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Abstract

Graph Neural Networks (GNNs) generalize neural networks from applications on
regular structures to applications on arbitrary graphs, and have shown success in many
application domains such as computer vision, social networks and chemistry. In this
paper, we extend GNNs along two directions: a) allowing features at each node to be
represented by 2D spatial confidence maps instead of 1D vectors; and b) proposing an
efficient operation to integrate information from neighboring nodes through 2D convo-
lutions with different learnable kernels at each edge. The proposed SIA-GCN can ef-
ficiently extract spatial information from 2D maps at each node and propagate them
through graph convolution. By associating each edge with a designated convolution
kernel, the SIA-GCN could capture different spatial relationships for different pairs of
neighboring nodes. We demonstrate the utility of SIA-GCN on the task of estimating
hand keypoints from single-frame images, where the nodes represent the 2D coordinate
heatmaps of keypoints and the edges denote the kinetic relationships between keypoints.
Experiments on multiple datasets show that SIA-GCN provides a flexible and yet pow-
erful framework to account for structural constraints between keypoints, and can achieve
state-of-the-art performance on the task of hand pose estimation.

1 Introduction
Hand pose estimation is a long standing research area in computer vision, given its vast po-
tential applications in computer interaction, augmented reality, virtual reality and so on [7].
It aims to infer 2D or 3D positions of hand keypoints from a single input image or a se-
quence of images, which could possibly take the form of RGB, RGB-D or grayscale. Al-
though 3D hand pose estimation is drawing increasing attention in the research commu-
nity [11, 15, 25, 27, 32, 35], 2D hand pose estimation still remains a valuable and challeng-
ing problem [13, 19, 26]. A plentiful of 3D hand pose estimation algorithms rely on their
2D counterparts [2, 37], attempting to lift 2D predictions to 3D space. In this paper, we
investigate the problem of 2D handpose estimation from single RGB image.
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The progress in hand pose estimation research has been boosted greatly by the inven-
tion of deep Convolutional Neural Networks (CNNs). Deep CNN models like Convolutional
Pose Machine [29] and Stacked Hourglass [17] have been successfully applied to 2D hand
pose estimation, though they are originally proposed to solve the task of human pose esti-
mation. Some methods [4, 13, 14] also integrate deep CNNs with probabilistic graphical
model to harvest both the powerful representation ability of deep CNNs and the capability
of explicitly expressing spatial relationships attributed to graphical model.

In contrast to CNN, graph neural network has the ability to handle irregular structured
data. The joints of a human body, and keypoints of a hand can be conveniently considered as
irregular graphs, giving possibilities of applying Graph Convolutional Network (GCN) [12]
on human/hand pose estimation tasks. However, in the vanilla GCN [12], all the nodes share
the same one-hop propagation weight matrix, which makes it unready to be applied to pose
estimation task because different human body joints and bones should have different seman-
tics. Authors in [3, 8, 36] have proposed different variants of the vanilla GCN from [12]
for the purpose of human or hand pose estimation. However, all these methods take as in-
put a one dimensional vector for each node, and the node feature at each layer is always a
one dimensional vector. Thus, they are not ready to process 2D confidence map. Although,
in [3, 8, 36], modifications are made to vanilla GCN, they still do not allow full independence
among the edges.

In this paper we propose the Spatial Information Aware Graph Neural Network with 2D
convolutions (SIA-GCN). In SIA-GCN, the feature of each node is a two dimensional matrix,
and the information propagation to neighboring nodes are carried out via 2D convolutions
along each edge. By using 2D convolutions instead of flattening the 2D feature map to a
1D vector and then performing linear multiplications, the spatial information encoded in the
feature map is reserved and appropriately exploited. We also propose to use different 2D
convolutional kernels on different edges, aiming to capture different spatial relationships for
different pairs of neighboring nodes. The SIA-GCN is very flexible and could be easily
combined with off-the-shelf 2D pose estimators. In this work, we demonstrate the efficacy
of SIA-GCN on 2D hand pose estimation. For this application, the 2D feature maps at the
nodes are actually the confidence maps of the hand keypoint positions. With a designated
matrix for each edge, the SIA-GCN has the ability to capture various spatial relationships
between different pairs of hand keypoints.

