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Abstract

We investigate a geometrically motivated modification to semantic segmentation. In
particular, we reformulate typical planar CNN as a projected spherical CNN where image
distortions are reduced, and thus generalisation increased. Since prior formulations of
spherical CNNs require computation on full spheres, fair comparison between planar
and spherical methods have not been previously presented. In this work, we first extend
spherical deep learning to support high-resolution images by exploiting the reduced field
of view of classical images. Then, we employ our spherical representation to reduce
distortion effects of standard deep learning systems. On typical benchmarks, we apply
our spherical representation and consistently outperform the classical representation of
multiple existing architectures. Additionally, we introduce direct spherical pretraining
from planar datasets to further improve results. Finally, we compare our method on non-
planar datasets, where we improve accuracy, and outperform running time of spherical
state of the art for non-complete input spheres.

1 Introduction
We present a spherical approach to planar semantic segmentation. Specifically, motivated by
our observation of geometrical distortions on the image plane, we propose to project images
onto the manifold of a sphere using known camera intrinsic, and then apply a spherical
convolutional neural network (CNN). We aim for a fair comparison between planar and
spherical methods, as we present an in-place substitution without need for changing network
architectures.

Research on CNN computations in the spherical domain include [1], which replaces
translation invariance in planar space with rotation invariance in SO(3) for spherical input.
In [3], convolution filters are projected onto the tangent plane of the sphere. Recently, spher-
ical CNNs adopt an icosahedron mesh (polyhedron with 20 faces) to compute convolutions
efficiently [2, 6, 9, 12, 18]. Four low-order differential operators are utilized to approxi-
mate spherical convolutions in [9]. A rotation equivariant CNN for spheres is presented in
[2], and [12] introduce SpherePHD for spherical object detection and semantic segmentation.
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Planar Approach

Spherical Approach
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Figure 1: Image distortion is challenging when a planar image representation is used. After
formulating spherical CNN as graph-based CNN for partial input, we propose an in-place
substitution to work on the less distorted sphere manifold. Note, since geometric distortion
is reduced, the ‘truck’ is correctly classified.

Orientation-aware convolutions on the icosahedron for efficient computation with regular fil-
ter alignment is introduced in [18]. Alternatively, [11] employ kernels on HEALPix spheres.

While most planar CNNs work on high-resolution input, existing spherical CNNs are not
suitable for such data. Note, partial input is often not supported on spheres [2, 9, 12, 18]. In
practical scenarios however, e.g. the driving environments of Cityscapes [4], the active view
covers less than 3% of the sphere’s manifold. Thus, a complete icosahedron of more than
9.6× 106 vertices is required to be equivalent to the resolution of a 380px× 760px image.
Meanwhile, processing the invalid region is computational inefficient and costly in memory.

1.1 Contributions

In this paper, we investigate the problem of distortion as we apply a spherical projection to
high-resolution images for improved semantic segmentation results (Fig. 1). In particular,
we first reformulate spherical CNN [18] as a graph-based network, which facilitates selec-
tive computation on masked spherical data. Our implementation improves memory cost and
running times, enabling deep spherical learning at much higher resolution than typically
possible on spheres when partial input is used. In our evaluation we apply our spherical
representation and consistently achieve performance gains on popular off-the-shelf architec-
tures [7, 15] and common datasets [4, 16]. Finally, we introduce spherical pretraining with
ImageNet [5], and further improve accuracy to a competitive level. Since our model support
partial spheres not only for planar images, we conclude our evaluation with panoramic data.
In summary, our contributions are:

1. We address the resolution problem of partial sphere images, and reformulate spherical
CNN as graph-based CNN for arbitrarily masked input data.

2. We further improve run-time and memory requirements by introducing grouped con-
volutions and exploiting highly connected masks (e.g. images).
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World Coordinates

Planar Projection

Spherical Projection World Coordinates

Planar Projection

Spherical Projection

(a) Translation Distortion (b) Rotation Distortion
Figure 2: Planar projection suffers from translation and rotation distortion, while spherical
projection reduces distortions at translation and removes them completely for rotation.

