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Abstract

We address the problem of view synthesis in complex outdoor scenes. We propose
a novel convolutional neural network architecture that includes flow-based and direct
synthesis sub-networks. Both sub-networks introduce novel elements that greatly improve
the quality of the synthesized images. These images are then adaptively fused to create
the final output image. Our approach achieves state-of-the-art performance on the KITTI
dataset, which is commonly used to evaluate view-synthesis methods. Unlike many
recently proposed methods, ours is trained without the need for additional geometric
constraints, such as a ground-truth depth map, making it more broadly applicable. Our
approach also achieved the best performance on the Brooklyn Panorama Synthesis dataset,
which we introduce as a new, challenging benchmark for view synthesis. Our dataset,
code, and pretrained models are available at https://mvrl.github.io/GAF.

1 Introduction
View synthesis is the task of generating novel views of a scene given only a set of known
images. Inferring the appearance of a scene from different viewpoints requires a rich under-
standing of its geometric and radiometric structure. As such, view synthesis has long been a
topic of interest in the computer vision and graphics communities. Early work focused on view
synthesis in laboratory settings. Recent work has explored view synthesis in natural, outdoor
scenes using convolutional neural networks (CNNs) that take as input a single source image
and a camera motion vector [13, 25]. There are two predominant approaches: flow-based
synthesis [25] and direct synthesis [19]. Flow-based methods use a CNN to predict a flow field
that is used to warp the input image using existing pixel content only. The main advantage
of flow-based methods is that the synthesized images are typically sharp and colors are
preserved. However, there are issues in dealing with disocclusion, because it is not possible
to copy occluded regions from the input image. Direct synthesis methods are not limited to
warping the input since the CNN outputs the raw pixel intensity values. Unfortunately, training
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Figure 1: Given an input image and camera transformation, our system synthesizes a flow-
based prediction (b) and a direct prediction (c). An adaptive fusion mask (a) is predicted to
fuse flow-based and direct predictions to make the final prediction (d). By fusing the results
of these two predictions, we produce a new image with the benefits of both.

such models is difficult, especially if the scene structure is unknown. This has motivated
recent approaches that use auxiliary geometric information, such as ground-truth depth during
training [8] or the semantic layout of the target image at inference time [18]. Without these
additional cues, synthesis approaches often generate sub-par results. Our approach addresses
this challenge without requiring additional information.

We propose a convolutional neural network (CNN) architecture that uses an adaptive
fusion process to combine flow-based and direct synthesis methods. See Figure 2 for an
overview of the full architecture. We use a fully convolutional flow-prediction sub-network
which uses a distributed encoding of the camera motion parameters that improves training
stability. Also, we propose using an adaptive image scale during training that allows for
progressive sharpening of generated images as training progresses. We use the output flow
from the flow sub-network to warp the intermediate features of a direct synthesis sub-network.
This warping significantly improves the quality of the predictions. Finally, we train a fusion
module that learns to combine direct and flow-based images to produce the final output.

A standard benchmark dataset for single-image view synthesis is KITTI [6], which
consists of perspective images and corresponding camera poses. We show that our method
achieves state-of-the-art performance on KITTI. Through an ablation study, we also show
that our flow-based network alone also improves upon previous work. However, the motion
involved in KITTI is limited, with little lateral or vertical camera movement. To address this
issue, we created the Brooklyn Panorama Synthesis (BPS) dataset. It consists of pairs of
panoramic images with corresponding relative camera motion.

Main Contributions We propose a novel view synthesis method that combines elements of
flow-based and direct synthesis approaches, achieving state-of-the-art performance. Our flow-
based sub-network includes three novel elements: a) a fully convolutional flow-prediction
network, b) a distributed motion encoding scheme, and c) an adaptive scale space training
method which is critical when image motion is large. This sub-network, by itself, improves
upon the state of the art. We also propose a novel direct synthesis method that integrates the
flow-field estimated by the flow-based sub-network. We evaluate our approach on the standard
KITTI benchmark and introduce a more diverse, large-scale dataset suitable for evaluating
outdoor, single-image view synthesis methods.
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2 Related Work
Given the long history of novel view synthesis, there exists a variety of methods and use
cases. Many modern view synthesis and next frame prediction methods rely on multiple
input images [2, 4, 5, 28]. These methods require several nearby views and tend to perform
poorly on low frame-rate video or when only a single reference view is given. NeRF [11] uses
several images of a scene to learn a radiance field that can be used to synthesize novel views
close to poses of training images. While this method achieves high quality results, it requires
per-environment training. We address the challenging problem of single image view synthesis
in complex outdoor environments with large camera transformations.