Our main contributions are threefold:
• We propose the novel SIA-GCN which can process 2D confidence maps for each node

efficiently and effectively, by integrating graph neural networks and 2D convolutions.
Using 2D convolutions, our SIA-GCN can exploit and harvest the spatial information
provided in the 2D feature maps.

• By assigning different convolutional kernels on different edges, the SIA-GCN has
the property of full edge-awareness. Distinct spatial relationships can be learned on
different edges.

• We deploy SIA-GCN in the task of hand pose estimation. Utilizing SIA-GCN, the
constructed neural network can achieve state-of-the-art performance.

2 Related Work
There exists a vast amount of research focusing on topics of human/hand pose estimation [1,
10, 11, 15, 16, 19, 24, 25, 27, 28, 32, 35] and graph neural networks [3, 8, 19, 36]. In
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the related work, we focus on 2D hand pose estimation from single RGB images and graph
convolutional network [19]’s applications to pose estimation tasks.

2D hand pose estimation. Studies of RGB image based 2D hand pose estimation has long
benefited from that of human pose estimation, where deep Convolutional Neural Networks
(CNNs) have enjoyed great success [6, 17, 21, 23, 29, 31]. Among these deep CNN mod-
els, Convolutional Pose Machines [29] and Stacked Hourglass [17] are commonly used in
various RGB-based 2D hand pose estimation methods [5, 13, 14, 19, 26]. Compared with
deep CNNs, Graphical Model (GM) has also played a significant role in solving the pose
estimation task. GM has the power of modeling spatial constraints among the joints explic-
itly. Recently, several works in pose estimation combine GM and neural network to fully
exploit the structural information [4, 13, 14, 20, 22, 34]. Traditionally, GM with fixed pa-
rameters [4, 20, 22] are applied to the pose estimation task, while the most recent work
in [13, 14] propose to adopt GM with adaptive parameters conditioning on input images. Al-
though all take advantage of structural information, our proposed method is based on graph
convolutional network while these previous works [13, 14] are based on graphical models.

Graph convolutional network. Graph Convolutional Network (GCN), which generalizes
deep CNNs to graph structured data, have attracted increasing attention in recent years. One
main research direction is to define graph convolutions from the spectral perspective [18],
while the other works on the spatial domain [12]. For a comprehensive survey on GCN, we
refer readers to [30]. The most related works to ours are [3, 8, 36], in which variants of spatial
GCNs have been proposed and applied to human/hand pose estimation tasks in the computer
vision field. In the following, we discuss the key differences between our SIA-GCN and
those in [3, 8, 36].

In [3], the authors have proposed to classify neighboring nodes according to their seman-
tic meanings and use different kernels for different neighboring nodes. The purpose of their
proposed GCN is to regress 3D position vectors from 2D position vectors, and the input to
the GCN for each node is a one dimensional R2 vector, representing predicted 2D position
of a corresponding body joint. However, our proposed SIA-GCN aims to handle two dimen-
sional confidence maps for each node. The confidence map inherently contains much more
information than the two-element position vector. Our goal is to refine final 2D predictions,
other than lifting 2D predictions to 3D space. Besides, instead of classifying nodes into
different classes, we treat every edge independently and attach a designate weight kernel to
each edge.

In [8], the authors directly adopt the propagation rule from [12] with the modification
that, instead of using a predefined adjacency matrix, they have proposed to use an adap-
tive adjacency matrix which could be learned from data. The feature for each node is a
one dimensional vector. Our method differs from [8] in that edge-dependent weights are
considered explicitly and our SIA-GCN works on 2D confidence maps for each node.

