated via the weighted geometric
mean of the network outputs. Wager et al. analyzed Dropout applied to the logistic loss
for generalized linear models (GLM) [54]. They claim that Dropout is similar to applying `2
regularization, where each squared weight is normalized using the Fisher information matrix.

Helmond and Lond derived a sufficient condition to guarantee a unique minimizer for a
loss function that uses Dropout [28]. To differentiate between the bias induced by Dropout
and `2 regularization, they provide examples for input data distributions for which the error
achieved by Dropout is lower than the one of `2, and examples for the opposite case. Wager et
al. showed for a generative Poisson topic model with long documents that Dropout training
improves the exponent in the generalization bound for empirical risk minimization [55].
Cavazza et al. discussed the equivalence between Dropout and a fully deterministic model
for Matrix Factorization in which the factors are regularized by the sum of products of the
squared Euclidean norms of the columns of the matrix [9]. Pal et al. showed equivalence
between Dropout and DropConnect [56], and that for single hidden-layer linear networks,
DropBlock [21] induces spectral k-support norm regularization, and promotes solutions that
are low-rank and have factors with equal norm [42]. Tang et al. proposed DisOut, a method
for feature distortion based on the network layers empirical Rademacher complexity [52].

Gal and Ghahramani use Dropout to measure the uncertainty of a network. They approx-
imate the likelihood functions with Monte Carlo sampling done via Dropout [19].

The two methods most related to our work are the one by Mianjy et al. [40] and DeCov
[11] described in detail in the sup. mat. The first studies the implicit bias of Dropout [40].
It focuses on the case of a shallow autoencoder with a single hidden layer. It draws a re-
lationship between the norms in the encoder and the decoder showing that they need to be
equalized. The second by Cogswell et al. [11] uses the fact that Dropout leads to less cor-
related features and thus suggests to regularize the covariance of the features with respect to
the training data. Hereafter, we compare our theory to the one of Mianjy et al. [40] and show
that our proposed regularization method enforces jointly equalized matrices when performed
in a linear autoencoder, and mention the connection between our work and Decov.

3 Signal reconstruction from a frame representation

We now address a notorious problem in information theory: Signal reconstruction from a
frame representation with erasures, as illustrated in Fig. 1. Later on, we shall use its resem-
blance to autoencoders. Consider the signal vector x ∈ Rm and a frame F . First, the vector
is encoded by F , i.e., yielding xF , which is then transmitted in an analog channel. In the
channel, part of the values are nullified with probability p, and then the remaining values are
disrupted by an additive white Gaussian noise (AWGN).

Notice that nullifying the values in xF with probability p is equivalent to removing
columns from F with probability p and then multiplying it with x. Denote by S(p) the
pattern that defines which vectors of F are used, with respect to the probability p, and by Fs
the sub-matrix of F with the vectors corresponding to S(p). Then the resulted vector after
the addition of the AWGN w is defined as

y = xFs +w. (1)
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In order to recover the input from y, one may use the least square solution

x̂ = argminx̃ ‖y− x̃Fs‖2
2 = yF†

s , (2)

where F†
s is the pseudo-inverse of Fs. Thus, if one wishes to optimize F for minimizing the

reconstruction error in the `2 sense, the target objective is:

argminF E‖x− x̂‖2
2 = argminF E

∥∥x− yF†
s
∥∥2

2 , (3)

where the expectation is with respect to the noise variable w, the distribution of the input
variable x, and the sampling vector S(p).

Frames for signal encoding. A number of works have studied the problem of recon-
struction from erasures in the setup presented in Fig. 1 (see for example [4, 6, 7, 36]). As
part of it, the usage of frames as encoders was vastly explored. Frames, or overcomplete
bases, are m× n matrices with rank m, where n > m. They are widely used in various ap-
plications of communication, signal processing, and harmonic analysis [5, 8, 10, 26]. For
example, they are often used for sampling techniques to analyze and digitize signals and
images when they are represented as vectors or functions in a Hilbert space [16].