3. We implement the first direct spherical pretraining from planar datasets such as Ima-
geNet [5] for ResNet-50 [8].

4. We perform extensive comparisons between planar and spherical projected images,
using multiple datasets and network architectures, and we evaluate running-time in
comparison to other state-of-the-art spherical CNNs on non-planar partial input.

2 Reduced Distortion on the Sphere’s Manifold
An image consists of rays that represent a reduced description of the 3D world. Let us denote
3D points Pi projected onto the image plane and the sphere’s manifold as pi = hom(Pi) and
si =

Pi
‖Pi‖ respectively, where hom(·) computes the homogeneous coordinate. For general out-

of-plane camera rotation R, we observe distortions for planar, but not spherical projections,
since it typically holds that (Fig. 2 and supplementary material)

‖hom(RTPi)−hom(RTP j)‖ 6= ‖pi−p j‖, but
∥∥∥∥ RTP
‖RTP‖

− RTQ
‖RTQ‖

∥∥∥∥= ‖si− s j‖. (1)

Therefore we hypothesize that CNN learning on spherical images should be able to gen-
eralize to more pixel locations. As we strive for a conformation of this, we note, since most
datasets provide planar images, we require the camera calibration matrix to project to the
sphere. Finally, we emphasize, distortion on alternative projections such as equirectangular
or panorama images are reduced only along longitudes.

3 Our Spherical CNN for Partial Input
To date, icosahedron-based spherical CNNs cannot compete on high-resolution datasets [2,
6, 9, 12, 18]. We introduce a spherical CNN for partial input to overcome this shortfall.

3.1 Introducing a Graph-based Interpretation of Spherical CNN
Let us reformulate the icosahedron-based CNN in [18]. The base of the icosahedron mesh
consists of 12 vertices, forming 20 triangular faces of equal size. A resolution increase is
achieved by direct subdivision of the triangles. Thus, at resolution r ≥ 0, there are N(r) =
10×4r +2 vertices on the icosahedron mesh. Note, resolution size requires r ∈ N.

We denote the set of vertices at resolution r by V(r) = {pi}N(r)

i=1 , and the clock-wise sorted
neighborhood of vertex pi as N (r)

i = [qi
j]

6
j=1, where qi

j ∈ V (we omit r for simplified no-
tation). We write V(r) ⊂ V(r+1), since only new vertices are introduced when resolution is
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(b) Pooling (c) Up-sampling
Figure 3: Proposed graph-based CNN operations on the (full) icosahedron at resolution r.
(a) For convolutions, sorted neighborhoods are gathered and north-aligned to generate a
(10∗4r+2)×7 feature map. (b) During pooling, a feature map of the 10∗4r−1+2 vertices at
resolution r−1 is built. (c) Up-sampling finds the parents at resolution r+1 and interpolates.

increased. The connectivity at different resolutions changes (i.e. N (r)
i 6=N (r+1)

i ). We define
convolutions, pooling and up-sampling below, and visualize the computations in Fig. 3.

3.1.1 Oriented Convolution for Spherical CNN

All vertices that are not on the base icosahedron, i.e. pi /∈ V(0), have a neighborhood car-
dinality of six. We increase the neighborhood of base vertices pi ∈ V(0) to six through
duplication to simplify the representation. Now, we can apply 1× 7 convolutions on the
gathered neighborhood structure, an N(r)× 7 feature map where each row contains pi and
its neighborhood N (r)

i . 1 We emphasize, the application of convolutions on the icosahedron
mesh directly will lead to orientation jumps of the kernel due to the triangular structure of the
icosahedron mesh. Similar to [18], we apply arc-based interpolation to efficiently enforce
consistent north-alignment of the convolution kernel. In particular, given the angle φ

(r)
i be-

tween the vectors−−→piq1 and−−→pi p1, and ψ
(r)
i between−−→piq6 and−−→pi p1, where p1 is the north pole,

we find the precomputed interpolation weight α
(r)
i for each vertex that corrects the kernel to

north-alignment. Thus the convolution with weights [wi]
7
i=1 is given by (Fig. 3(a)):

conv(pi) = w1

(
α
(r)
i qi

1 +(1−α
(r)
i )qi

6

)
+

6

∑
j=2

w j

(
α
(r)
i qi

j +(1−α
(r)
i )qi

j−1

)
+w7 pi. (2)

Note, the naïve implementation of (2) requires significant memory and is slow in running
time. We address implementation details of masking and the execution in §3.2.

