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Abstract

Color constancy is required for camera captured images and therefore all digital cam-
era imaging pipelines include an Auto White Balance (AWB) algorithm. An intrinsic
problem of AWB is that it is sensor specific and therefore developers need to repeat-
edly collect new in-house datasets to adjust their methods for new sensors. In literature,
the best learning-based methods achieve state-of-the-art performance with clear margin
on all available datasets, but performance significantly degrades in cross-dataset experi-
ments due to the aforementioned reason. In this work, we introduce a sensor-to-sensor
transfer model that can be used to map datasets with known cameras to any other known
camera. The only requirement is that spectral characterizations of the camera models are
available. In our experiments, we demonstrate improvements in cross-dataset settings
using the proposed sensor-to-sensor transfer model. In addition, for the first time we are
able to analyze the characteristics of existing datasets in the common standard observer
space and our analysis reveals that certain datasets contain images which are not suitable
for color constancy. We introduce a unified cross-dataset color constancy benchmark
dataset, compare two state-of-the-art learning-based AWB methods and show superior
performance of the proposed sensor-to-sensor model.

1 Introduction
Digital cameras are nowadays used everywhere and for a large number of different scenes
and conditions. The color processing pipeline that converts the raw data captured by the
camera hardware is tuned separately for each camera model. The different processing blocks
of the pipeline are research items on their own, such as demosaic, denoising, tone mapping
and color constancy. These research items have been studied for a long time but most of
the problems remain unsolved. The color constancy is one of the biggest challenges in the
color processing pipe. The learning-based methods have lately become the state-of-the-art
solutions for color constancy too [5, 6, 11, 16], but even those algorithms struggle to work
in all conditions. One important bottleneck is the amount of training data. Gathering the
training data carefully, so that it will cover all the necessary scenes and conditions with
accurately measured ground truth information is time consuming and not feasible to do for
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each camera model separately. That is one of the main reasons why the learning based color
constancy algorithms try to generalize the problem and are not tuned for specific camera
models. An intriguing research question is how a camera manufacturer could reuse the
existing datasets to train and tune algorithms for a new camera model?

In this work, we propose a sensor-to-sensor image transfer model that can be used to
combine and convert existing color constancy datasets into new datasets representing a tar-
get camera specified by the user. Camera specific unified datasets enable camera specific
training of the learning-based Auto White Balance (AWB) algorithms. This is important
from the camera developer point of view as all previously collected datasets can be added to
a unified dataset to train better color pipeline algorithms. In addition, we propose illuminant
augmentation which further improves the performance of the algorithms.

Contributions
• We propose a Sensor-to-Sensor Transfer model (SST) where images with known illu-

minant and captured using a known camera are transferred to spectral images and then
transferred back to images of another camera.

• We demonstrate the accuracy of the proposed model with images from existing color
constancy datasets and by obtaining spectral characterization of camera models em-
ployed in the datasets.

• We provide a comparison study of white points in each dataset in the standard observer
color space and report several interesting findings.

• Our findings help to select images from the existing datasets to establish a novel Uni-
fied Cross-dataset Color Constancy Benchmark.

• For two state-of-the-art color constancy methods we obtain significant cross-dataset
performance improvements by mapping training images to the target sensor space with
SST and by utilizing the SST model for illuminant augmentation.

The Unified Cross-dataset Color Constancy Benchmark will be made publicly available to
facilitate fair method comparisons.

2 Related Work

There are only very few works addressing the problem of how to transfer raw images cap-
tured with one camera to raw images captured with another camera. We emphasize the prefix
raw throughout the work since color constancy is our main concern and raw RGB images
are heavily biased by the illuminant. The color processing pipelines of digital cameras pro-
cess raw RGB images to standard RGB images. The standard RGB space (sRGB) is color
compensated and therefore colors should appear unbiased as illuminated by the white light
(D65). It should be noted that errors produced by Auto White Balance (AWB) algorithms
are transferred to the standard RGB space.

An intrinsic part of the proposed model is RGB to spectral image conversion that has
been investigated in several works [1, 13, 19, 21, 22, 23]. However, [1, 13, 19, 23] consider
only the sRGB to spectral conversion and therefore AWB and other color processing such
as the color space transform errors degrade their accuracy. Kawakami et al. [21] assume
that low resolution hyperspectral images are available in addition to raw RGB images and
therefore cannot be used for our purposes. Koskinen et al. [22] propose a reverse process-
ing pipeline where large quantities of JPEG images are converted into spectral images, but
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their approach assumes that illuminant and camera characteristics are unknown which causes
unnecessary metameric problems that our model avoids.