There is also a great interest in finding frames with favorable properties that hold for
random subsets of their columns [46]. One popular type of frames is tight frames. A frame
F of dimensions m× n is a tight frame iff FFT = c · Im for some constant c. In [12], they
have been shown to be useful for quantization.

Equiangular tight frames. An interesting sub-group of tight frames are ETFs. The
Gram matrix of a frame F is defined by GF = FT F and contains outside its diagonal the
cross-correlation values between the columns of the frame F , i.e., Gi, j contains the cross-
correlation value between the ith and jth columns of F . The Welch bound [58] provides
a universal lower bound on the mean and maximal absolute value of the cross-correlations
between the frame vectors. A frame that achieves the Welch lower bound on the maximal
absolute cross-correlation value is an ETF. The Gram matrix GET F of a m×n ETF satisfies:

∣∣(GET F)i, j
∣∣={ 1

n−m
(n−1)m

i = j
else.

(4)

Intuitively, the n vectors of an ETF are spread uniformly across an m dimensional space with
an angle θ = arccos

√
n−m

(n−1)m between them.The maximal off-diagonal value in the Gram
matrix is denoted the mutual coherence [13] or simply the coherence value.

It was demonstrated that frames that reach the Welch bound (also known as Equiangular
Tight Frames(ETF)), have MANOVA distribution [24]. The eigenvalue distribution of the
submatrices of an ETF is shown empirically to resemble the MANOVA distribution. We
provide a brief intuition here and more details in the sup. mat. Note that minimizing the
estimation error at the decoder output is equivalent to minimizing E[Tr(FT

s Fs)
−1] because

argminF E‖x− x̂‖2
2 = argminF E

∥∥x−F†
s Fx+F†

s w
∥∥2

2 = argminF E
∥∥F†

s w
∥∥

2 (5)

= argminF E(Tr(F†T
s F†

s wwT )) = argminF σ
2
w ·E(Tr(FT

s Fs)
−1) = argminF E(Tr(FT

s Fs)
−1).

Assuming the frame columns are normalized and Fs has k columns, then E[Tr(FT
s Fs)]

is independent of S and equals to = ∑
k
i=1 λi, where λk is the kth eigenvalue of F . Thus, the

minimization objective in Eq. (5) becomes E
[
∑

k
i=1

1
λi

]
. In this case, it is clear that the best
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possible distribution is p(λ ) = δ (λ ), i.e., each sub-matrix is unitary. Yet, this is impossible
to maintain for over-complete frames for which all the sub-matrices cannot be unitary.

To assess that Manova is the optimal choice, various popular random matrices with
known distributions were tested [24]. These include Low pass frames with Vandermonde
distribution [47], Gaussian frames that obeys the Marchenko-Pastur distribution [24], and
frames whose distribution resembles the MANOVA distribution such as ETF, Random Fourier,
and Haar [24]. MANOVA was shown to be the distribution closest to δ (λ ). Thus, overall
we get the conjecture that ETFs are the global minimum for the settings of Eq. (3).

4 An ETF perspective of Dropout

Having the problem of reconstruction of a signal with erasures stated, we turn to draw a
relationship between it and optimizing a neural network with dropout. In particular, we
focus mainly on the relationship to autoencoders.

4.1 The relationship between Dropout and ETF

Notice the great resemblance between a denoising autoencoder (DAE) with linear encoder
and Dropout applied on it and the analog coding problem, as illustrated in Fig. 1. Though in
standard DAE the noise is added at the input, in the DAE we present here, we put the noise at
the output of the encoder, as suggested in [2]. There is a similarity between the two models
in the linear case as adding noise at the output of the decoder is equivalent to adding noise at
its input with a covariance matrix equal to the pseduo-inverse of the decoder.