1We omit explicit notation of input and output channels for simplicity.
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(b) Stacked Convolution
Figure 4: We present alternative graph-convolutions to save memory and running time. (a)
Only three M(r)× 2 feature maps are needed to compute equivalent convolutions sequen-
tially. (b) Stacking and padding the neighbourhood further reduces gathering needs.

3.1.2 Pooling and Up-sampling on the Sphere

Since the pooling and up-sampling operations of [18] are not applicable to our graph struc-
ture, we redefine these mechanisms as follows. During pooling we sub-sample from reso-
lution r to r−1. Specifically, we gather each vertex pi ∈ V(r−1) and its neighborhood N (r)

i
into an N(r−1)× 7 feature map and apply the 1× 7 pooling (Fig. 3(b)). Note, any pooling
operator can be used. Fig. 3(c) shows the up-sampling process, where we increase resolution
from r to r+1. We find the new vertices pi ∈ V(r+1) \V(r) through averaging their parents,
given by vi

1,v
i
2 ∈ V(r)∩N

(r+1)
i . The existing vertices pi ∈ V(r) remain unchanged.

3.2 Masking the Active Areas of the Sphere

Typical camera setups utilize only one or few camera views. The active area which these
views project onto are usually small. We emphasize, the computation of icosahedron-based
CNNs on high-resolution usually requires the full sphere, and are thus unfeasible for such
data [2, 9, 18]. In contrast, with our graph-based implementation, it is possible to compute
convolutions efficiently on a subset of pixels. We denote subset M⊂ V , with cardinality
M(r) = |V(r) ∩M|, and typically M(r)� N(r). Convolution, pooling and up-sampling only
requires the points in V ∩M, and we apply zero padding for neighbourhoods outsideM.

In a naïve implementation, two M(r)× 6 feature maps are gathered for each convolu-
tion (Fig. 3(a)). Since this is costly in memory and computation, we present an alter-
native approach. By rearranging the convolution weights, and the summations we only
require three M(r) × 2 feature maps (Fig. 4(a) and supplementary). While the mask can
be arbitrary, we can further reduce memory and run-time requirements, if vertices in the
mask are highly connected (as is the case in image data). Specifically, we utilize that
the neighborhoods of vertices frequently coincide, i.e. often there exists two vertices pi

and pk such that qi
j+1 = qk

j. Thus we optimize neighborhood connectivity, denoted g(r)j =[
. . . qi

j qi
j+1 = qk

j qk
j+1 . . .

]
of size L(r)

j ×1, where M(r) < L(r)
j � 2M(r) (Fig. 4(b)

and supplementary). Now, a 1× 2 kernel is applied on the 1×L(r)
j feature map. Note, the

ordering of g(r)j is precomputed. Alg. 1 details the computations.
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Algorithm 1: Graph-based Convolutions
Result: Given 1×M(r)×C input, gather-indices for g j , and reverse gather-indices for Fj , compute

convolution with filter w j ∈ R1×1×O, where C and O are number of input and output channels, and

j = 1, . . . ,7. Output is F ∈ R1×M(r)×O.
for j = {1,3,5} do

g j ← gathered 1×L(r)
j ×C feature map for qi

j , qi
j+1

Ga
j ← g j ~

[
w j w j+1

]
// ~ computes convolution

Gb
j ← g j ~

[
w j+1 w(( j+1) mod 6)+1

]
// interpolation ⇒ 2 convolutions

Fa
j ← gather 1×M(r)×O results from Ga

j

Fb
j ← gather 1×M(r)×O results from Gb

j
end
F7← [pi]

M(r)

i=1 ~ [w7]

F← [α
(r)
i ]M

(r)

i=1 � (Fa
1 +Fa

3 +Fa
5 )+[1−α

(r)
i ]M

(r)

i=1 � (Fb
1 +Fb

3 +Fb
5 )+F7 // � is element-product

(a) Projected Sphere Kernel (b) Planar and Spherical Filters
Figure 5: Spherical ImageNet pretraining: (a) Data is sampled on a hexagonal grid and
projected with a shear transform to provide input with standard image grid on which masked
3×3 convolutions are employed. (b) First layer filter response is similar to planar filters.