Traditional geometric methods of synthesizing novel views require estimating the 3D
layout of the scene [1, 23, 24]. Once the 3D information is available, the image can be warped
and rendered from the desired viewpoint. These methods typically cannot deal with the
difficult problem of occlusion that manifests through independent object motion and view
point transformation. Furthermore, estimating 3D geometry from color imagery is itself an
active research area. As opposed to geometric methods, learning-based approaches implicitly
learn to simultaneously understand and manipulate the 3D structure of the scene.

Direct Methods Image synthesis through CNNs has become extremely popular due to the
success of generative adversarial networks (GANs) and autoencoders. While most work is
focused on simply generating realistic images, several approaches perform an explicit view
transform. Tatarchenko et al. [19] propose a CNN to generate images from specific view
points through an encoder-decoder architecture. However, this method performs poorly on
real world data, producing blurry images that lack detail. Xu et al. [21] proposed a GAN for
generating images with view-invariant features. While this method performs well, applications
are limited to synthesis of single objects viewed from different angles.

Flow-Based Methods Zhou et al. introduced Appearance Flow [25], in which a CNN
outputs a dense, full-resolution pixel flow field. These 2D flow vectors specify the sampling
location in the source image for all coordinates of the output image. The underlying as-
sumption of this approach is that nearby images share much of the same structure and color
information. This method produces sharp images, but fails when the target image contains
content not seen in the input.

Refinement Based Methods There are existing methods that use direct synthesis networks
to improve the quality of synthesis from other methods. For example, Park et al. [13], uses a
refinement network, an encoder-decoder network, that improves the prediction of a flow-based
network. The method by Sun et al. [17] uses multiple views to synthesize a single target
image. The target view is synthesized by a recurrent direct synthesis method which does not
directly share information with the flow-based network.

Incorporating Geometry A common technique for improving performance for view syn-
thesis is by using additional details such as scene depth. These approaches take inspiration
from traditional view synthesis which uses explicit scene geometry to perform image warping.
Yin et al. [22] improve results on natural images through the use of inverse depth maps,
explicit camera geometry, and an adversarial loss. Similarly, the method of Liu et al. [8]
depends on separate depth, normal, and plane estimation networks and uses homography
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Figure 2: Our Generative Appearance Flow model consists of a flow-based synthesis network
(bottom) and a direct synthesis network (top) which uses the flow from the flow-network to
warp image features and then predicts the image output. A fusion network learns to combine
the flow-based and directly synthesized images to produce the final output.

transformations. These constraints limit the methods to images with known camera intrinsics
and environments where reasonable depth predictions can be made. SynSin [20] proposes
depth estimation and differentiable rendering for single-image view synthesis. Shih et al. [16]
propose a depth and color inpainting method for view synthesis for RGB-D images. Our
method differs in two main aspects. 1) We do not need to explicitly learn depth of the scene;
instead we propose to use the appearance flow between views and use that image-plane warp.
2) This enables us to train across different datasets and work in complex outdoor environments
with large camera viewpoint displacement without requiring 3D supervision for training.

3 Approach
We address the task of single-image view synthesis, focusing on translational motion in
outdoor scenes. We are given source and target images Is, It ∈ RH×W×3 and a motion vector v
from camera pose of Is to It . The goal is to use Is and v to synthesize an output image Î that
is similar to the target image It . Flow-based methods first estimate a flow field f ∈ RH×W×2

which specifies relative pixel motion between the source and target views. The flow-prediction
network is typically a CNN, which can be modeled as an encoder-decoder architecture:
f = F(EI(Is),EM(v)) where F is a decoder that generates the flow field, EI is an image
encoder, and EM is a motion encoder. The output image is synthesized by sampling the
input image with the estimated flow. This sampling is typically performed using bilinear
interpolation. Direct synthesis methods do not require intermediate outputs. Instead, the image
is directly computed by a decoder CNN: Î = D(EI(Is),EM(v)). These methods rely on the
decoder D to learn to apply the image transformation.

Overview We propose Generative Appearance Flow (GAF), shown in Figure 2, which
combines elements of flow-based and direct synthesis methods. The main components are 1)
a flow-based synthesis sub-network, 2) a direct synthesis sub-network that uses the flow field
estimated by the previous sub-network to improve output quality, and 3) an adaptive fusion
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sub-network that combines the outputs from the previous two.