Given the above information, in the case that the encoder is linear and the decoder cal-
culates the least squares solution, we conjecture that the global minimum of training with
Gaussian distributed data and noise, and Dropout on the encoder should be an ETF for the
encoder (or very close to it if the setting slightly changes).

Notice that for a given Dropout/erasure pattern, the decoder is a linear operation. Since
the encoder is also linear, the autoencoder with the fixed pattern becomes a shallow linear
autoencoder as used in [40] (See sup. mat.). In that work it is claimed that Dropout induces
the matrices of such a shallow linear autoencoder to be jointly equalized. In our case, the
optimal encoder is claimed to be an ETF and thus the linear encoder and decoder in the lin-
ear autoencoder induced by the Dropout are a sub-matrix of an ETF and its pseudo-inverse,
respectively. Interestingly, it turns out that this pair is indeed jointly equalized, which cor-
responds with the theory derived in [40]. Notice that this is not exactly the result derived in
that work, since unlike their assumption that the decoder is linear, here it is non-linear (it is
linear only given a specific erasure pattern). Thus, this relationship requires further study.

To examine the relationship between Dropout and ETFs, we set an experiment with an
autoencoder that has a similar structure to the analog coding problem setup described in
Section 3. The encoder A in this network is a linear one, represented by a randomly initialized
matrix. Specifically, we use a matrix A of size 75×150.

For the decoder, we do not use A†
s since it is hard to calculate its derivative with respect to

A during training. Instead, we use the fact that the pseudo inverse is the least squares solution
and perform ten iterations of gradient descent x̂i+1 = x̂i− µAT

s (Asx̂i− y), where x̂ = x̂9 and
x = x̂0. The learning rate µ is the inverse of the largest eigenvalue of the Gram matrix AT

s As
as in [37]. For the sample pattern S(p), we simply apply Dropout on the encoder.
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Figure 2: Training linear DAE with infinite data: plots of the coherence and the squared error
as a function of batches. The error is scaled by 100 to fit with coherence in the same plot.
Left: optimizing over the MSE. Right: optimizing over the Encoder coherence.
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Figure 3: Training linear DAE with finite data: Plots of the squared error of a DAE and
the coherence of its encoder as a function of β . The error is scaled by 100 to put it with
the coherence in the same plot. For each β , the minimal and final MSE is measured and
compared to the one of an ETF with a pseudo inverse decoder.

The input signals are generated as i.i.d. Gaussian vectors with a standard deviation of 1
and the noise is generated with the same distribution but with a standard deviation of 0.001.

The experiment is performed in two different settings: the first includes an infinite
amount of data, and the second deals with a finite and limited one. In the infinite data case,
we seek to find correspondence between the encoder coherence and the squared loss. We use
an "online" learning setup with 100 signals per batch. First, we optimize over the squared
loss and measure the coherence. Second, we optimize over the following "Coherence loss":

CL = ‖AT A−|GET F |‖∞, (6)

where |·| is an element-wise absolute value, and ‖·‖
∞

returns the maximum absolute value
in the matrix. As can be seen in Fig. 2, the coherence and the reconstruction loss are closely
related. Notice that coherence minimization induces a MSE reduction and vice versa. This
validates our claim on the relationship between the two. Indeed, the coherence does not
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reach the Welch bound, and the error is much higher than the one of an ETF. We conjecture
that this is mainly due to the non-convexity of the problem.

For limited data, regularization of the coherence is considered such that the new loss is

L = MSE +β ·CL, (7)

where β is the regularization coefficient. Note that this term encourages getting an ETF-
like structure. We train the autoencoder with this new regularization over several values of
β . We use a training set of 100 signals, where the training phase includes randomizing the
noise vector and the sampling pattern in each batch. The test set size is chosen as 5000 to
accurately measure the test error. We train the model for 300 epochs in which the minimal
and final test errors are measured, along with the final coherence.