4 Spherical Pretraining from Planar Datasets

Pretraining leverages large datasets (e.g. ImageNet [5]) to provide improved initialization
of common network parameters (e.g. ResNet-50 [8]). Unfortunately, however, spherical
datasets are rare. In [18] weight transfer for spherical parameter initialization from standard
3x3 convolution kernels optimized on planar data is proposed. However, since the transfer is
through interpolation, thus it is not accurate. We now present a direct training algorithm for
spherical parameter initialization from planar data.

Since our kernels operate on the tangent plane of the sphere, planar equivalents can be
found. We visualize our input data in (Fig. 5(a)), where we also link spherical convolutions
to masked 3×3 kernels on the planar image domain. Since the camera matrix is unknown for
ImageNet, we apply scale and crop data augmentation to simulate different camera intrinsic.
Note, pretraining only needs to provide parameters a good initialization.

In our work, we utilize ResNet-50 [8]. Following [19], we replace the initial 7×7 filter
by two consecutive 3×3 kernels, or more specifically, the hexagonal kernel. The ImageNet
classification task completes with 25.03% error rate (7.55% error for top 5). In Fig. 5(b) we
visualize the filter weights of the initial layer. Note, our weights have similar properties to
standard planar convolution layers [17].

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Zhang, Liwicki, Smith, and Cipolla} 2019

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Zhao, Shi, Qi, Wang, and Jia} 2017

Citation
Citation
{Zeiler and Fergus} 2014



ZHANG ET AL.: A SPHERICAL APPROACH TO PLANAR SEMANTIC SEGMENTATION 7

Dataset #Train #Test Resolution Coverage
Synthia-S 7272 1804 760×1280 14.92%
Synthia-O 1818 451 2096×4192 54.69%
Cityscapes 2975 500 1024×2048 2.74%

Table 1: Datasets’ training and test samples, the native resolution and coverage of sphere.

(a) Synthia-S (b) Cityscapes (c) Synthia-O
Figure 6: We use single view Synthia (a) and Cityscapes (b) to compare with planar alterna-
tives, and omni-directional view (c) to compare with state-of-the-art spherical CNNs.

5 Evaluation and Ablation Studies
Motivated by recent works on spherical semantic segmentation, our main focus of this study
is to investigate whether a spherical representation is beneficial even for planar images.

5.1 Datasets and Experimental Setup
It is important to realize that we require camera calibration matrices to project onto the
sphere. Therefore, two datasets with known camera intrinsic are used to compare to planar
and spherical methods. We project planar images onto the sphere using bi-linear interpola-
tion. All results are evaluated after back projecting into the planar domain at full resolution
for fair comparison.2

SYNTHIA: The SYNTHIA dataset [16] contains photo-realistic synthetic sequences.
It provides pixel-level semantics for 13 classes. In our experiments, we follow [18] and
use 5 sequences in two setups: as Single-view or Omni-directional, denoted Synthia-S and
Synthia-O respectively (Fig. 6(a) and (c)). In Synthia-S, images of different viewpoints are
projected to the same place on the sphere, and treated as individual samples. In Synthia-
O, we use the omni-directional images merged from 4 single views [18]. Both setups are
interesting because they contain inactive areas. Further details are given in Table 1.

Cityscapes: We also evaluate on Cityscapes [4]. This dataset contains a diverse set
of high resolution images captured from 50 different cities in Europe. It comes with high
quality semantic labels and we use 19 classes for our evaluation. Here, the coverage on the
sphere is less than 3% (Table 1, Fig. 6(b)).