In our work, we assume that spectral characterization of the camera sensor is known.
This is a fair assumption from the sensor developer and camera manufacturer point of view.
Existing datasets do not provide characterization information, but it can be manually ob-
tained if the camera model(s) are known and can be purchased. There are a number of works
that specifically estimate camera spectral response [20, 26, 28], but in our case manual char-
acterization provides more accurate and reliable spectral response information.

The work done by Banić et al. [4] describes a method for generating more color con-
stancy test images. The method is capable of generating new test images and also to simu-
late them as if they were captured with another device. However the method requires manual
work, is difficult to automate and depends on the quality of the projected or printed images.
Generative Adversarial Networks (GANs) [10] have also been proposed for solving the lim-
ited amount of data problem for the color constancy but they have not reached state-of-the-art
performance yet. They also generate unpredictable failures and are difficult to debug.

The most related work is done by Nguyen et al. [24] who use calibrated linear transforms
for conversions between raw images. Their method can work well with certain illuminants
but causes clear errors in color space regions that are not well covered by the calibration.
Linear matrix conversions are also coarse tools for color space conversions meaning that
they cannot do localized color specific transforms that are required for accurate sensor-to-
sensor transform. Color constancy databases are sensitive to even small errors which is
evident from the several iterations of the popular Shi-Gehler dataset [15].

The proposed Sensor-to-Sensor Transfer model (SST) achieves high accuracy and im-
proves learning-based color constancy in our experiments.

3 Method

3.1 Camera Spectral Characterization
The proposed Sensor-to-Sensor Transfer model (SST) transfers raw RGB images of one
camera to raw RGB images of another as if the same scenes would have been captured by
two different cameras. The SST requires three type of input data: raw images and their
corresponding illuminant (white point) to be transferred, and spectral response characteri-
zation of the two cameras. The first two inputs, raw images together with the ground truth

Figure 1: Our vs. authors [2] measurements
of spectral responses of a Nikon D810 cam-
era in Intel-TUT dataset.

Figure 2: Spectral responses of the cameras
selected to our unified cross-dataset bench-
mark.
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Figure 3: The proposed Sensor-to-Sensor Transfer model (SST) where Φ denotes image, S
camera spectral response and I illuminant.

illuminant information, are provided in all commonly used public color constancy datasets.
For the experiments, we selected the following four datasets: Shi-Gehler [15], NUS [8],
Intel-TUT [2] and Cube+ [3]. However, the third input, spectral camera responses, are more
difficult to obtain. Only the Intel-TUT includes the spectral calibration information. How-
ever, we can assume that the camera to camera mass production variation of the high-quality
DSLR cameras is substantially small. The assumption can be verified by comparing the
spectral responses of those provided in Intel-TUT and by measuring another camera of the
same model. Our results in Figure 1 verify that we can obtain accurate spectral calibration by
measuring the same model even if we do not have exactly the same camera body or know the
characteristics of the used lens. On the other hand, the spectral responses differ substantially
between different camera models as shown in Figure 2 and thus justifying the SST.

Shi-Gehler contains images captured with Canon 1D and Canon 5D, but in the recent
works only the images captured with Canon 5D have been used and that is also the largest
part of Shi-Gehler data. We selected the Canon 5D Shi-Gehler images to our experiments
as one dataset. NUS dataset contains images captured with 8 different cameras, but since
the same scenes are captured with multiple cameras the cross-dataset experiments would be
biased. Therefore we selected the Nikon D5200 images from NUS as one dataset. Intel-TUT
has the same problem with NUS as each scene was captured with three cameras, two DSLRs
and one mobile phone camera. From Intel-TUT we selected the Nikon D810 images. Cube+
images were captured using Canon 550D and thus all Cube+ images were included. We were
able to find these camera models and measured their spectral responses. The measurements
were made using the Labsphere QES-1000 spectral measurement system. The spectra of the
cameras were measured between 400 and 700nm in 5nm steps and they were computed from
an average of 50×50 pixel region at the center of each sensor (Figure 2).