In [36], the proposed Semantic Graph Convolution (SemGConv) adds a learnable weight-
ing matrix to conventional graph convolutions from [12]. The weight matrix serves as a
weighting mask on the edges of a node when information aggregation is performed. The
SemGConv is inherited from ST-GCN [33], but is equipped with additional important fea-
tures such as softmax non-linearity and channel wise masks. The weighting mask adds a
scalar importance weight (or a vector if it’s channel wise) to each edge. However, in SIA-
GCN, we directly attach to each edge a fully independent convolution matrix. Besides, our
SIA-GCN works on 2D node features with spatial information awareness.
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3 Methodology
In this section, we present the SIA-GCN, and its application to hand pose estimation. We
refer to the resulted pose estimator as SiaPose, which is illustrated in Fig 1.
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Figure 1: System diagram of the SiaPose, utilizing SIA-GCN.

The SiaPose takes as input a RGB image, to which a preliminary pose estimator is ap-
plied. The preliminary pose estimator could be any 2D pose estimator, such as the famous
Convolutional Pose Machine [29] and Stacked Hourglass [17], which would output a set of
confidence maps of keypoint positions. Then, at the top branch, the confidence maps are fed
into a block of multi-head SIA-GCNs. Each SIA-GCN processes a copy of the confidence
maps parallelly and independently. Meanwhile at the bottom branch, the input image goes
through a pointer network, which gives a weight vector, indicating which head is impor-
tant in the multi-head SIA-GCNs. Finally, at the information fusion stage, confidence maps
output from the multi-head SIA-GCNs are aggregated according to the weight vector.

In the following subsections, we revisit the graph convolutional network first, and discuss
the motivation for our SIA-GCN. Then, we present a compact formulation of our proposed
edge-aware graph convolutional layers in SIA-GCN, and demonstrate how to implement it
efficiently using 2D convolutional operations. Finally, we describe the training procedure of
the SiaPose.

3.1 Revisiting Graph Convolutional Network

The Graph Convolutional Network (GCN) proposed in [12] has enjoyed great success on a
variety of applications since its advent. Given a graph G = (V,E) with N nodes vi ∈ V , edges
(vi,v j) ∈ E , adjacency matrix A ∈ RN×N , and a degree matrix D ∈ RN×N with Dii = ∑ j Ai j,
the layer-wise propagation rule is characterized by the following equation

H(l+1) = σ

(
D̃−

1
2 ÃD̃−

1
2 H(l)W (l)

)
, (1)

where Ã=A+IN is the adjacency matrix of the undirected graph G with self-connections [12].
IN is the identity matrix, D̃ii =∑ j Ãi j. H(l) ∈RN×M is the matrix of activations in the lth layer,
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or input feature matrix of the lth layer. The parameter W (l) is the trainable weight matrix of
layer l.

In the scenario of human and hand pose estimation, it is well studied that probabilis-
tic graphical models could be deployed to enhance structural consistency [4, 14, 22]. The
graphical model could take in some preliminarily generated 2D confidence maps of each
body joint or hand points. These confidence maps are usually considered as the unary poten-
tial functions by the graphical model. Then the graphical model could impose some learned
pairwise potential functions on the initial confidence maps, thus enforcing spatial consis-
tency of the body joints/keypoints. Can we also apply GCN to the confidence maps and then
enhance spatial consistency?

The answer is positive, but it’s not trivial. To apply the above GCN to pose estimation,
some modifications are needed due to the dimensionality. In Eq. (1), the activation matrix
H(l) ∈ RN×M is a two dimensional matrix, corresponding to N nodes and each node is asso-
ciated with a 1-d feature of size M. However, for the case of 2D pose estimation, each graph
node (usually corresponding to a joint or keypoint) can be associated with a two dimensional
confidence map. This discrepancy could be handled by flattening the two dimensional con-
fidence map to a single long vector and then perform layer propagation according to Eq. (1).
However, this would result in very large feature size, significantly increase the computa-
tional complexity (imagine that a 64× 64 matrix would result in a one dimensional vector
of size 4069). Besides, by flattening the confidence map, spatial information encoded in the
confidence map would be corrupted. Thus, we propose to use 2D convolutional operations
directly on 2D confidence maps when propagating information along the edges.