It is known that regularization techniques increase the bias of a model. If successful, they
reduce the models variance such that the total error is reduced, and thus prevent overfitting.
Therefore, we expect low regularization coefficients to have little effect on the performance,
large ones to perform poorly due to high bias, and for a specific range to increase the training
error while decreasing the test error. Fig. 3 shows that until a certain value, both the error
and the coherence diminish as β increases. High β values (in this case - higher than 0.1),
result with optimization difficulties. This demonstrates that adding this term indeed helps in
improving the convergence of the encoding frame closer to the desired ”global minimum”.

4.2 Promoting an ETF structure in general neural networks
Recalling the setting of Section 3, notice that the encoding part is exactly equivalent to a FC
layer in a neural network, where the frame F plays the roll of the weight matrix, and the
nullification with probability p acts as Dropout. Though the specific setup discussed here
is more relevant to autoencoders, we believe that the new understandings of Dropout may
be carried also to more general neural networks. Inspired by the usage of autoencoders for
classification, we conjecture that ETFs may be helpful for regularization also in other tasks
beyond signal recovery, e.g. for classification as we demonstrate hereafter.

Since there are infinitely many ETFs, we do not want to regularize a layer towards a
specific one. Moreover, we do not always have an ETF construction for every combination
of m and n. Yet, the structure of the Gram matrix is easily accessible and is the same for all
ETFs that have the same value of m and n.

For these reasons, and the ones specified in Section 4.1, we adopt the "ETF similarity"
term presented in Eq. (7) also for general neural networks and in particular for ones perform-
ing classification tasks. Notice that in the case where m > n, all vectors can be independent,
and we penalize the distance from Im, which is the same as reducing the magnitude of the
off-diagonal entries of AT A. In the case of convolution, we regularize the coherence between
the convolution kernels (we justify this selection in the sup. mat.).

In an LSTM cell, we have four different FC gates: One to create a new state vector;
one to create a f orget vector, which decides how much to keep from the old state; One for
an input vector, which decides how much to keep from the new state; and one for the cell’s
out put. We promote ETF-like matrices on each one of them separately, since we do not want
to impose low coherence between the vectors of the different FC layers (We may still want
that the same filter will be used in the different gates.).

Interestingly, our proposed coherence based regularization technique may also be moti-
vated by the sparse coding theory, where it is well known that it is easier to recover the sparse
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Table 1: Comparison of ETF optimization criteria on LeNet5 FC layer and Fashion MNIST

Regularization None ETF max (`∞) ETF sum (`1) ETF squared (`2)
Test Accuracy 88.36% 90.89% 88.89% 89.22%

representation of a vector from a matrix that has a low coherence [13, 15]. In a recent work,
it has been shown that the layers of a convolutional neural network may be viewed as stages
for reconstructing the sparse representation of the input [44]. Moreover, recovery guarantees
have been developed based on the coherence showing that a smaller coherence leads to bet-
ter reconstruction of the sparse representation of the input by the network [43]. While that
work focuses mainly on convolutional layers, it definitely provides another motivation for
our new regularization technique. This is especially true since in classical sparse coding the
coherence is also used with regular matrices (equivalent to the weights in the FC layers).

Practically, there are few ways to promote a matrix A to be an ETF-like, i.e., making its
coherence as small as possible. We focus on three of them: minimizing the sum of squares
of
∣∣AT A

∣∣−|GET F |, the sum of absolute values and the maximal value, which is equivalent
to minimizing the coherence of A as in (7). Notice that minimizing the sum of absolute
values is similar to the approach used in [15] for minimizing the coherence in a dictionary by
reducing the average absolute value of the cross-correlations between its columns. Another
approach proposed in [14] relies on a spectral decomposition of A. Though it is shown to be
more effective than the one in [15], it is too computationally demanding for using it with a
neural network training and thus we focus only on techniques that minimize the coherence
directly. In addition, by assuming that the inputs are Gaussian, it is possible to minimize
the cross-correlations of the columns, which partially coincides with the DeCov method [11]
that penalizes the activation cross correlations.

