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Abstract

In this paper the argument is made that for true novel view synthesis of objects, where
the object can be synthesized from any viewpoint, an explicit 3D shape representation is
desired. Our method estimates point clouds to capture the geometry of the object, which
can be freely rotated into the desired view and then projected into a new image. This
image, however, is sparse by nature and hence this coarse view is used as the input of an
image completion network to obtain the dense target view. The point cloud is obtained
using the predicted pixel-wise depth map, estimated from a single RGB input image,
combined with the camera intrinsics. By using forward warping and backward warping
between the input view and the target view, the network can be trained end-to-end without
supervision on depth. The benefit of using point clouds as an explicit 3D shape for novel
view synthesis is experimentally validated on the 3D ShapeNet benchmark. Source code
and data are available at https://github.com/lhoangan/pc4novis

1 Introduction
Novel view synthesis aims to infer the appearance of an object from unobserved points of
view. The synthesis of unseen views of objects could be important for image-based 3D object
manipulation [18], robot traversability [12], or 3D object reconstruction [29]. Generating a
coherent view of unseen parts of an object requires a non-trivial understanding of the object’s
inherent properties such as (3D) geometry, texture, shading, and illumination.

Different algorithms make use of provided source images in different ways. Model-based
approaches use similar-look open stock 3D models [18], or through user interactive construc-
tion [2, 26, 31]. Image-based methods [23, 24, 28, 29, 32] assume an underlying parametric
model of object appearances conditioned on viewpoints and try to learn it using statistical
frameworks. Despite their differences, both approaches use 3D information in predicting
object new views. The former imposes stronger assumptions on the full 3D structure and
shifts the paradigm to obtain the full models, while the latter captures the 3D information in
latent space to cope with (self) occlusion.
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Figure 1: Overview of the proposed model for training and inference. From a single input
image, the pixel-wise depth map is predicted. The depth map is subsequently used to com-
pute a coarse novel view (forward warping), and trained by making use of backward warping
(from the target view back to the source view). The model is trained end-to-end.

The principle is that the generation of a new view of an object is composed of (1) relo-
cating pixels in source images that will be visible to the corresponding positions in the target
view, (2) removing the pixels that will be occluded, and (3) adding disoccluded pixels that
are not seen in the source and will be visible in the target view [24]. With the advance of con-
volution neural networks (CNNs) and generative adversarial networks (GANs), [24, 28, 32]
show that (1) and (2) can be done by learning an appearance flow field that "flows" pixels
from a source image to the corresponding positions in the target view, and (3) can be done
by a completion network with an adversarial loss.

In this paper, we leverage the explicit use of geometry information in synthesizing novel
views. We argue that (1) and (2) can be done in a straightforward manner by obtaining access
to the geometry of the objects. The appearance flow [24, 28, 32] which associates pixels of
the source view to their positions in the target view, is the projection of the 3D displacement
of objects’ points before and after transformation. Occluded object parts can be identified
based on the orientation of the object surface normals and the view directions. The argument
can also be extended for multiple input images. In this paper, we show that the geometry of
an object provides an explicit and natural basis to the problem of novel view synthesis.

In contrast to geometry-based methods, the proposed approach does not require 3D su-
pervision. The method predicts a depth map in a self-supervised manner by formulating the
depth estimation problem in the context of novel view synthesis. The predicted depth is used
to partly construct the target views and to assist the completion network.

The main contributions of this paper are: (1) a novel methodology for novel view syn-
thesis using explicit transformations of estimated point clouds; (2) an integrated model com-
bining self-supervised monocular depth estimation and novel view synthesis, which can be
trained end-to-end; (3) natural extensions to multi-view inputs and full point cloud recon-
struction from a single image; and (4) experimental benchmarking to validate the proposed
method, which outperforms the current state-of-the art methods for novel view synthesis.

2 Related Work

2.1 Geometry-based view synthesis
View synthesis via 3D models Full models (textured meshes or colored point clouds)
of objects or scenes are constructed from multiple images taken from various viewpoints
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[4, 20, 27] or are given and aligned interactively by users [18, 26]. The use of 3D models
allows for extreme pose estimation, re-texturing and flexible (re-)lighting by applying ren-
dering techniques [20, 22]. However, obtaining complete 3D models of objects or scenes
is a challenging task in itself. Therefore, these approaches require additional user input to
identify objects boundaries [2, 31], select and align 3D models with image views [18, 26],
or use simple textured-mapped 3-planar billboard models [13]. In contrast, the proposed
method makes use of objects partial point clouds constructed from a given source view and
does not require a predefined (explicit) 3D model.
View synthesis via depth Methods using 3D models assume a coherent structure between
the desired objects and the obtained 3D models [2, 18]. Synthesis using depth obtains an in-
termediate representation from depth information. The intermediate representation captures
hidden surfaces from one or multiple viewpoints. [37] proposes to use layered depth images,
[5] creates 3D plane sweep volumes by projecting images onto target viewpoints at different
depths, [34] uses multi-plane images at fix-distances to the camera, and [3] estimates depth
probability volumes to leverage depth uncertainty in occluded regions.

