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Abstract

In this paper, we consider the problem of fine-grained image retrieval in an incre-
mental setting, when new categories are added over time. On the one hand, repeatedly
training the representation on the extended dataset is time-consuming. On the other hand,
fine-tuning the learned representation only with the new classes leads to catastrophic for-
getting. To this end, we propose an incremental learning method to mitigate retrieval
performance degradation caused by the forgetting issue. Without accessing any sam-
ples of the original classes, the classifier of the original network provides soft “labels”
to transfer knowledge to train the adaptive network, so as to preserve the previous capa-
bility for classification. More importantly, a regularization function based on Maximum
Mean Discrepancy is devised to minimize the discrepancy of new classes features from
the original network and the adaptive network, respectively. Extensive experiments on
two datasets show that our method effectively mitigates the catastrophic forgetting on the
original classes while achieving high performance on the new classes.

1 Introduction
In an era when the number of images is increasing, deep models for fine-grained image
retrieval (FGIR) are required to be adaptable for new incoming classes. However, current
image retrieval approaches are focusing mainly on static datasets and are not suited for in-
cremental learning scenarios. To be specific, deep networks well-trained on original classes
will under-perform on new incoming classes.

When new classes are added into an existing dataset, joint training on all classes allows
to guarantee the performance. However, as the number of new classes increases sequen-
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Figure 1: (a) Illustration of catastrophic forgetting for FGIR. Our method aims to maintain
good performance on the original classes where the inaccurate returned images are in red
box and correct results are in blue box. (b) Framework of our method. The only inputs for
the adaptive net B are m new classes and labels (Xc′ ,Yc′), c′∈(n+1, ...,n+m). The frozen
net A is firstly trained on n original classes and then copied as initialization for net B.

tially, the repetitive re-training is time-consuming. Alternatively, fine-tuning makes the net-
work adapt to new classes and achieve good performance on these classes. However, when
the original classes become inaccessible during fine-tuning, the performance of the original
classes degrades dramatically because of catastrophic forgetting, a phenomenon that occurs
when a network is trained sequentially on a series of new tasks and the learning of these
tasks interferes with performance on previous tasks, as shown in Figure 1(a).

Most of incremental learning methods are exploited for image classification, which is
robust and forgiving as long as features remain within the classification boundaries. In con-
trast, image retrieval focuses more on the discrimination in the feature space rather than the
classification decisions. Especially for FGIR, small changes on visual features may have a
big impact on the retrieval performance. Additionally, we find that standard methods like
Learning without forgetting (i.e. LwF [12]) and Elastic Weight Consolidation (i.e. EWC [9])
are insufficient for this problem because the distillation is not on the actual feature space (see
Section 4.2 and 4.3).

Considering the above limitations, we propose a deep learning model to tackle the prob-
lem of incremental fine-grained image retrieval. We regularize the updates of the model to
simultaneously retain preservation on original classes and adaptation on new classes. Impor-
tantly, to avoid the repeated training, the samples of the original classes are not used when
learning the new classes. The classifier of the original network provides soft “labels” to trans-
fer knowledge to train the adaptive network using the distillation loss function [4][25]. This
focuses on pair-wise similarity but can not well quantify the distance between two feature
distributions. This limitation inspires us to adopt a regularization term based on Maximum
Mean Discrepancy (MMD) [3] to minimize the discrepancy between the features derived
from an original network and an adaptive network, respectively. Moreover, the cross-entropy
loss and triplet loss are utilized to identify subtle differences among sub-categories.

In summary, our contributions are two-fold. First, our work extends FGIR in the context
of incremental learning. This is the first work to study this problem, to the best of our
knowledge. Second, we propose a deep network, which includes a knowledge distillation
loss and a MMD loss, for incremental learning without using any samples from the original
classes. It achieves significant improvements over previous incremental learning methods.
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2 Related Work
Incremental learning is the process of transferring learned knowledge from an original model
to an incremental model. It has been researched in a few applications like image classi-
fication [12][28][11][30], image generation [29][26], object detection [19], hashing image
retrieval [24] and semantic segmentation [15]. To overcome the so-called catastrophic for-
getting, numerous methods have been proposed. For example, a subset of data (exemplars) of
original classes are stored into an external memory, and the forgetting is thereby avoided by
replaying these exemplars [5][14][25]. Recently, GANs [2] are used to synthesize samples
with respect to the previous data distributions [18][21], which avoids the shortcomings of
memory-consuming and exemplar-choosing, but generating real-like images with complex
semantics is a challenging task. Alternatively, regularization methods constrain the objec-
tive functions or parameters of deep networks to preserve the previously learned knowledge.
The distillation loss function [4] is used to transfer knowledge of old classes [12][25]. The
importance weight per parameter is estimated based on the old classes, and then is used
as regularization to penalize essential parameter changes when training on new incoming
classes [9].