Moreover, in Eq. (1), since all the node share the same weight matrix W (l) and informa-
tion aggregation is only controlled by the adjacency relationships between nodes, it would be
difficult for the propagation rule in Eq. (1) to characterize different positional relationships
for different pairs of neighboring joints. For example, the positional information propagation
between two neighboring thumb joints should be different from that between the neighboring
joints on the middle finger. One simple reason is that the bones from the thumb and middle
finger actually have different lengths.

3.2 SIA-GCN
To resolve the above mentioned concerns, we propose the spatial information aware graph
neural network with 2D convolutions (SIA-GCN), where each edge of the graph is associated
with an individual learnable 2D convolutional kernel. A toy example of a graph consisting
of four nodes is shown in Fig. 2, where green matrices represent 2D features (heatmaps) at
each node and red matrices represent designated 2D kernels associated with each edge.

Figure 2: A simple illustration of SIA-GCN.
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For the task of hand pose estimation, we could define a graph G = (V,E) where V =
{v1,v2, · · ·vK} is the set of nodes corresponding to K hand keypoints, and E is the set of edges
encoding the neighboring relationships among the keypoints. Each node vi is associated with
a 2D confidence map Xi ∈ Rh×w, which encodes the positional information of ith keypoint.
We could stack all {Xi} for i = 1,2, ..,K in a 3D matrix, and denote it as X ∈ RK×h×w.

One important feature of our SIA-GCN is that each edge in E is associated with an
individual weight matrix or 2D convolutional kernal, Fj ∈ Rh′×w′ , j = 1,2, · · · , |E|. Again,
we compact all {Fj} into a single matrix F ∈R|E|×h′×w′ , which is actually the set of learnable
parameters of the edge-aware graph convolutional layer. The information propagated from
node i to node j along edge ei, j is obtained by calculating the 2D convolution of Xi ~Fei, j .
Then, all the information propagated into node i are aggregated according to the adjacency
matrix. The propagation rule could be presented compactly in matrix multiplications and
convolutions as

X (l+1) = σ

(
Â
(
(BX (l))~̃F(l)

))
, (2)

where the superscript l and l +1 denote the lth layer and l +1th layer respectively, ~̃ is the
channel-wise 2D convolution operator, and σ(·) is the non-linear activation function. The
matrix B ∈ R|E|×K is the broadcast matrix, which broadcasts node features to its outgoing
edges. Note that the matrix multiplication BX (l) results in a shape of |E|× h×w, whereas
originally the dimension of X (l) is K×h×w. In other words, the operation BX (l) simply pre-
pares the input along each edge for the following channel-wise convolution, (BX (l))~̃F(l).
Finally, the matrix Â ∈ RK×|E| is the aggregation matrix, which harvests all the information
from the incoming edges to the graph nodes.

It is worth pointing out that, in Eq. (2), only F(l) is the learnable parameter, while the
broadcast matrix B and the aggregation matrix Â are both determined and constructed from
the graph’s adjacency matrix A by Algorithm 1. In Algorithm 1, we assume the input adja-
cency matrix A is already included with self connections.

3.3 SiaPose and its training procedure
With SIA-GCN, we propose the SiaPose for 2D hand pose estimation, as in Fig. 1. The
preliminary pose estimator could be any off-the-shelf 2D hand pose estimator. Multiple
heads of SIA-GCN would benefit capturing different positional informations due to different
hand shapes in the input images. Assume there are M heads in the multi-head SIA-GCNs,
then, we could denote the output of the multi-head SIA-GCNs as Y ∈ RM×K×h×w and the
output at the mth SIA-GCN as Ym ∈RK×h×w. The pointer network, whose input is the image,
is a regression network which generate a soft pointer vector w ∈ RM . The weight vector w
actually indicates the importance of the information generated at different heads. Finally, at
the information fusion stage, the aggregated confidence map is given by

Ȳ = w ·Y =
M

∑
m=1

wmYm, (3)

which is a weighted sum of Ym. The final predictions of the keypoint positions are obtained
by taking the argmax of Ȳ .