3.1 Improved Appearance Flow (AF++)

Our flow-based sub-network, AF++, uses the framework introduced by Zhou et al. [25] but
makes three key improvements that result in state-of-the-art performance: fully convolutional
flow prediction, distributed motion encoding, and scale-adaptive spatial sampling.

Fully Convolutional Flow Prediction: We structure our network as a fully convolutional
encoder-decoder architecture. We concatenate the image and motion encodings and use a
decoder to obtain a two-channel flow field. This removes the fully connected layers present in
the the Appearance Flow framework, allowing the features to preserve spatial information.

We use ResNet-18 for the image encoder, which results in a feature map of 1
8 the input

image resolution. Our decoder contains three blocks. Each block upsamples the input feature
maps and performs two 2D convolution operations. We use nearest neighbor upsampling to
reduce checkerboard artifacts that are common in transposed convolutions [12]. The flow
field is dependent on the pixel location but the convolutional operation is independent of the
patch location. To deal with this problem in a fully convolutional network, we propose to use
CoordConv layer [9], which uses pixel location as an additional input feature. It is important
to include pixel location because the expected flow varies drastically across the image based
on the epipolar geometry induced by the camera motion. The first and last convolutional
layers in decoder are CoordConv layers. The predicted flow values are constrained to the
range [−1,1] using the tanh activation.

Distributed Motion Encoding A naïve way to incorporate the motion vector v is to append
the real-valued motion parameters directly to each pixel of the image feature map. However,
we found this to be unstable during training. We propose a distributed encoding for each
motion component vi which is, essentially, a soft form of one-hot encoding. We first define a
1D Gaussian distribution N (vi,σ

2
m), centered on the component motion. Given the known

maximum motion dmax along the axis, we linearly sample N displacements {−dmax, . . . ,dmax}
and evaluate the Gaussian distribution at each location. The result is an N-dimensional motion
encoding, Em(vi), with larger values for bins near the true motion. We compute encodings for
each dimension of the motion vector and concatenate them to produce an encoding of length
L = N×K where K is the number of motion components. Finally, we tile the encoding vector
to the size H ′×W ′×L so that it can be concatenated with the image encoding.

Scale-Adaptive Spatial Sampling Traditional optical flow estimation methods commonly
use an image pyramid or smooth the input image to make pixel matching robust. Following
these ideas, we model the input image in scale-space before applying the warp to generate the
output image. The scale is applied to the input by convolving the image with a 2D Gaussian
kernel with scale σ .

A large σ helps training in the early stage, but prevents the network from preserving
fine details from the input image. To overcome this, we make σ a learnable parameter. We
initialize σ to 2, and found that σ decreases as training continues, converged to just below 1
roughly half way through training. This idea is similar to multi-scale loss evaluation common
in optical flow methods, but removes the need to create an explicit image pyramid.
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3.2 Flow-Guided Direct Synthesis (FDS)

Our direct synthesis sub-network, FDS, uses an encoder-decoder architecture. The key element
is incorporating the flow field f estimated by AF++ to warp the bottleneck feature maps. A
similar idea was proposed by Zhu et al. [27], where optical flow between video frames was
applied to feature maps to reduce the need for feature extraction. Using the image encoder EG

I ,
the output is synthesized as: ÎG = DG(S(EG

I (Is), f )) where DG is the decoder and S(EG
I (Is), f )

is the image feature map after applying the warp. To apply the flow field to the image features,
the field is down-sampled using nearest neighbor sampling to match the feature map resolution.
We found that a naïve use of the direct synthesis method that predicts pixel values based only
on the input image and the transformation vector to be suboptimal and observed significant
performance gain by introducing the feature flow transformation.

For the FDS network, we use a ResNet-50 encoder and a decoder similar to the one in
AF++, with the only difference being in the final layer. In DG, we replace the CoordConv
with a standard convolution and the three channel pixel values are predicted in the range [0,
1] by applying the sigmoid activation function.