3 Proposed Approach
Problem Formulation Given a fine-grained dataset which includes n class labels (Xc,Yc)
where c∈ (1, ...,n), each sub-category c has a different amount of images in Xc and the
ground-truth labels Yc. A deep network is trained to perform the retrieval task for the n
classes. Consider the incremental learning scenario, images from m new classes are added
sequentially or at once. We take as input only the images from m new incoming classes,
i.e. (Xc′ ,Yc′), where c′∈ (n+1, ...,n+m), to incrementally train the deep network. In this
way, it is efficient to update the network with no need of re-training the original classes
again. Besides, the image instances from the original classes are not always accessible due
to privacy issue or memory limit. Finally, the aim is to continually train the network, to make
it preserve promising performance for all seen classes.
Overall Idea As shown in Figure 1(b), our method includes two training stages. First, we
train a network A on the original classes using cross-entropy and triplet loss on the output
logits and representations. After A is well-trained, we make two copies of A: one freez-
ing its parameters when incrementally training, and the other adapting its parameters for
the m incremental classes. We refer to this adaptive network as B. It is initialized with
parameters from A, including the feature extraction layers Ff rozen and classifier C f rozen,
but extends the number of neurons in its classifier C, from which the output logits are
(o′1,o

′
2, . . . ,o

′
n,o
′
n+1, . . . ,o

′
n+m), and previous n neurons are copied from C f rozen. To over-

come catastrophic forgetting, we propose to integrate two regularization strategies based on
knowledge distillation and maximum mean discrepancy, respectively. Given a query image
from either the original classes or newly added classes, we extract the features from the
fully-connected layer for image retrieval. We introduce the details of our method below.

3.1 Semantic Preserving Loss
First, we train the model with the standard cross-entropy loss. Given the logits (o1,o2, ...,on)
and its class label (y1,y2, . . . ,yn), the loss is H(y,o) =−∑(y∗ log(so f tmax(o))). Note that
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we only use images from the new classes during incremental training, thus the classification
is performed on (o′n+1,o

′
n+2, . . . ,o

′
n+m), the categorical cross-entropy loss function Lce is

Lce =−
1
N

N

∑
i=1

(yi ∗ log(
eo′i(x)

∑
n+m
j=n+1 eo′j(x)

)) (1)

To identify subtle differences among categories, we adopt the triplet loss Ltriplet by min-
ing the hard positive pairs and hard negative pairs based on feature vectors R.

Ltriplet =
1
N

N

∑
i=1

(max(0,λ +Si,neg−Si,pos)) (2)

where Si,neg and Si,pos, based on matrix multiplication (i.e. Si,neg = RiR>neg), indicate the
similarity of ith hard negative and positive pairs, respectively. λ is the margin parameter.

3.2 Knowledge Distillation Loss

We rewrite (Ff rozen, C f rozen) as (Ff , C f ) for simplicity. Knowledge distillation loss [4] is
defined to regularize the activations of the output layer in both the old and new model. To be
specific, we constrain the first n values in (o′1,o

′
2, ...,o

′
n,o
′
n+1, ...,o

′
n+m) as close as possible

to the logits (o1,o2, ...,on) from the frozen network A. Following the method in [25][12],
when m new classes are added at once, we compute the knowledge distillation loss by

Ldist =−
1

|Xc′ |

|Xc′ |

∑
x∈Xc′

n

∑
k=1
{pk(x)∗ log[p′k(x)]} (3)

where pk(x)= eok(x)/T

∑
n
j eo j(x)/T and p′k(x)=

eo′k(x)/T

∑
n
j e

o′j(x)/T , T is a temperature factor that is normally

set to 2 [12]. p= {p}n and p′= {p′}n refer to the probabilities produced by the modified
Softmax function in [4]. Ff and C f denote the parameters of network A. Similarly, F and C

denote the parameters of network B, as shown in Figure 1(b). |Xc′ | indicates the number of
images from the new m classes in a mini-batch. n denotes the number of the original classes.
Note that n will be extended accordingly when more new classes are added.