In contrast, the proposed method estimates depth directly from monocular views to
partially construct the target views. Self-supervised depth estimation using deep neural
networks using photometric re-projection consistency has been researched by several au-
thors [7, 9, 10, 17, 33]. In this paper, we train a self-supervised depth prediction network
with novel view synthesis in an end-to-end system.

2.2 Image-based view synthesis
Requiring explicit geometrical structures of objects or scenes as a precursor severely limits
the applicability of a method. With the advance of neural networks (CNNs), generative
adversarial networks [11] (GANs) achieve impressive results in image generation, allowing
view synthesis without explicit geometrical structures of objects or scenes.
View synthesis via embedded geometry Zhou et al. [32] proposes learning a flow field
that maps pixels in input images to their corresponding locations in target views to capture
latent geometrical information. [23] learns a volumetric representation in a transformable
bottleneck layer, which can generate corresponding views for arbitrary transformations.
The former explicitly utilizes input (source) image pixels in constructing new views, ei-
ther fully [32], or partly with the rest being filled by a completion network [24, 28]. The
latter explicitly applies transformations on the volumetric representation in latent space and
generates new views by means of pixel generation networks.

The proposed method takes the best of both worlds. By directly using object geom-
etry the source pixels are mapped to their target positions based on given transformation
parameters, hence making the best use of the given information synthesizing new views.
Our approach is fundamentally different from [24]: we estimate the object point cloud us-
ing self-supervised depth predictions and obtain coarse target views from purely geometrical
transformations, while [24] learns mappings from input images and ground truth occluded
regions to generate coarse target views using one-hot encoded transformation vectors.
View synthesis directly from image Since the introduction of image-to-image transla-
tion [14], there is a paradigm shift towards pure image-based approaches [29]. [36] synthe-
sizes bird view images from a single frontal view image, while [25] generates cross-views of
aerial and street-view images. The networks can be trained to predict all the views in an orbit
from a single-view object [17, 19], or generate a view in an iterative manner [6]. Additional
features can be embedded such as view-independent intrinsic properties of objects [30]. In
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this paper, we employ GANs to generate complete views, which is conditioned on the geo-
metrical features and the relative poses between source and target views. Our approach can
be interpreted as a reverse and end-to-end process of [17]: we estimate objects’ arbitrary
new views via point clouds constructed from self-supervised depth maps, while [17] predict
objects’ fixed orbit views for 3D reconstruction.

3 Method

3.1 Point-cloud based transformations
The core of the proposed novel view synthesis method is to use point clouds for geometri-
cally aware transformations. Using the pinhole camera model and known intrinsics K, the
point cloud can be reconstructed when the pixel-wise depth map (D) is available. The cam-
era intrinsics can be obtained by camera calibration, yet for the synthetic data used in our
experiments, K is given. A pixel on the source image plane ps = [u,v,1] (using homogeneous
coordinates), corresponds to a point Ps = [X ,Y,Z] in the source camera space:

Ds p>s = K P>s P>s = K−1 Ds p>s (1)

Rigid transformations can be obtained by matrix multiplications. The relative transformation
to the target viewpoint from the source camera, is given by

θs→t =

[
R t
0 1

]
(2)

where R denotes the desired rotation matrix and t the translation vector. Points in the target
camera view are given by Pt = θs→tPs. This can also be regarded as an image-based flow field
φ : R2→R2 parameterized by θs→t (c.f . [24, 28, 32]). The flow field φ(ps;θs→t) returns the
homogeneous coordinates of pixels in the target image for each pixel in the source image:

φ(ps;θs→t) = K θs→t K−1 Ds p>s (3)

By observing that φ(ps;θs→t) = Dt pt , the Cartesian pixel coordinates in the target view
can be extracted. The advantage of the flow field interpretation is that it provides a direct
mapping between the image planes of the source view and the target view.

Forward warping The flow field is used to generate the target view from the source:

Ĩt(φ(ps;θs→t)) = Is(ps). (4)

The resulted image is sparse due to the discrete pixel coordinates and (dis)occluded regions,
see Fig. 2 (top-right). It is used as input to the image completion network (Sec. 3.2).