3.2 Sensor-to-Sensor Transfer Model
The Sensor-to-Sensor Transfer is an ill-posed problem since the original spectra of the illumi-
nant and scene colors are lost in camera capture using tri-stimulus (RGB) values. Therefore
also the SST model provides only estimates of the true raw RGB values. We have care-

Citation
Citation
{Hemrit, Finlayson, Gijsenij, Gehler, Bianco, Funt, Drew, and Shi} 2018

Citation
Citation
{Cheng, Prasad, and Brown} 2014

Citation
Citation
{Aytekin, Nikkanen, and Gabbouj} 2017

Citation
Citation
{Bani¢ and Lon£ari¢} 2017



KOSKINEN, YANG, KÄMÄRÄINEN: CROSS-DATASET COLOR CONSTANCY REVISITED 5

fully placed the largest estimation errors at the first processing steps where the RGB data is
transformed into the spectral domain. In this transform most of the errors will be seen as
metameric errors. Such errors are not of a major concern in the context of color constancy
as far as the output raw images are natural and realistic representations of the same scenes
including accurate ground truth illuminant white points. Whether some color in the scene
is slightly shifted due to metamerism is generally insignificant. Our tests further verify that
even the color errors are small. The processing stages of the model are (Figure 3):

1. Illuminant spectrum estimation: I1
raw to Î′spec,

2. Raw to spectral image transform: Φ1
raw to Φ̂spec,

3. Spectral image refinement: Φ̂spec to Φ̂′spec,
4. Constructions of the final output data: Φ̂′spec to Φ2

raw and Î′spec to I2
raw .

Note that for the spectral domain representations we drop the sensor index as the spectral
representations Îspec and Φ̂spec are canonical and not tied to the sensors 1 or 2. Spectral
representations, on the other hand, are only estimates which is denoted by the hat .̂ The
stages are explained in details in the following.

Illuminant spectrum estimation Î′spec requires a database of real illuminant spectra. They
should cover the typical distribution of different light sources. We gathered a set of 100 illu-
minants containing standard illuminant spectra [18] and some LED spectra we were able to
measure. The standard provides an equation for calculating the daylight illuminant spectra
with different correlated color temperatures using a weighted combination of existing illu-
minant spectra: S(λ ) = S0(λ )+M1S1(λ )+M2S2(λ ) [9]. The same can be done for halogen
illuminants by using the Planck’s law. This way we were able to generate and collect a good
set of 100 illuminants including 70 different daylight spectra spanning 2500-9400K, 13 LED
spectra between 2300-5800K, 9 tungsten halogen spectra ranging 2200-3250K and finally 8
fluorescent spectra between 2500-4250K.

The next problems is to pick the correct illuminant spectrum from the illuminant database.
This is achieved using the input camera spectral response S1

i , image illuminant information
I1
raw and the illuminant database. We know that the raw image data is formed according to

the following equation [29]

Φi(x,y) =
∫

I(λ )Si(λ )R(x,y,λ )dλ , i ∈ {R,G,B} . (1)

As we are only interested to solve the illuminant spectrum in this phase, we set the reflectance
spectrum R to a perfect white, i.e. an equal energy spectrum, which in practice means that
we can omit both the reflectance and locality (x,y) in (1). We know the camera spectrum Si
and we replace the raw output image Φi with the ground truth illuminant I1

raw. Now, all the
illuminants Id from the database are tested and the one that minimizes the equation

Îspec = arg min
Id
||
∫

Id(λ )Si(λ )dλ − I1
raw||2, i ∈ {R,G,B} (2)

is selected. Îspec is the illuminant spectrum that has a good match with the correct spectral
type and color temperature. However, due to the limited size of the illuminant database the
match is not perfect but can be fine tuned further. We perform fine tuning using our own
empirical method. We apply a virtual hinge to the spectrum with a pivot point at 530nm.
From the pivot point the spectrum is linearly adjusted to raise or lower the red and blue parts
of the spectrum while still keeping the spectral shape and naturalness intact. Adjustment is
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applied iteratively until a perfect match Î′spec to the ground truth is found according to the
equation

Î′(t+1)
spec (λ ) = Î(t)spec(λ )w(λ ), (3)

where w is the hinge weight curve that has a value of 1 at the pivot point. The end points
of the vector were matched with the R/G and B/G errors compared to the ground truth
illuminant values. The iteration is continued until (2) equals to 0. The optimized illuminant
spectrum helps us to define one unknown variable in Equation 1 and thus enables more
accurate raw to spectral image transform in the following stages. It is also an essential feature
when comparing the white points of different datasets in a common color space (Section 4).