We compare the three regularization options above with a classification network for the
Fashion MNIST dataset. We regularize the FC layer in a LeNet5 type network (the exact
settings are detailed in Section 5). Table 1 presents the classification accuracy on the test set.
We select for each regularization strategy its own optimal parameter β . This table suggests
that minimizing the coherence directly, i.e. the maximal value (`∞) of

∣∣AT A
∣∣− |GET F | as

appears in Eq. (7), should be the preferred option.
An intuition behind the usage of the `∞ norm in the optimization is related to the concept

of hard example mining. The loss focuses on the two columns that cause the Gram matrix
to be the farthest from the one of an ETF. It is known that in non-convex optimization, one
may achieve improvement when focusing on the optimization of the harder examples, which
improves the convergence and results [20, 38].

5 Experiments

We turn to evaluate our method apart of and on top of Dropout in the classification regime.
Our analysis above applies to the regression (auto-encoder) case, and therefore it does not
necessarily imply that in the classification case Dropout will encourage an ETF structure.
Thus, we check here whether adding such a regularization can help also for classification.
We emphasize that we do not try to compete with Dropout, nor we try to reach state-of-the-art
results. In addition, the training time using the coherence is much higher than using Dropout.
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Table 2: FC layer regularization effect on test accuracy

Regularization Fashion MNIST CIFAR-10 Tiny ImageNet
(top1)

Tiny ImageNet
(top5)

None 88.36% 84.41% 39.92% 65.29%
Dropout 90.16% 86.16% 48.35% 73.13%

ETF 90.89% 86.14% 44.21% 69.34%
Dropout+ETF 91.91% 86.94% 49.78% 73.55%

We simply aim at demonstrating the impact of ETF regularization with and without Dropout.
The value of β is chosen by cross-validation. To isolate the effect of the two methods,
no other regularization techniques are used. We demonstrate our proposed strategy on FC
layers, convolutional layers, and LSTM. Four known datasets (Fashion MNIST, CIFAR-10,
Tiny-ImageNet, Penn tree bank) are used with their appropriate architectures.

Fashion MNIST [59] is a dataset similar to MNIST but with fashion related classes that
are harder to classify compared to the standard MNIST. We use for it a LeNet5 based model.

CIFAR-10 is composed of 10 classes of 32×32 RGB natural images with 50,000 training
images, and 10,000 testing images. The architecture used is also based on a variant of Lenet5.

Tiny Imagenet is composed of 200 classes of natural images with 500 training examples
per class, and 10,000 images for validation. Each image is an RGB image of size 64×64.
It is tested by top-1 and top-5 accuracy. The architecture we use is an adaptation of the
VGG-16 model [49] to the Tiny Imagenet dataset [1].

We perform word level prediction experiments on the Penn Tree Bank data set [39]. It
consists of 929,000 training words, 73,000 validation words, and 82,000 test words. The vo-
cabulary has 10,000 words. In this dataset, we measure the results by the attained perplexity,
which we aim at reducing. The architecture used is as in [60]. Two models are considered,
where all of them involve LSTMs with two-layer, which are unrolled for 35 steps. The small
model includes 200 hidden units, and the medium includes 650.

The full implementation details appear in the sup. mat. and the code is available at:
https://github.com/dorbank/An-ETF-view-of-Dropout-Regularization.
Fully connected layers. We start by applying our ETF regularization on the FC layers on
three image classification datasets: Fashion MNIST , CIFAR-10 and Tiny ImageNet. As
can be seen in Table 2, the ETF regularization improves the test accuracy, with and without
Dropout. Note that it always improves the results of Dropout when combined together with
it and that on the Fashion MNIST data it gets better performance also when it is used alone.
Convolutional layers. Next, we apply our ETF regularization on the convolutional layers
(Table 3). It can be observed that the ETF regularization has less effect on the convolutional
layers compared to the FC ones, both when applied with and without Dropout. We con-
jecture that for classification tasks, the kernels of the different channels have already lower
coherence than the columns of a FC weight matrix. It might be also that a regularization of
the coherence of the stride matrix may lead to better results.
LSTM. Lastly, we apply our ETF regularization on LSTM cells. We test it for both the
small sized model and the medium sized one (Table 4). Notice that in this case, we also see
the positive effect of the ETF regularization mainly when combined with Dropout. When
applied alone, its effect is weaker in the medium model compared to the small one though it
always leads to improvement. We believe that this difference should be further investigated.
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Table 3: Convolution layer regularization effect on test accuracy