3.3 Maximum Mean Discrepancy Loss

Knowledge distillation loss focuses on constraining classification boundaries to mitigate the
forgetting issue. However, for FGIR, it is more important to reduce the difference between
feature distributions. For this, we adopt maximum mean discrepancy (MMD) [3] to capture
the correlation of feature distributions between network A and B. MMD has been used to
bridge source and target distributions such as in domain adaptation [13][27]. However, our
work is the first to impose MMD to regularize the forgetting issue for FGIR.

Given the features Rd (d is feature dimension) from network A and B, MMD measures
the distance between the means of two feature distributions after mapping them into a repro-
ducing kernel Hilbert space (RKHS). In Figure 2(a), we illustrate how MMD mitigates the
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Figure 2: (a) The red and blue color depict the feature distributions of two categories. The
dashed line indicates the distributions from the network A, the solid line indicates that from
the network B. Since A is copied as the initial model for network B, MMD=0 in the be-
ginning. As training progresses, B is updated to change its output features and the MMD is
expected to increase. (b) MMD for instance-to-instance similarity.

catastrophic forgetting issue. Note that, in the Hilbert spaceH, norm operation can be equal
to the inner product [1][3]. Finally, the squared MMD distance is:

MMD2(R,R′) = || 1
N

N

∑
i=1

φ(Ri)−
1
N

N

∑
j=1

φ(R′j)||2H

=
1

N2<
N

∑
i=1

φ(Ri)−
N

∑
j=1

φ(R′j),
N

∑
i=1

φ(Ri)−
N

∑
j=1

φ(R′j)>H

=
1

N2

[ N

∑
i=1

N

∑
j=1
<φ(Ri),φ(R j)>H+

N

∑
i=1

N

∑
j=1

<φ(R′i),φ(R
′
j)>H−2

N

∑
i=1

N

∑
j=1
<φ(Ri),φ(R′j)>H

]
s.t. R = Ff (x), R′ = F(x)

(4)

where N is batch size, and φ(·) denotes the mapping function. However, it is hard to de-
termine φ(·). In RKHS, the kernel trick is used to replace the inner product in Eq. 4, i.e.
<φ(R),φ(R′)>= k(R,R′). Considering all the features in a mini-batch, R={R}N and R′ =
{R′}N , we define the MMD loss Lmmd as:

Lmmd = MMD(R,R′) =
1
N

[ N

∑
i=1

N

∑
j=1

k(Ri,Rj)−2
N

∑
i=1

N

∑
j=1

k(Ri,R′j)+
N

∑
i=1

N

∑
j=1

k(R′i,R
′
j)
] 1

2
(5)

where k(R,R′)=exp(−(||R−R′||22)/(2σ2
m)), σm means m variances in the Gaussian kernel.

Discussion. Knowledge distillation loss focuses on constraining pair-wise similarity. How-
ever, MMD loss measures the distance between each feature vector, as depicted in Figure
2(b). Finally, it captures the distance of two feature distributions from the frozen net and
adaptive net. Thus, MMD loss is more powerful to quantize the correlation of two models.

Overall, the objective function in our method for incremental FGIR learning is:

L = αLdist +βLmmd +(Lce +Ltriplet) (6)
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4 Experiments

4.1 Datasets and Experimental Settings
Datasets. We demonstrate our method on the Stanford-Dogs [7] and CUB-Birds [22] datasets.
For the former, we use the official train/test splits. When training incrementally, we split the
first 60 sub-categories (in the order of official classes) as the original classes and images from
the remaining 60 sub-categories are added at once or sequentially. For the latter, we choose
60% of images from each sub-category as training set and 40% as testing set. Afterwards,
we split the first 100 sub-categories (in the order of official classes) as the original classes
and the remaining 100 sub-categories as new classes. The details are shown in Table 1.