The training procedure of the SiaPose is simple and could be conducted in an end-to-end
fashion. The total loss function is defined as

L = αL1 +L2 = α

T

∑
t=1

K

∑
k=1

∥∥St
k−Y ∗k

∥∥2
F +

K

∑
k=1
‖Ȳk−Y ∗k ‖

2
F . (4)
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Algorithm 1 Broadcast and Aggregation Matrices Construction
1: procedure CONSTRUCTMATRICES(A) . Input A is the adjacency matrix
2: Find the number of directed edges, |E|, from A
3: Find the number of nodes, K, from A
4: Initialize . Initialization for B and Â
5: B as a zero matrix of size |E|×K
6: Â as a zero matrix of size K×|E|
7: e as a zero vector of size |E|
8: m = 1
9: for i in 1,2, · · · ,K do . Calculate for B

10: for j in 1,2, · · · ,K do
11: if A j,i == 1 then . If j is the starting node of edge m
12: Bm, j = 1
13: e[m] = i . Record the end node of edge m
14: m = m+1
15: for m in 1,2, · · · , |E| do . Calculate for Â
16: Âe[m],m = 1

17: Construct the diagonal degree matrix D, with Dii = ∑ j Âi j.
18: Set Â = D−1Â . Normalize Â
19: return B, Â

The first loss L1 is responsible for the output of the preliminary pose estimator, while the
second loss L2 is added at the final output. The preliminary pose estimator itself (e.g. CPM
and Stacked Hourglass) might consist of T multiple stages. The term St

k ∈ Rh×w is the
confidence map of kth keypoint generated by the tth stage of the preliminary pose estimator,
while Ȳ is the final confidence output of the SiaPose as in Eq.(3). Besides, Y ∗k ∈ Rh×w is
the ground truth confidence map of kth keypoint, created by placing a Gaussian peak at its
ground truth position. The coefficient α serves as a balancing weight between the two loss
functions.

4 Experiments

Datasets. We evaluate our proposed method on three public hand pose datasets, the CMU
Panoptic Hand Dataset (Panoptic) [19], the MPII+NZSL Hand Dataset [19] and the Large-
scale Multiview 3D Hand Pose Dataset (MHP) [9]. For Panoptic (~15k images) and MHP
(~82k images), we follow the setting of [14] and randomly split all samples into training set
(70%), validation set (15%) and test set (15%). Since our contribution mainly focus on pose
estimation instead of detection, we crop square image patches of annotated hands off the
original images. A square bounding box which is 2.2 times the size of the hand is applied
for cropping as in [13, 14, 19].

Evaluation metrics. The Probability of Correct Keypoint (PCK) [19] is utilized as our
evaluation metric. In this paper, we use normalized threshold with respect to the size of
square bounding box. We report the performance under different thresholds, δ = {0.01,
0.02, 0.03, 0.04, 0.05, 0.06}, and also their average (mPCK). More formally, for a single
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cropped input image of size s× s, the PCK at δ can be defined as

PCK(δ ) = N(δ )/K, (5)

where N(δ ) is the number of predicted keypoints which are within an interval threshold δ · s
of its correct location and K is the total number of keypoints.

Implementation details. In the experiments, two baselines, i.e., six-staged Convolu-
tional Pose Machine (CPM) as in [19] and eight-staged Stacked Hourglass (SHG) are used
as preliminary pose estimators in our SiaPose. For the SIA-GCN, we use 5 edge-aware
graph convolutional layers defined in Eq. (2), which adopts a tree structured graph accord-
ing to the kinematic structure of the hand skeleton, adding self connections. The size of
the convolutional kernels in Eq. (2) is set to 45. ResNet-18 is used as the backbone of the
pointer network. The input image is resized to 368× 368 and 256× 256 for the cases of
CPM and SHG, respectively. Images are then scaled to [0,1], and normalized with mean
of (0.485, 0.456, 0.406) and standard deviation of (0.229, 0.224, 0.225). We use Adam as
our optimizer. For SHG-based SiaPose, the initial learning rate is set to 7.5e-4 while for the
CPM-based SiaPose, we set it to 1e-4. For both cases, we train the model for 100 epochs,
with learning rate reduced by a factor of 0.5 at milestones of the 60-th and 80-th epoch. The
weight coefficient α in loss function Eq. (4) is set to drop from 1.0 to 0.1 at the 40th epoch.