Backward warping The flow field is used to generate the source view from the target:

Ĩs(ps) = It(φ(ps;θs→t)). (5)

The process assigns a value to every pixel (u,v) in Ĩs resulting in a dense image, as il-
lustrated in Fig. 2 (bottom-right). The generated source view may contain artifacts due to
(dis)occlusion in the target view. To sample φ(ps;θs→t) from It , a differentiable bi-linear
sampling layer [15] is used. The generated source view is used for self-supervised monocu-
lar depth prediction (Sec. 3.3).
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Figure 2: Illustration of the forward and backward warping operation of point clouds. The
forward warping is used to generate a coarse target view, while the backward warping is used
to reconstruct the source view from a target view for self-supervised depth estimation.

3.2 Novel view synthesis

The point-cloud-based forward warping relocates the visible pixels of the object in the source
view to their corresponding positions in the target view. For novel view synthesis, however,
two more steps are required: (1) obtaining the target coarse view by discarding occluded
pixels, and (2) filling in the pixels that are not seen in the source view.

Coarse view construction The goal is to remove the pixels which are seen in the
source view yet should not be visible in the target view, due to occlusion. To this end, pixels
that have surface normals (after transformation) pointing away from the viewing direction are
removed, similarly to [24]. Surface normals are obtained from normalized depth gradients.

An illustration of the coarse view construction is shown in Fig. 3 for different target
views. The first row depicts the target views, the second row indicates the visible parts from
the input image (third column). The third and fourth row show the coarse view with and
without occlusion removal (or backface culling). Finally, the fifth row shows an enhanced
version of the coarse view, where the object is assumed to be left-right symmetric [24]. The
proposed method directly identifies and removes occlusion pixels from the input view using
estimated depth, which contrasts to [24], where ground truth visibility mask are required for
each target view to train a visibility prediction network.

View completion The obtained coarse view is already in the target viewpoint, but it
remains sparse. To synthesize the final dense image, an image completion network is used.

The completion network uses the hour-glass architecture [21]. Following [24], we con-
catenate the depth bottleneck features and embedded transformation to the completion net-
work bottleneck. By conditioning the completion network on the input features and the de-
sired transformation θs→t , the network can fix artifacts and errors due to estimated depth and
cope better with extreme pose transformations, i.e. when coarse view image is near empty
(e.g. columns 9-11 in Fig. 3).

The image completion network is trained in a GAN-manner by using a generator G, a
discriminator D, an input image Is and a target image It . The combination of losses that are
used is given by

LD = (D(Is)−1)2 +D(G(Is)))
2, LS-GAN Discriminator loss (6)

LG = [1−SSIM(It ,G(Is))]+‖It −G(Is)‖1 , Generator loss (7)

LPerc =
∥∥FD

It −F
D
G(Is)

∥∥
2 +

∥∥FVGG
It −FVGG

G(Is)
∥∥

2, Perceptual loss (8)
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Figure 3: Image coarse views for different target viewpoints. The input image is depicted in
the third column (red box). From top to bottom: (1) target views, (2) source region visible
in each target viewpoint, coarse view (3) naive (4) with occlusion removal, and (5) with
occlusion removal and symmetry.

where the perceptual loss uses FD (FVGG) to denote features extracted from image It and
G(Is) from the discriminator network and pre-trained VGG network respectively, c.f . [16].
SSIM denotes the structural similarity index measure, see Sec. 4. The total loss is given by:

Lc = w1LD+w2LG +w3LPerc, (9)

where w denotes the weighting of the losses (w1 = 1,w2 = 100, and w3 = 100, c.f . [24]).

3.3 Self-supervised Monocular Depth estimation

The discussion so far has assumed that pixel-wise depth maps are available. In this section,
the method used to estimate depth from a single RGB image is detailed. In order to make
the minimum assumption about the training data, self-supervised methods are considered,
which do not require ground-truth depth [7, 9, 10, 17, 33].

For the depth prediction an encoder-decoder network with bottleneck architecture is used,
similar to [10]. The network is optimised using a set of (reconstruction) losses between the
source image Is and its synthesized version Ĩs, using the backward warping, Eq. (5), from
a second (target) image It and the predicted depth map. The underlying rationale is that a
more realistic depth map will have a lower reconstruction loss.