Raw to spectral image transform Φ̂spec is adapted from the recent work of Koskinen et
al. [22] by modifying their JPEG to spectrum transform to better suit for the raw RGB.
From the previous step a good spectral estimate of the illuminant is obtained and less reverse
processing is needed as computation is done in the raw RGB domain. We used the Munsell
Glossy database [25] as the source of natural spectra for the optimization.

In this stage we need to get a natural and relatively good match of the spectrum for
each pixel. The spectral matching is easier in the CIE L*a*b* color space as the luminance
component L* can be omitted and matching done in a 2D space using the Euclidian dis-
tance [17]. Our method selects k nearest neighbors and replaces each pixel (x,y) separately
with a weighted sum of k Munsell spectra

Φ̂spec(x,y) = ∑
k

wkRk
Munsell

{wk}= arg min
{wk}

||Φ1
raw,i(x,y)−∑

k
wk

∫
Î′spec(λ )S

1
i (λ )R

k
Munsell(λ )dλ ||2a,b

. (4)

Spectral image refinement Φ̂spec→ Φ̂′spec is needed after the initial matching of the spec-
tra. The matching itself does not yet give good enough accuracy for the spectra since it is
limited by the gamut and quantity of the spectra in the Munsell database. Therefore the
spectra are refined while keeping the shape realistic and natural. The refinement process is
conducted in a similar iterative manner as in the illuminant spectrum estimation. However
in this case we normalize the camera spectral response curves S1

i so that the sum of the color
channel (i ∈ {R,G,B}) for each wavelength is one. The normalized curves S̄1

i are used as
weights for the refinement process

Φ̂
′(t+1)
spec (x,y,λ ) = Φ̂

(t)
spec(x,y,λ )+

(
ei + ε

êi
−1
)(

Φ̂
(t)
spec(x,y,λ ) · S̄1

i (λ )
)

, (5)

where the channel-wise (RGB) estimation coefficients are êi for the current estimate and ei
for the target. Iteration is continued until êi = ei, i.e. the spectrum matches the raw channel
values. ε is a positive constant to make sure that the spectrum is always positive (ε = 10−6

in all our experiments). The target values are directly extracted from Φ1
raw and the estimates

are calculated using the Equation 1 by having I = Î′spec, R = Φ̂′spec and S = S1
i . The stages

for converting the raw image into a spectral image enables the SST to support any type of
camera sensors without restrictions on their spectral characteristics.
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Figure 4: Original (blue) and augmented
(green) illuminant white points of NUS

Figure 5: Illuminants of all the used datasets
plotted in their own native color spaces

Constructions of the final output data Φ2
raw, I2

raw is straightforward once all the spectra
are optimized. Using again Eq. 1, both Φ2

raw and I2
raw are computed with the help of Î′spec,

Φ̂′spec and S2
i . For the ground truth illuminant computation, we assume a "white" equal energy

spectrum as the reflectance spectrum. Therefore that can be omitted from the equation when
calculating I2

raw.

3.3 Illuminant Augmentation

It is intriguing to notice that since the spectral representations of scenes and illuminants are
canonical and not tied to any sensor, it is easy to add new illuminants to the same scenes.
This can be done by simply modifying Î′spec before constructing the sensor 2 representations
in the last step of the model. The most intuitive procedure for illuminant augmentation is to
uniformly sample points in the gamut, convex hull, of the original illuminants (white points).
The reason to stay within the original boundary is to avoid using unrealistic illuminants or
illuminants where color constancy is neither possible nor desired. Augmented white points
for the NUS data are illustrated in Figure 4.

4 Cross-dataset Analysis
Our main hypothesis is that learning-based methods for computational color constancy suffer
from the fact that sensors in different camera models have different spectral characteristics.
The spectral differences of the cameras discussed in Section 3.1 are demonstrated in Figure 2.
The spectral differences shift the observed illuminants (white points). Figure 5 shows the
dataset white points in the normalized RB-diagram in the datasets’ own native color spaces.
The diagram verifies that the different spectral responses yield to offsets in the white points.
In other words, the same illuminant has different (R̄, B̄) coordinates in different cameras. It
is obvious that this makes cross-dataset experiments challenging for learning-based methods
and makes it difficult to analyze what sort of illuminant types are covered by certain regions
of the graph.