Comparison with baselines. In Table 1 and Table 2, we compare the performance
of our SiaPose with two baselines, CPM and SHG. (1) First, we conduct an experiment
where edge-unaware GCN is utilized, where a shared weight matrix is used for all the edges.
Interestingly, it performs worse than the baseline models. This is reasonable, because it’s not
appropriate to assume that relative positions of neighboring keypoints are always the same.
For example, index finger and thumb naturally have bones with different lengths. (2) Then
we conduct experiments with our edge-aware SIA-GCNs, where different numbers of heads
are explored. The results demonstrate that our proposed SiaPose could consistently improve
both baselines noticeably. The ablative study on different numbers of heads validates the
benefit of multi-heads and the effectiveness of the proposed SIA-GCN. For SHG, there is a
2.12 percent improvement at threshold δ = 0.01 and for CPM, a 1.95 percent improvement
is seen at threshold δ = 0.04. (3) Also, inspired by the state-of-the-art algorithm [14], by
adding a rotation network into our SiaPose (R-SiaPose) and using a similar training strategy,
the performance of our method is further boosted, leading to significant improvements from
baselines. Improvements of about 5 percent for SHG and nearly 4 percent for CPM are
observed. We would also compare our model with that proposed in [14] in next subsection.

Table 1: SHG based SiaPose on Panoptic Dataset.
PCK@ 0.01 0.02 0.03 0.04 0.05 0.06 mPCK

SHG Baseline 35.85 71.47 83.15 88.21 91.10 92.92 77.12

SharedWeight GCN 34.76 69.66 81.33 86.19 89.14 90.95 75.34

1-head SiaPose 35.78 71.16 83.57 88.98 92.00 93.84 77.55
5-head SiaPose 37.53 73.07 84.60 89.51 92.14 93.85 78.45
10-head SiaPose 37.97 73.53 84.95 89.70 92.26 93.91 78.72

Improvement 2.12 2.06 1.80 1.49 1.16 0.99 1.60

10-head R-SiaPose 39.46 77.22 88.45 92.97 94.85 96.09 81.48
Improvement 3.61 5.75 5.30 4.76 3.75 3.17 4.36

Comparison with state-of-the-art methods. We further compare our approach with the
current state-of-the-art methods [13, 14]. Probabilistic graphical models are deployed in [14]
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Table 2: CPM based SiaPose on Panoptic Dataset.
PCK@ 0.01 0.02 0.03 0.04 0.05 0.06 mPCK

CPM Baseline 25.73 62.77 77.80 84.35 88.11 90.57 71.55

SharedWeight GCN 25.14 61.76 77.13 83.60 86.97 89.20 70.63

1-head SiaPose 25.90 63.36 78.98 85.69 89.44 91.90 72.55
5-head SiaPose 26.36 64.05 79.11 85.74 89.38 91.78 72.74
10-head SiaPose 26.45 64.19 79.67 86.30 89.83 92.20 73.11

Improvement 0.72 1.42 1.87 1.95 1.72 1.63 1.56

10-head R-SiaPose 26.62 65.80 81.60 88.02 91.39 93.36 74.47
Improvement 0.89 3.03 3.80 3.67 3.28 2.79 2.92

and [13], where the output confidence maps from CPM are utilized as unary potential func-
tions. The CPM used in [14] and [13] is the version where 7× 7 convolutional kernels are
replaced by three 3×3 convolutional kernels. To make fair comparison, we follow their con-
figurations and use their version of CPM as our preliminary pose estimator. The fundamental
difference between our method and [14] is that we have adopted our SIA-GCN instead of
graphical models. As observed from Table 3, our method outperforms both [13, 14] on the
Panoptic dataset. On the MHP dataset, our SiaPose also achieves the state-of-the-art level
performance. The size of the MHP dataset is about five times the size of the Panoptic, mak-
ing the MHP dataset an easier task and allows less room for improvement. Methods focused
on modeling structural relationships between keypoints would benefit more from smaller
and challenging datasets that require models to extrapolate beyond pose templates seen in
the training data.