3.3 Adaptive Image Fusion

While our flow-based method AF++ captures fine details and produces sharp results, the
direct synthesis method FDS is able to hallucinate missing pixels and generate more coherent
predictions. Motivated by this, we propose to adaptively fuse the images generated by these
sub-networks to produce the final output image. We train a standard U-Net [15] architecture
to predict a fusion weight for each pixel. The network takes as input the concatenation of
the predicted flow and the images generated by the first two sub-networks. The output A is a
single channel that predicts values in the range [0, 1] using the sigmoid activation function.
The final output image of GAF is computed using: Î = A� ÎF +(1−A)� ÎG, where ÎF is the
output of AF++, ÎG is the output of FDS, and � is element-wise multiplication. See Figure 4
for a visualization of the predicted per-pixel fusion mask.

3.4 Loss Functions

We train our full model, and all baseline models, using the same loss function, which combines
the following loss components. The first is a reconstruction loss, which in our case is the L1
loss between target image It and generated image Î: Lr(Î, It) = ‖Î− It‖1. To encourage more
realistic synthesized images, we add a perceptual loss [7] by extracting CNN features for the
synthesized and target image and minimize the mean squared error between the features. We
use a ResNet-18 pre-trained for Cityscapes [3] segmentation as the feature extractor. To deal
with small artifacts, we also include an adversarial loss by adding a discriminator which aims
to differentiate between real and synthesized images. For a set of image patches P, we use
a patch discriminator [26] with the least squares loss, LG(Î) [10]. For brevity, we omit the
loss function for training of the discriminator. We combine these component losses, using
hyper-parameters λ1, λ2, and λ3, to define our total loss:

L(Î, It) = λ1Lr(Î′, It)+λ2Lp(Î, It)+λ3LG(Î). (1)
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4 Evaluation
We present quantitative and qualitative results of the proposed methods, including an ablation
study to assess the contribution of various components. Source code, pre-trained models, and
the BPS dataset are available on our project page: https://mvrl.github.io/GAF.
See the supplemental material for dataset details, network architectures, and additional
visualizations.

4.1 Datasets
We evaluated our methods on two datasets that each consist of pairs of images of outdoor
scenes (Is, It) with corresponding motion vectors v. The KITTI dataset [6], containing images
from 11 sequences recorded in urban road scenes, is a standard benchmark for outdoor
view synthesis. Image pairs are captured with a front-facing camera and were sampled with
a maximum interval of one second. This means that the motions are mostly forward or
backward, simplifying the view synthesis task. While the raw images are around 1220×370,
the training size is reduced significantly be resizing or cropping [17]. Also, the horizontal
field of view of KITTI image is around ∼82◦, limiting the available information for view
synthesis under extreme view change. Following [8, 25], we use first 9 sequences of KITTI
for training and last 2 sequences for testing.

To overcome these limitations in KITTI, we created a dataset of outdoor panoramic images,
which we name the Brooklyn Panorama Synthesis (BPS) dataset. Images were randomly
sampled from Google StreetView such that each pair is within 10 meters. The image size is
960×160 pixels with the horizontal field of view of 360◦. In total, it contains 44092 image
pairs. We randomly split the dataset into training (40592 pairs) and testing (3500 pairs). Note
that BPS has more images, wider field of view, and larger average motion compared to KITTI.
We believe that BPS is a challenging dataset that will be useful for future work on outdoor
view synthesis. Please see supplemental material for detailed comparison of BPS and KITTI
dataset and distribution of viewpoint changes.

4.2 Baseline Methods
We compare our method to several state-of-the-art single image methods: Appearance Flow
(AF) [25], Geometry Aware (GA) [8], and Multi-View (MV) [17] trained for single image
view synthesis. We also include a trivial baseline, Identity, that always predicts the source
image. This method works surprisingly well, especially when image motion is small. For
fairness, we prepare a variant of AF, named AF-ResNet, that has the same ResNet encoder
that we are using in our flow-based method AF++.

4.3 Implementation Details
We implemented our approach using the PyTorch [14] framework. We train our networks
using the Adam optimizer with parameters β1 = 0.9 and β2 = 0.999. We used a learning rate
of 1e−5 and L2 regularization of 1e−6 with batch size of 16. All pixel values were scaled
to the range [0,1]. In panoramic images, it is possible that relevant information might be on
the wrong side of the image because of the wrap-around effect of equirectangular projection.
To address this, we add 48 pixels of wrap-around padding to both the left and right borders.
Only the original (unpadded) image pixels are used for evaluation purposes. We encode each
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Method L1 SSIM PSNR

Identity 0.4923 0.4159 12.0084
AF [25] 0.4643 0.4595 13.6917
GA [8] 0.340 - -
MV [17] 0.3971 0.5597 14.2942

AF++ (Ours) 0.3452 0.5395 16.0868
FDS (Ours) 0.3069 0.6079 16.0814
GAF (Ours) 0.2991 0.6102 17.1469

Table 1: Results on the KITTI dataset.