Regularization Fashion MNIST CIFAR-10 Tiny ImageNet
(top1)

Tiny ImageNet
(top5)

None 88.36% 84.41% 39.92% 65.29%
Dropout 91.14% 85.75% 43.44% 69.03%

ETF 90.30% 85.15% 42.13% 67.05%
Dropout+ETF 91.58% 86.36% 45.55% 69.80%

Table 4: LSTM layer regularization effect on test accuracy - Penn Tree Bank dataset

Regularization small model (Val
Perp.)

small model
(Test Perp.)

medium model
(Val Perp.)

medium model
(Test Perp.)

None 121.39 115.91 123.012 122.853
Dropout 98.260 93.927 87.059 83.059

ETF 104.425 99.398 115.868 111.956
Dropout + ETF 93.998 90.139 85.267 81.646

6 Conclusions

This work provides a novel interpretation of the role of Dropout by bringing together two,
similar but "unacquainted", research fields, namely, deep learning and frame theory. This
combination provides the understanding that Dropout promotes an ETF structure when ap-
plied on a linear encoder in an autoencoder model. We have shown that adding a regulariza-
tion that encourages an ETF structure improves the performance in these networks. The fact
that in semi-supervised learning, the encoder also serves many times as a feature extractor
for classification tasks, has led us to the usage of this ETF regularization also in standard
neural networks, e.g., for classification, along with Dropout. This combination has shown
improvement in different tasks and network types. It showed that the bias induced by the
proposed regularization is related to the one of Dropout. We believe that the relationship
that this work draws between the two (both theoretically and empirically) should be further
explored.

It appears that the study of frames can help to gain a better understanding of the Dropout
regularization. We believe that this paper makes the first steps in this direction by study-
ing the optimal frame created by Dropout in an autoencoder architecture that has a linear
encoder. The improvement demonstrated in this work by the ETF regularization together
with Dropout, for various tasks such as classification, suggests that the role of ETF in neural
network optimization should be more deeply analyzed in these contexts.

7 Acknowledgments

We thank Prof. Ram Zamir and Marina Haikin for fruitful discussion and for introducing us
to the analog coding setup. This work is supported by the ERC-STG SPADE grant.



BANK AND GIRYES: AN ETF VIEW OF DROPOUT REGULARIZATION 11

References
[1] VGG code for tiny imagenet, 2017. https://github.com/pat-coady/tiny_imagenet.

[2] A. Achille and S. Soatto. Information dropout: Learning optimal representations
through noisy computation. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 2018.

[3] Pierre Baldi and Peter J Sadowski. Understanding dropout. In C. J. C. Burges, L. Bot-
tou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 26, pages 2814–2822. Curran Associates, Inc., 2013.

[4] B. G. Bodmann and V. I. Paulsen. Frames, graphs and erasures. Linear Algebra and its
Applications, 404:118 – 146, 2005.

[5] Bernhard G. Bodmann, Pete Casazza, and Radu Balan. Frames for linear reconstruction
without phase. The 42nd Annual Conference on Information Sciences and Systems,
pages 721–726, 2008.

[6] Pete G. Casazza and Gitta Kutyniok. Robustness of fusion frames under erasures of
subspaces and of local frame vectors. Contemporary Mathematics, 25:114–132, 2008.
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