Datasets
Training set

(#Image/#Class)
Testing set

(#Image/#Class)
Original cls. New cls. Total Original cls. New cls. Total

Stanford-Dogs 6000/60 6000/60 12000/120 4651/60 3929/60 8580/120
CUB-Birds 3504/100 3544/100 7048/200 2360/100 2380/100 4740/200

Table 1: Statistics of the datasets used in our experiments.

Experimental Settings. We use the Recall@K [6][16] (K is the number of retrieved sam-
ples), mean Average Precision (mAP), the precision-recall (PR) curve and feature distri-
bution visualizations for evaluation. We adopt the Google Inception [20] to extract image
features. During training, the parameters in Inception are updated using the Adam opti-
mizer [8] with a learning rate of 1× 10−6, while parameters in fully-connected layers and
classifier are updated with a learning rate of 1× 10−5. We follow the sampling strategy in
[23] and each incremental process is trained 800 epochs. Following the practice in [16][23],
the output 512-D features (Rd) from fully-connected layers are used for retrieval. We set
the hyper-parameters α =β =1 in Eq. 6, and the margin λ = 0.5 in Eq. 2. Note that we
mainly report the results tested on the CUB-Birds dataset in main paper. For the results of
the Stanford-Dogs dataset, we show them in the supplementary material.

4.2 One-step Incremental Learning for FGIR
We report the results for multiple classes added at once. The process includes two stages.
First, we use the cross-entropy and triplet loss to train the network A on the original classes
(100 classes for the CUB-Birds dataset), denoted as A(1-100). Second, only images of
new classes are added at once to train network B, denoted as B(101-200). DIHN [24] has
been explored the incremental learning for hashing-based image retrieval. However, its main
difference with ours is to depend on the usage of old data as query set to avoid forgetting
in their assumption. Considering no previous works for the fine-grained incremental image
retrieval, we apply Learning without Forgetting (LwF) [12], Elastic Weight Consolidation
(EWC) [9], ALASSO [17], and the incremental learning for semantic segmentation (dubbed
L2 loss) [15] for comparison. LwF, EWC, and ALASSO distill knowledge on classifier and
network parameters, which are insufficient for incremental FGIR. L2 loss in [15] is more
similar with ours where the knowledge is distilled on the classifier and intermediate feature
space. Note that cross-entropy and triplet loss (i.e. semantic preserving loss) are combined
with these three algorithms for fair comparison. The Recall@K are reported in Table 2.

The “w feature extraction” depicts when A directly extracts features on the new classes
without re-training. The “w fine-tuning” depicts using Lce and Ltriplet to train A on the
new classes but without using Ldist . Overall, the network B suffers from the catastrophic
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Configurations Original classes New classes
Recall@K(%) K=1 K=2 K=4 K=1 K=2 K=4

A(1-100) (initial model) 79.41 85.64 89.63 - - -
+B(101-200) w feature extraction - - - 47.02 57.44 67.86
+B(101-200) w fine-tuning 53.90 64.56 73.56 76.18 82.56 87.39
+B(101-200) w LwF (Ldist ) 54.92 66.40 75.42 75.76 82.69 86.93
+B(101-200) w ALASSO 56.91 66.65 76.57 72.48 79.50 85.67
+B(101-200) w EWC 62.03 72.16 80.08 73.32 80.92 86.01
+B(101-200) w L2 loss 66.48 75.68 82.67 77.44 83.78 88.07
+B(101-200) w Our method 74.41 82.57 88.52 73.11 80.84 86.64
A(1-200) (reference model) 77.33 85.08 89.03 76.64 83.53 89.12

Table 2: Recall@K (%) of incremental FGIR on the CUB-Birds dataset when new classes
are added at once. The best performance in the original class and the new class are in bold.

forgetting issue and has lower performance on the original classes, whereas our method out-
performs the others. As for the new classes, other three algorithms outperform ours. For
example, “ w L2 loss” method achieves on Recall@1 by 4.33% compared to ours (77.44%
→ 73.11%). However, it suffers from significant performance degradation on the origi-
nal classes with Recall@1 dropping by 12.93% compared to the initial model (79.41%→
66.48%). For our method, the Recall@1 on the original classes is 74.41% (dropped by
5.00% from 79.41% of the initial model); the Recall@1 on the new classes is 73.11% com-
pared to the reference model from A(1-200) (i.e. Recall@1=76.64%).