Method L1 SSIM PSNR

Identity 0.4890 0.3587 12.8998
AF [25] 0.4584 0.3540 13.4134
AF-ResNet 0.4399 0.3934 13.8985

AF++ w/o motion enc. 0.4207 0.4001 14.1073
AF++ w/o scaling 0.4341 0.4140 13.8688

AF++ (Ours) 0.3702 0.4534 15.0695
FDS (Ours) 0.3276 0.5257 16.3203
GAF (Ours) 0.3255 0.5276 16.3210

Table 2: Results on the BPS dataset.

Input AF [25] AF++(Ours) FDS(Ours) GAF(Ours) GT

Figure 3: Qualitative results on the KITTI dataset.

element of the vector v using our proposed motion encoding with a vector of size 25 with
σm = 0.75 and concatenate them to form a single vector of size 50. For KITTI, the odometry
provides complete motion in 3D. We use motion encoding for x and y axes with 21 elements
each. Since motion is typically along the z-axis, we encode z with 41 bins. This results in an
encoding of size 83. For each dimension we use σm = 0.75.

For training AF++, FDS, and GAF, we give higher weight to reconstruction and perceptual
loss, λ1 = 1, λ2 = 1, and lower weight for the GAN loss, λ3 = 0.01. We begin by training the
flow-based synthesis sub-network, AF++ for 25 epochs. The other flow-based methods, AF
and AF-ResNet, are also trained for 35 epochs. We then train our direct synthesis sub-network,
FDS. We pretrain FDS as an autoencoder, without using the flows from AF++, by setting the
motion encoding and flow to zero and using the same image for source and target. This is
done to initialize the image decoder for reasonable image generation. Next, we train FDS for
10 epochs, leaving AF++ frozen. For the final step, we freeze AF++ and FDS and train the
adaptive image fusion network for 5 epochs.

4.4 Results

We evaluate our method using standard metrics for testing image generation quality: L1 error,
peak signal-to-noise ratio (PSNR), and structural similarity (SSIM). Results on the KITTI
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Figure 4: Example outputs from our proposed methods. Fusion masks correctly capture the
best regions from AF++ and FDS predictions to synthesize the GAF prediction.

dataset, Table 1, show that our method outperforms AF and GA. Notice that Identity gets
reasonable metrics, highlighting the visual similarity between inputs and targets. Note that
our flow-based sub-network AF++ alone performs much better than the baseline methods.
We see consistent performance gains as we use our direct synthesis method FDS, and GAF
achieves the best results. Table 2 shows the performance of our models and the baselines on
the BPS dataset. We can see that AF++ gets better metrics than existing methods. Moreover,
our FDS and GAF models further improve the metrics. Since GA requires 3D supervision, we
are unable to evaluate it on BPS.

Ablation Tables 1 and 2 show that using FDS and GAF improve metrics of the flow method
AF++. We also perform an ablation study of AF++. We created two variants: one without the
motion encoding and one without the scale space training strategy, keeping all other aspects
unchanged. The results demonstrate that removing either component significantly decreases
performance, with the removal of scale space training having a larger impact.

Qualitative Analysis Qualitative results are shown in Figures 3 and 4. We can see that
AF++ retains fine details and produces sharp outputs, but there are noticeable artifacts. FDS
produces smooth output that is more globally consistent. The fusion mask from GAF correctly
selects the best parts from both intermediate outputs to synthesize images with fewer artifacts.
Please see the supplementary material for visualization of the predicted flow fields.
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5 Conclusions
We introduced a method for view synthesis that performs well on challenging outdoor scenes.
Our method integrates both flow-based and direct approaches. We also introduced a view-
synthesis evaluation dataset, BPS, containing panorama pairs. Our flow-based sub-network
includes several novel elements: fully-convolutional flow prediction, distributed motion
encoding, and an adaptive scale space training strategy. This sub-network alone achieves
state-of-the-art results on the KITTI and BPS datasets. Our full method contains a direct
sub-network which uses flow estimates from the flow-based sub-network to warp feature maps.
The output of both sub-networks are adaptively fused, resulting in further improvements to
the state of the art. All data, code, and trained models have been released publicly.
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