Complexity analysis. Regarding the size of the proposed models, the 5-head and 10-
head models increase the model size by about 30% and 40%, respectively, compared to the
1-head model. The increment of the model size from 1-head to multiple heads is primarily
due to the added pointer network, which is drawn in Fig. 1. However, going from 5-head
to 10-head does not significantly increase model complexity. This is because the pointer
network only needs to output 5 more scalers and the overall overhead mostly comes from
adding more GCN layers, which are shallow and not associated with too many parameters
(note that we use “channel-wise” 2D convolutions). It’s also worth to point out that, using
a 10-head SIA-GCN, our model is about 80% and 60% the size of those in [13] and [14],
respectively.

Domain generalization of our model. Table 4 demonstrates the domain generalization
ability of our model. All the models in Table 4 are pretrained on Panoptic dataset, and then
finetuned for about 40 epochs on the MPII+NZSL dataset. Consistent improvements over
baselines are seen for all the ranges of PCK thresholds.

Qualitative results. Some qualitative examples are given in Fig. 3, which indeed shows
that the SIA-GCN helps to enhance structural consistency and alleviate the spatial ambi-
guity. For example, in the third column, although the right hand is partially occluded by
the earphone, our model could still correctly predict the position of all keypoints. We also
show some failure cases of our model in Fig. 4, which are due to very heavy occlusion and
foreshortened view of a fist.
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Table 3: Comparison to state-of-the-art methods.
PCK@ 0.01 0.02 0.03 0.04 0.05 0.06 mPCK

CMU Panoptic Hand Dataset
R-MGMN [14] 23.67 60.12 76.28 83.14 86.91 89.47 69.93

AGMN [13] 23.90 60.26 76.21 83.70 87.72 90.27 70.34
R-SiaPose (Ours) 24.94 62.08 77.83 84.91 88.78 91.34 71.65

Large-scale Multiview 3D Hand Pose Dataset (MHP)
R-MGMN [14] 41.51 85.97 93.71 96.33 97.51 98.17 85.53

AGMN [13] 41.38 85.67 93.96 96.61 97.77 98.42 85.63
R-SiaPose (Ours) 41.27 85.89 93.82 96.43 97.61 98.29 85.56

Table 4: Domain generalization of our model to MPII+NZSL from Panoptic Dataset.
PCK@ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

CPM 8.05 23.78 37.74 48.00 55.65 61.68 66.58 70.82
R-SiaPose (Ours) 8.40 24.71 39.33 50.31 59.04 66.01 71.29 75.63

Improvement 0.35 0.93 1.59 2.31 3.39 4.33 4.71 4.81

SHG 11.72 30.85 44.82 54.71 62.35 68.48 73.47 77.61
R-SiaPose (Ours) 12.19 33.34 49.13 59.86 67.83 73.69 78.26 81.72

Improvement 0.47 2.49 4.31 5.15 5.48 5.21 4.79 4.11

Figure 3: Qualitative results of baseline (top) and our model (bottom) on Panoptic and MPII.

Figure 4: Failure cases of our model. Each pair contains an input image and its prediction.

5 Conclusion
In this paper, we propose a novel spatial information aware graph neural network with 2D
convolutions (SIA-GCN), which has the advantage of processing 2D spatial features for each
node, with additional capability of learning different spatial relationships for different pair
of neighboring nodes. We show the efficacy of our SIA-GCN in the 2D hand pose estimation
task, by implementing a network which achieves the state-of-the-art performance. The SIA-
GCN has the potential to generalise well to other tasks.
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