We report the PR curves and mAP results in Figure 3(a), 3(b), and 3(c), respectively.
Overall, when tested on the new classes, all methods share similar trends. When tested on
the original classes, our method has better performance although it still has gap to reference
performance. For mAP results, the reference results are the same as in Table 2. We utilize
the well-trained network A at epoch=700 as initial model to train B on the new classes until
convergence, we test the mAP of network B on the original classes. As the curves show, the
network trends to degrade its accuracy on the original classes during incremental training.

Furthermore, we explore the influence of the new classes number. Specifically, we
choose 100 classes and 25 classes as new categories. The results are reported in Table 4,
we observe that larger newly-added classes lead to heavier forgetting. For example, when
only 25 new classes are used, the Recall@1 drops from 79.41% to 76.65%, compared to the
one drops from 79.41% to 74.41% where 100 new classes are added. Note that the reference
models are trained jointly on all classes and tested on the original and new classes separately.
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Figure 3: (a)-(b) denote the PR curves tested on the original classes and new classes. (c)
depicts the mAP results for different methods as the training proceeds. We only show the
results tested on the original classes. (d) training time comparison during each epoch.
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Configurations Original (1-100) Added new (101-125) Added new (126-150) Added new (151-175) Added new (176-200)
Recall@K(%) K=1 K=2 K=4 K=1 K=2 K=4 K=1 K=2 K=4 K=1 K=2 K=4 K=1 K=2 K=4

A(1-100) (initial model) 79.41 85.64 89.63 - - - - - - - - - - - -

LwF
algorithm [12]

+B(101-125) 57.50 68.05 75.68 79.59 85.88 88.95 - - - - - - - - -
+B(101-125)(126-150) 42.46 54.03 64.66 62.59 74.83 82.31 70.17 79.67 86.00 - - - - - -
+B(101-125)(126-150)(151-175) 40.21 51.57 61.27 47.79 63.10 75.68 56.83 67.33 78.17 81.57 87.27 90.79 - - -
+B(101-125)(126-150)(151-175)(176-200) 33.31 44.75 55.38 49.83 63.78 75.85 48.00 60.33 72.33 67.17 75.88 82.91 83.70 89.41 92.94

EWC
algorithm [9]

+B(101-125) 61.23 70.85 80.04 80.95 86.39 90.82 - - - - - - - - -
+B(101-125)(126-150) 46.65 56.40 67.54 65.48 77.72 84.01 72.33 80.67 86.67 - - - - - -
+B(101-125)(126-150)(151-175) 43.60 54.79 64.70 61.50 72.45 80.44 66.50 75.50 82.67 81.08 85.26 87.77 - - -
+B(101-125)(126-150)(151-175)(176-200) 36.82 47.54 59.66 57.99 67.01 76.87 50.67 64.67 77.67 64.15 74.87 81.24 82.02 86.39 90.42

L2 loss
algorithm [15]

+B(101-125) 67.37 76.27 83.31 80.61 85.54 89.46 - - - - - - - - -
+B(101-125)(126-150) 58.14 68.31 76.78 72.11 80.44 87.41 73.33 82.17 88.67 - - - - - -
+B(101-125)(126-150)(151-175) 53.86 62.03 71.91 60.37 71.43 80.27 66.33 76.67 84.67 81.24 87.27 90.95 - - -
+B(101-125)(126-150)(151-175)(176-200) 45.85 56.61 67.75 57.65 71.77 80.95 59.33 70.50 79.13 73.70 83.08 88.94 84.20 89.24 92.10