The Illuminant spectrum estimation step in Section 3.2 allows us to draw all illuminants
in a common canonical color space such as the CIE xy[14]. In the common space it is easier
to analyze the overlap of the illuminants in the different datasets and to identify outliers. The
illuminants of all datasets are plotted in Figure 6. There are several interesting findings. The
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Figure 6: All illuminants transferred to the common CIE xy chromaticity diagram. The
boundary of acceptable illuminants and the identified outliers are marked too.

Figure 7: Example of the lab setup test image
in the Intel-TUT dataset.

Angular difference Mean color difference
Illuminant Type Orig. w/ SST Orig. w/ SST

D50 6.10 0.23 2.82 1.43
TL84 4.79 2.46 3.81 1.71
CWF 3.80 0.76 3.65 1.19

A 4.79 1.30 3.73 1.09
H 4.34 0.35 3.85 0.79

Mean 4.76 1.02 3.57 1.24
Max 6.10 2.46 3.85 1.71

Table 1: Angular error and color (∆C∗) dif-
ferences w/ and w/o the proposed SST model.

illuminants are better aligned in Figure 6 than in Figure 5. The datasets seem to contain
outlier illuminants that are not well aligned with the Planckian locus. The two NUS outliers
at x < 0.4 are from restaurant sceneries containing colorful illuminated signs. These scenes
thus have multiple white points including some extreme illuminants. In addition, NUS,
Cube+ and Intel-TUT contain a number of illuminants at x > 0.49 that are captured under
sodium vapor street lamps. While this sort of illuminants are commonly used, they are
monochromatic inhibiting color vision and making full color constancy impossible. Humans
are not able to fully adapt to sodium vapor light [7, 27]. This fact makes sodium vapor
illuminated images meaningless for objective color constancy metrics which is why also
those were removed from the proposed unified cross-dataset benchmark.

5 Experiments

5.1 Sensor Transfer Accuracy
The first experiment was conducted with the laboratory images from Intel-TUT [2]. The im-
ages contain a ColorChecker calibration chart and are illuminated with various standard illu-
minants generated by the X-Rite Spectralight QC light box as illustrated in Figure 7. We se-
lected two cameras from different manufacturers (spectral responses provided in Intel-TUT):
Canon 5DsR and Nikon D810. The Canon images were converted to Nikon raw images us-
ing the SST model. The reported performance metrics are the illuminant angular difference
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err = cos−1(
ρE ·ρEst

||ρE ||·||ρEst || ) [12] and color difference ∆C∗ =
√

(a∗1−a∗2)
2 +(b∗1−b∗2)

2 [17].

The angular difference was calculated from the ColorChecker’s white patch and color differ-
ence using all the color patches.

Table 1 summarizes the results from the first experiment. These verify that SST maps
images to another sensor with high accuracy. In fact, even the maximum errors in the angular
difference remain below the limit of 3.0 degrees that is largerly considered as the threshold
of sufficient color constancy. Moreover, the color differences are also very small as the limit
of just noticeable difference is 1.0. The small remaining errors are mainly caused by i)
tri-stimulus metameric errors always present when operating in the spectral domain, ii) mea-
surements errors in camera spectral responses, iii) measurement inaccuracies of the ground
truth illuminant from the raw images and iv) errors caused by the iterative optimization rou-
tines in SST. However, the results are sufficiently accurate for practical use.