Our graph-based interpretation of spherical CNN provides essential building blocks for
existing CNN architectures. We choose U-Net [15]3 and DANet [7]4 for evaluation. Specif-
ically, we employ a residual U-Net which comprises a residual encoder and decoder branch
[9, 18]. As for DANet, ResNet-50 [8] is adopted as feature extraction backbone, then dual at-
tention blocks (spatial and channel) are employed to facilitate accurate segmentation [7]. In
our implementation we follow [19], and replace the initial 7×7 convolution with two 3×3

2In fact, the evaluation is biased towards improved planar accuracy due to evaluation on planar ground truth.
3We reimplement original U-Net with residual blocks used in [9]
4Code available at https://github.com/junfu1115/DANet
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Input Ground-truth Planar Ours (Projected) Ours (Sphere)

road sidewalk building wall fence pole traffic light traffic sign vegetation terrain
sky person rider car truck bus train motorcycle bicycle

Figure 7: Qualitative results using DANet on Cityscapes for mesh level-10 or resolution 1/3.
The bus in the centre of the image is missed with planar distortions, while spherical projec-
tion correctly labels this. Planar methods detect terrain on image boarder more accurately.

Input Ground-truth Planar Ours (Projected) Ours (Sphere)

building car cyclist fence marking misc pedestrian
pole road sidewalk sign sky vegetation

Figure 8: Qualitative results using DANet on Synthia-S for mesh level-8 or resolution 1/3.
The sign is missed by planar methods, while our spherical CNN labels this correctly.

convolutions, or more specifically our hexagonal kernel with 1-ring neighborhood. Note, one
limitation of our spherical convolutions is that only an 1-ring neighborhood is supported. In
all experiments, we use Adam optimizer [10] with learning rate 0.001, without learning rate
decay, and train until convergence. Data augmentation is not used. The number of trainable
parameters for spherical U-Net is 3.3M (5.0M for planar), and 41.8M for DANet (50.1M for
planar). Since we reduce 3× 3 kernels with 1-ring neighborhood kernels of 7 weights, our
networks use less parameters.

5.2 Spherical Projection versus Planar Images

We study different input size as we match spherical resolution to similar planar equivalents
(Table 2). On Synthia-S, a mesh for level-7 (r = 7) and level-8 (r = 8) is matched to 1/6
and 1/3 of full resolution respectively. In Cityscapes, level-9 and level-10 is employed and
matched to 1/6 and 1/3 resolution respectively. Since r ∈ N, mesh resolution cannot be
arbitrary (e.g. 1/2 or 1/4). We sub-sample to ensure minimal interpolation artifacts.

In Table 2 we report mean intersection over union (mIoU) for the residual U-Net and
the DANet architecture. First, we discuss results without pretraining. Our spherical rep-
resentation consistently achieves improved results over the standard planar version on both
datasets. We also note, both methods improve at higher resolution. Therefore we conclude,
it is necessary to develop spherical CNN methods that support high-resolution data.

DANet employs ResNet-50 for its feature extraction. We now compare spherical and
planar pretraining. In Table 2, the planar representation benefits more from pretraining, e.g.
achieving 6.74% gain at 1/6 resolution for Cityscapes. Nevertheless, pretraining improves
the spherical performance by more than 4% in Cityscapes data. Overall, we can improve
segmentation accuracy to a competitive level with spherical pretraining throughout all ex-
periments.5 We believe, since our pretraining utilizes ImageNet data with planar images,

5Cityscapes accuracy @ 1/2 and @ 1/4 is 71.8% [14] and 59.1% [13], hence 67.8% @ lv-10 is competitive.
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(a) Training Distribution (b) T Ps(i)−T Pp(i)

Figure 9: Training data location bias (a) and results difference (b) between spherical and
planar method for ‘pedestrian’ in Synthia-S.

Dataset Input U-Net DANet mIoU (%)
Resolution #Points mIoU(%) No Pretraining Pretraining

Synthia-S

planar@1/6 24,563 53.2 47.0 51.0
sphere@lv-7 24,467 54.3 50.0 51.4
planar@l/3 98,494 56.5 54.9 58.6

sphere@lv-8 97,750 57.6 56.0 58.7

Cityscapes

planar@1/6 72,200 51.5 51.2 57.9
sphere@lv-9 71,652 54.3 52.5 56.6
planar@l/3 288,800 55.5 63.0 67.0

sphere@lv-10 286,175 56.3 63.1 67.8
Table 2: U-Net and DANet results on Synthia-S and Cityscapes for planar and spherical
images at different resolutions. Results are computed on ground truth in planar domain at
full resolution. Pretraining with ImageNet [5] is additionally reported for DANet.