Our method

+B(101-125) 76.65 83.47 88.86 73.13 82.31 88.44 - - - - - - - - -
+B(101-125)(126-150) 73.77 81.36 87.80 74.32 83.33 89.29 74.50 83.00 87.83 - - - - - -
+B(101-125)(126-150)(151-175) 70.47 78.77 85.97 70.41 80.78 88.78 72.00 79.17 86.83 78.89 86.77 90.26 - - -
+B(101-125)(126-150)(151-175)(176-200) 66.40 75.93 83.14 70.07 80.27 86.22 69.00 78.33 85.50 73.87 83.92 88.78 85.21 89.92 93.28
A(1-200) (reference model) 77.33 85.08 89.03 76.87 84.86 90.48 73.00 80.00 87.67 83.25 88.94 92.29 83.70 90.25 93.78

Table 3: Recall@K (%) results on the CUB-Birds dataset when new classes are added
sequentially. “Added new (101-125)” indicates the first 25 classes (101-125) are used as the
first part to train the network.

4.3 Multi-step Incremental Learning for FGIR
We split the new classes into 4 groups and added each group sequentially. The training
procedures are as follows: the initial model A is pre-trained on the original classes (1-100),
and used as an initial model to train on newly-added classes (101-125) until convergence to
produce a new model B(101-125). Afterwards, the newly-trained model B(101-125) is used
as an initial model to train on other new classes (126-150) to produce B(101-125)(126-150).
This process is repeated until 4 groups of classes are added sequentially.

We compare to three representative methods (we choose EWC rather than ALASSO
since EWC obtains higher performance on the CUB-Birds dataset) and report the results
in Table 3. The reference performances are achieved by jointly training all the classes,
and then tested on each group (including the original classes). Overall, the model suffers
from the catastrophic forgetting issue when sequentially training. However, our method
achieves a minimal performance degradation. For instance, when 4 groups have been added,
the model B(101-125)(126-150)(151-175)(176-200) is tested on the original classes(1-100).
The “L2 loss” algorithm Recall@1 drops 79.41%→67.37%→58.14%→53.86%→45.85%,
the average degradation is 8.39%. Our method Recall@1 drops 79.41%→76.65%→73.77%
→70.47%→66.40%. The average performance degrades by 3.25%, which indicates that
our method significantly mitigates the forgetting problem. Furthermore, our method has
good performance on new classes, which are closer to the reference performance. When
the model B(101-125)(126-150)(151-175)(176-200) is tested on new classes (176-200), the
results are achieved with Recall@1=85.21%, Recall@2=89.92% and Recall@4=93.28%,
respectively, while the reference results are Recall@1=83.70%, Recall@2=90.25% and Re-
call@4=93.78%.

4.4 Validation with Image Classification
We evaluate the effectiveness of our method on the CIFAR-100 dataset [10] which is the pop-
ular benchmark for class-incremental learning in image classification. We split 100 classes
into a sequence of 5 tasks, and each task includes 20 classes. In Table 5, the results indicate
the average top-1 accuracy of the classes from seen tasks. In the last column, the test set
evaluates the classes from all the five tasks. Note that, the 20 classes in the first task (the
second column) achieve the same performance, as it has no incremental learning yet. We
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Configurations Original classes New classes†

Recall@K(%) K=1 K=2 K=4 K=1 K=2 K=4
A(1-100) (initial model) 79.41 85.64 89.63 - - -
+B(101-125) w Our method 76.65 83.47 88.86 73.13 82.31 88.44
+B(101-200) w Our method 74.41 82.57 88.52 73.11 80.84 86.64
A(1-125) (reference model) 77.84 83.94 87.80 79.25 85.54 91.96
A(1-200) (reference model) 77.33 85.08 89.03 76.64 83.53 89.12

Table 4: Recall@K (%) on the CUB-Birds dataset
when 25 or 100 new classes are added at once. Cor-
respondingly, † indicates the results are tested on dif-
ferent new classes.

Method
Number of new classes

20 40 60 80 100
L2 loss 77.3 47.5 40.5 36.6 32.8
EWC 77.3 60.5 50.9 43.3 39.5
LwF 77.3 62.5 52.9 46.2 41.0
Ours 77.3 64.6 55.8 49.2 43.3

Table 5: Average top-1 accuracy of
incremental learning for image clas-
sification on CIFAR-100 dataset.