The losses are given by:

Lp
(
Is, Ĩs

)
=

α

2
[
1−SSIM

(
Is, Ĩs

)]
+(1−α)

∥∥Is− Ĩs
∥∥

1 , Photometric loss (10)

Ls(d) = |∂xd|e−|∂xIs|+
∣∣∂yd

∣∣e−|∂yIs|, Smoothness loss [9] (11)

Ld
(
Is, Ĩs,d

)
= µLp

(
Is, Ĩs

)
+wdLs, Total loss (12)

where α = 0.85, and d = D
D is the mean-normalized inverse depth, wd = 10−3, and µ is

an indicator function which equals 1 iff the photometric loss Lp(Is, Ĩs)< Lp(Is, It), see [10]
for more details. The smoothness loss encourages nearby pixels to have similar depths,
while the artifacts due to (dis)occlusion are excluded by the per-pixel minimum-projection
mechanism.
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Table 1: Quality of coarse and completed view (a) and ablation study (b). The proposed
transformation within estimated point clouds generates better coarse images over image-
based predicted flow fields. Subsequently, the completed view quality is improved. The
ablation study shows the best results are obtained by using LSGAN (LS), perceptual loss
(PL), symmetry (Sym), bottleneck inter-connection (IC), and SSIM loss (SL).

(a) Coarse vs Completed

Coarse view Completed view

L1 (↓) SSIM (↑) L1 (↓) SSIM (↑)
DOAFN [24] .220 .876 .121 .910
M2NV [28] .226 .879 .154 .906
Ours .203 .882 .118 .924

(b) Ablation study

LS PL Sym IC SL L1 (↓) SSIM (↑)
X X .118 .924

X X X .101 .939
X X .103 .939
X X .107 .933
X X X X .097 .939
X X X X X .097 .942

4 Experiments
In this section, the proposed method is analysed on the 3D ShapeNet benchmark including
an ablation to study the effects of the different components and a state-of-the-art comparison.

Dataset We use the object-centered car and chair images rendered from the 3D ShapeNet
models [1] using the same render engine1 and set up as in [23, 24, 28, 32]. Specifically, there
are 7497 car and 698 chair models with high-quality textures, split by 80%/20% for training
and test. The images are rendered at 18 azimuth angles (in [0,340], 20◦-separation) and 3
elevation angles (0◦,10◦,20◦). Input and output images are of size 256×256.

Metrics We evaluate the generated images using the standard L1 pixel-wise error (nor-
malized to the ranged [0,1], lower is better) and the structural similarity index measure
(SSIM) [35] (value range of [−1,1], higher is better). L1 indicates the proximity of pixel
values between a completed image and the target, while SSIM measures the perceived qual-
ity and structural similarity between the images.

Baseline We compare the results of our method with the following state-of-the-art
methods: AFN [32], TVSN [24], M2NV [28], and TBN [23].

4.1 Initial experiments

Comparison to image-based completion In this section, we compare the intermediate
views generated by the forward warping using estimated point clouds and those by image-
based flow field prediction by DOAFN [24] and M2NV [28]. For this experiment, the
coarse view after occlusion removal and left-right symmetric enhancements are used. The
image completion network is the basis variant, using DCGAN, without bottleneck inter-
connections. The results are shown in Table 1(a). The transformation of estimated point
clouds provides coarse views which are closer to the target view, and these help to obtain a
higher quality of completed views.

Ablation Study We analyze the effects of the different component of the proposed pipeline.
The results are shown in Table 1(b). The use of the LSGAN loss shows a relative large im-
provement over the traditional DCGAN. The drop of performance by removing symmetry

1The specific render engine and setup is to guarantee fair comparison with reported methods as none of the
authors-provided weights perform at the similar level on images rendered with different rendering setups.
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Methods cars chairs

L1 (↓) SSIM (↑) L1 (↓) SSIM (↑)
Fixed elevations

AFN [32] .148 .877 .229 .871
TVSN [24] .119 .913 .202 .889
M2VN [28] .098 .923 .181 .895
TBN [23] .091 .927 .178 .895
ours .090 .945 .175 .914

Random elevations
TBN .199 .910 .215 .902
ours .122 .934 .207 .905

Table 2: Quantitative comparison with state-of-the-art methods on novel view synthesis: our
method consistently performs (slightly) better than the other methods for both categories
where target views have the same or different elevation angles with input views.

assumption shows the importance of prior knowledge on target objects, which is intuitive.
The inter-connection from the depth network and the embedded transformation to the com-
pletion network allow the model to not rely solely on intermediate views. This is important
for overcoming errors and artifacts which occur in the coarse images (due to inevitable uncer-
tainties in depth prediction) and generate in general higher quality images. The SSIM loss,
first employed by [23], shows improvement in SSIM metric, which is intuitive as training
objectives are closer to evaluation metrics.