improvements are slightly reduced. A spherical version of ImageNet with camera calibra-
tion matrices may be beneficial in future work. In Fig. 7 and Fig. 8, qualitative results are
given. We observe, objects with fixed size are distortion dependent and therefore the spher-
ical projection improves results (e.g. ‘bus’, ‘traffic sign’), while continuous objects suffer
less from distortion (e.g. ‘terrain’). We further compare, and compute a per-class prediction
heatmap, which shows the difference between the true positive numbers per method, T Ps(i)
and T Pp(i) for spherical and planar respectively, at pixel location i, i.e. T Ps(i)− T Pp(i).
Fig. 9 shows the heatmap for ‘pedestrian’ in Synthia-S. Note, while the training distribution
biases the class to left and right part of the frame, our method is able to improve recognition
results in centre and bottom of the image. This supports our hypothesis of §2, where we
suggest that fewer distortion aids generalization.

5.3 Comparing Running Time Efficiency

In Table 3, we compare our implementation of Alg. 1 (Sph-v3) with naïve convolutions in
Fig. 3(a) (Sph-v1) and sequential version in Fig. 4(a) (Sph-v2). We include planar DANet as
baseline. We note, for spherical convolutions, the grouped version (Sph-v3) has overall best
memory and run-time performance. However, compared to planar training, spherical CNN
is still inferior. Nevertheless, our method is competitive for test time where planar is only
twice as fast, due to the arc-based interpolation needed for spherical data, making spherical
versions of semantic segmentation feasible for deployment.
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Method Training Inference
mem. (MB) time (s) mem. (MB) time (s)

DANet 3,524 0.92 1,367 0.23
Sph-v1 9,110 11.47 2,889 0.40
Sph-v2 8,112 12.57 1,771 0.50
Sph-v3 5,358 10.36 1,847 0.43

Table 3: Comparison of memory usage and computation time for training and testing on
Cityscapes (level-10 and 1/3) with NVidia Titan X (Maxwell) using Pytorch v1.12. Batch
size 1 for all cases. Run-time is reported per sample.

Method mIoU (%) Memory (MB) Time (s)
UGSCNN[9] 37.6 6,831 1.52

HexRUNet [18] 48.3 3,596 0.16
Our (Full) 49.5 1,097 0.19

Our (Partial) 50.1 595 0.07
Table 4: Synthia-O results for our method, as full and partial input, compared to HexRUNet
and UGSCNN. Inference memory and run-time is given for batch size 1, per sample.

5.4 Our Graph-based CNN with Partial Input versus Spherical CNN
In this experiment, we compare our implementation of spherical CNN with HexRUNet [18]6

and UGSCNN [9]7 using omni-directional Synthia-O. Similar to HexRUNet and UGSCNN,
we employ the residual U-Net architecture in this section. Table 4 shows accuracy, memory
and run-time at mesh level-7. Overall, our partial implementation performs best, since only
active areas are used for computations.

6 Conclusion
In this work, we set out to investigate the benefit of the spherical representation of planar
images for the semantic segmentation task with high-resolution datasets. Specifically, we
propose to employ spherical CNNs to reduce distortions otherwise introduced by the image
plane. In our approach, we overcome memory and run-time limitations of state-of-the-art
icosahedron-based CNNs, by introducing an equivalent graph-based networks that allow for
arbitrary input masks. Furthermore, exploiting highly connected masks of typical image
projections, we present optimisation for improved memory needs and speed. Finally, we
present spherical pretraining from planar ImageNet for our icosahedron-based convolutions.

In our evaluation, we show that a simple introduction of the spherical representation
consistently improves upon planar results. After applying pretraining from planar ImageNet,
we achieve competitive results to planar state of the art (even often improved results). Finally,
we show improved run-time, memory and performance to existing spherical state of the art,
when partial input is used.

Acknowledgements. Sen He was an intern at the Cambridge Research Laboratory of Toshiba
Europe Limited during this work.

6Code kindly provided by the authors
7Code available at https://github.com/maxjiang93/ugscnn
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