Configurations Original classes New classes
Recall@K(%) K=1 K=2 K=4 K=1 K=2 K=4

A(1-100) (initial model) 79.41 85.64 89.63 - - -
+B(101-200) w Lce +Ltriplet 53.90 64.56 73.56 76.18 82.56 87.39
+B(101-200) w Lce +Ltriplet +Ldist 54.92 66.40 75.42 75.76 82.69 86.93
+B(101-200) w Lce +Ltriplet +Lmmd 73.36 81.25 87.43 73.40 81.60 86.64
+B(101-200) wLce+Ltriplet+Ldist+Lmmd 74.41 82.57 88.52 73.11 80.84 86.64
A(1-200) (reference model) 77.33 85.08 89.03 76.64 83.53 89.12

Table 6: Ablation study for different components of loss function

observe that our method outperforms other methods across the tasks. It suggests our method
generalizes well to various applications. Notably, our improvement for image retrieval is
more significant than that for image classification. The reason is that the proposed MMD
loss is imposed on the feature representation, which largely benefits the metric learning for
image retrieval. This also explains why our method is focused mainly on image retrieval.

4.5 Training Time Comparison
We compare the average training time on the CUB-Birds dataset when 100 new classes are
added at once. The results are shown in Figure 3(d). Note that all models in five methods
are starting from the same initial model trained on the original 100 classes as initialization.
The reference time is from joint training where the initial model is trained on all classes.
The other four methods are incrementally learning the new classes only. We observe that
our method saves more time by 50% as expected. EWC and ALASSO algorithms take more
time than reference because the gradients computation during back-propagation process is
time-consuming.

4.6 Components Analysis
Ablation Study. We have done an ablation study on the CUB-Birds dataset when multiple
classes are added at once. Note that the component “Lce +Ltriplet” comprises our baseline
performance, thus we analyze the different loss items in Eq. 6. We can observe the influence
of difference components for the original and new classes. The results are shown in Table 6.

Hyper-parameters Sensitivity Analysis. We explore the sensitivity of hyper-parameters
α,β in Eq. 6, which affect significantly the trade-off performance. We conduct this experi-
ment on the CUB-Birds dataset. As shown in Table 7, we find that the incrementally-trained
model is more sensitive to β than α . For instance, when α is set as 0.1, but β changes from
0.1 to 1, model B performs better on the new classes and significantly retains its previous
performance. However, this obvious trend cannot be observed when β is set as 0.1, but α
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changes from 0.1 to 1 where the model B performs almost the same on the original and
new classes. Finally, if α=β=1, the incrementally-trained model B keeps a better trade-off
performance between the original and the new classes.

Configurations Original classes New classes
Recall@K (%) K=1 K=2 K=4 K=1 K=2 K=4

A(1-100) (initial model) 79.41 85.64 89.63 - - -
+B(101-200) (α=0.1,β=0.1) 56.53 66.31 75.59 77.52 83.82 88.15
+B(101-200) (α=0.1,β=1) 73.31 82.00 87.14 72.77 80.92 87.14
+B(101-200) (α=0.1,β=10) 79.58 85.76 90.47 49.50 61.51 70.59
+B(101-200) (α=1,β=0.1) 55.81 67.25 75.59 77.02 83.91 87.90
+B(101-200) (α=1,β=1) 74.41 82.57 88.52 73.11 80.84 86.64
+B(101-200) (α=1,β=10) 79.41 86.31 90.51 48.82 61.09 71.05
A(1-200) (reference model) 77.33 85.08 89.03 76.64 83.53 89.12

Table 7: Sensitivity analysis of the hyper-parameters α,β . The better trade-off performance
of the hyper-parameters are underlined.

5 Conclusion
In this paper, for the first time, we have exploited incremental learning for fine-grained image
retrieval in several scenarios for increasing numbers of image categories when only images
of new classes are used. To overcome the catastrophic forgetting, we adopted the distillation
loss function to constrain the classifier in the original network and the incremental classifier
in the adaptive network. Moreover, we introduced a regularization function, based on Max-
imum Mean Discrepancy (MMD), to minimize the discrepancy between features of newly
added classes from the original and the adaptive network. Comprehensive and empirical
experiments on two fine-grained datasets show the effectiveness of our method that is supe-
rior over existing methods. In the future, it is promising to investigate incremental learning
between different fine-grained datasets for image retrieval.
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