4.2 Comparison to State-of-the-Art

In this section, the proposed method is compared with state-of-the-art methods. The quan-
titative results are shown in Table 2. The proposed method performs consistently performs
(slightly) better on both evaluation metrics for both types of objects. Quantitative results
are shown in Fig. 4 where challenging cases are shown in the last 2 rows. Notice the better
ability in retaining objects’ textures (such as color patterns and texts on cars) of methods
that explicitly use input pixel values in generating new views to that of TBN. The results of
cars are constantly higher than that of chairs due to the intricate structures of chairs. How-
ever, by having access to object geometry, geometrical assumptions such as symmetry and
occlusion can be applied directly to intermediate views (instead of having to learn from an-
notated data c.f . [24]), which creates better views for near-to symmetry targets. High-quality
qualitative results and more analyses can be found in the supplementary materials.

Table 2 also shows the evaluation when target viewpoints are from different elevation an-
gles. Methods such AFN, TVSN, and M2NV encode transformation as one-hot vectors and
thus, are limited to operate within a pre-defined set of transformations (18 azimuth angles,
same elevation). This is not the case for our method and TBN which apply direct transfor-
mation. We use the same azimuth angles as in the standard test set while randomly sample
new elevation angles for input images in (0◦,10◦,20◦). The results are shown with networks
trained with the regular fixed-elevation settings. The new transformations produces different
statistics from what the networks have been trained, resulting in a performance drop for both
methods. Nevertheless, the proposed method can still maintain high quality image synthesis.
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Input TVSN M2NV TBN Ours Target

Input TVSN M2NV TBN Ours Target

Figure 4: Qualitative comparisons of synthesized cars (left) and chairs (right), given a single
input image (first column) and a given target view (last column). The last two rows show a
more challenging examples. The proposed method captures better the geometry of the object
and the fine (texture) details. More examples are provided in the supplementary materials.

4.3 Multi-View Synthesis and Point Cloud Reconstruction

Multi-view inputs The proposed method can be naturally extended to use multi-view
inputs as follows: for each image depth is predicted independently and combined into a
single point cloud. The resulting coarse target image will be denser when more images are
used, and is passed through the image completion network.

In this experiment, the model trained for single-view prediction is used and evaluated us-
ing multiple (1 to 8) input images. The results in Table 3 show that the quality of the coarse
view increases, as expected, when more input images are used and hence the point clouds are
denser. Surprisingly, however, the image completion network only marginally improves, in-
dicating that the coarse view contains enough information for the image completion network
to synthesis a high quality target image.

No.
views

Coarse Final

L1 (↓) SSIM (↑) L1 (↓) SSIM (↑)
1 .203 .882 .090 .945
2 .188 .888 .089 .945
4 .152 .906 .085 .946
8 .111 .907 .084 .947

Table 3: Performance by extending single-
view-trained networks for multi-view inputs.

Point cloud reconstruction In this final
experiment, the aim is to reconstruct a full
dense point cloud from a single image, us-
ing the models trained for novel view syn-
thesis. In order to do so, 360◦-views are
generated from a single view of an object,
see Fig. 5 (top). Each of these views are
fed to the depth estimation network and the
obtain estimated depth is used to generate
a partial point cloud. These point clouds
are stitched together, using corresponding
transformations, resulting in a high quality dense point cloud, as shown in Fig. 5 (bottom).

4.4 Results on real-world imagery

We apply the trained car model to the car images of the real-imagery ALOI dataset [8],
consisting of 100 objects, captured at 72 viewing angles. We use 4 cars for fine-tuning only
the depth network, which requires no ground truths, while the image-completion network is
left untouched. The quantivative resuls on the remaining 3 cars are shown in Fig. 6.
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Figure 5: Top 360◦-views generation from single input images (first column), bottom point
cloud reconstruction using estimated depths of each generated views. Depth estimation
trained on real images can perform well on synthesized ones.

Input Target Ours Input Target Ours Input Target Ours

Figure 6: Quantitative results on real-imagery ALOI [8] dataset. The inputs and targets are
shown with provided object masks, while the synthesized images are with predicted masks.
The completion network does not need to be finetuned, yet provide competent results.

5 Conclusion

In this paper partial point clouds are estimated from a single image, by a self-supervised
depth prediction network and used to obtain a coarse image in the target view. The final
image is produced by an image completion network which uses the coarse image as in-
put. Experimentally the proposed method outperforms any of the current SOTA methods
on the ShapeNet Benchmark on novel view synthesis. Qualitative results show high quality
and dense point clouds, obtained from a single image, by synthesizing and combining 360◦

views. Based on these results, we conclude that point clouds are a suitable, geometry aware
representation for true novel view synthesis.
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