5.2 Cross-dataset Color Constancy

Unified Test Dataset
Cube+ Intel-TUT NUS Shi-Gehler

Method Mean Med. ≤ 3.0◦ Mean Med. ≤ 3.0◦ Mean Med. ≤ 3.0◦ Mean Med. ≤ 3.0◦

FC4 2.374 1.890 73.7% 3.566 2.974 50.7% 3.105 2.297 62.9% 2.894 2.201 66.2%
FC4 w/ SST 2.434 1.988 72.0% 3.292 2.672 57.0% 3.354 2.634 59.9% 3.168 2.348 63.7%
FC4 w/ ill. augm. 2.434 2.092 73.7% 3.024 2.343 64.1% 2.919 2.337 64.0% 2.716 2.095 69.1%
FC4 w/ SST+ill. augm. 2.445 2.095 72.4% 3.037 2.373 66.2% 3.088 2.290 63.5% 3.007 2.282 63.7%

FFCC 2.777 2.440 64.3% 3.303 2.584 58.5% 3.098 2.548 64.0% 3.164 3.355 59.8%
FFCC w/ SST 2.465 1.941 71.5% 3.396 2.672 55.6% 3.222 2.513 60.9% 2.874 2.139 66.4%
FFCC w/ ill. augm. 2.641 2.085 69.4% 3.122 2.513 65.5% 3.156 2.242 62.4% 3.116 2.388 60.2%
FFCC w/ SST+ill. augm. 2.567 2.019 70.1% 3.165 2.437 62.7% 3.080 2.541 61.4% 2.971 2.209 64.7%

Overall results Avg. Mean Improvement Avg. Med. Improvement Avg. ≤ 3.0◦ Improvement

FC4 2.985 - 2.341 - 63.4% -
FC4 w/ SST 3.062 -2.52% 2.411 -2.90% 63.2% -0.36%
FC4 w/ ill. augm. 2.773 +7.63% 2.217 +5.58% 67.7% +6.86%
FC4 w/ SST+ill. augm. 2.894 +3.13% 2.260 +3.56% 66.5% +4.85%

FFCC 3.086 - 2.732 - 61.7% -
FFCC w/ SST 2.989 +3.22% 2.316 +17.94% 63.6% +3.16%
FFCC w/ ill. augm. 3.009 +2.55% 2.307 +18.41% 64.4% +4.42%
FFCC w/ SST+ill. augm. 2.946 +4.74% 2.302 +18.69% 64.7% +4.99%

Table 2: Leave-one-dataset-out results of FC4 [16] and FFCC [5] on the proposed Unified
Cross-dataset Color Constancy Benchmark. The bottom entries are overall averages.

The Unified Cross-dataset Color Constancy Benchmark was formed by selecting the
images of selected cameras in the four publicly available datasets (Section 3.1). The outliers
for which color constancy cannot be computed were removed (Section 4). The remaining
amount of images in each dataset were 1657 (Cube+), 142 (Intel-TUT), 197 (NUS) and 482
(Shi-Gehler). The two learning-based methods selected to our experiments were FC4 [16]
and FFCC [5], which have reported state-of-the-art results for a number of color constancy
datasets. FC4 is a deep architecture operating on deep semantic features and FFCC is a more
conventional method operating on color spaces. The results are summarized in Table 2.

FC4 benefits from the proposed illumination augmentation in the spectral domain in all
four datasets although the differences with Cube+ are only marginal. This finding is sup-
ported by the overall results. For example, the number of images for which the estimated
white points remain below the threshold 3.0 increases 6.86%. Interestingly, FC4 operating
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on semantic image features does not benefit from the image color transfer. The case is very
different with FFCC that operates in the color domain. FFCC benefits from SST with or
without illumination augmentation on all four datasets as it cannot automatically cope with
the sensor bias. The number of images below the threshold in NUS is lower, but the differ-
ence is marginal. Also the FFCC finding is supported by the overall results where SST with
illumination augmentation increased the Avg. ≤ 3.0◦ performance by 4.99%. The Cube+,
Intel-TUT and Shi-Gehler datasets benefit from SST substantially.

6 Conclusions
Cross-dataset performance of learning-based Auto White Balance (AWB) methods suffer
from different sensor characteristics that shift the white points of the same illuminants. We
addressed this problem by proposing a Sensor-to-Sensor Transfer model (SST) that can be
used to transfer raw RGB images between cameras and to augment more illuminants. For
cross-dataset experiments we introduced a novel unified benchmark that was formed from
four popular color constancy datasets. SST also allowed us to identify outliers that are un-
suitable for color constancy and were thus removed. In the experiments, two state-of-the-art
AWB methods, FFCC and FC4, both benefit from SST and demonstrated substantial im-
provement on the datasets. Our findings are particularly useful for camera and sensor devel-
opment as color processing pipeline algorithms for the novel sensors can be adjusted using
the previously collected data.
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