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Abstract

Traditionally, appearance-based gaze estimation methods use statically defined face
regions as input to the gaze estimator, such as eye patches, and therefore suffer from
difficult lighting conditions and extreme head poses for which these regions are often
not the most informative with respect to the gaze estimation task. We posit that facial
regions should be selected dynamically based on the image content and propose a novel
gaze estimation method that combines the task of region proposal and gaze estimation
into a single end-to-end trainable framework. We introduce a novel loss that allows for
unsupervised training of a region proposal network alongside the (supervised) training of
the final gaze estimator. We show that our method can learn meaningful region selection
strategies and outperforms fixed region approaches. We further show that our method
performs particularly well for challenging cases, i.e., those with difficult lighting condi-
tions such as directional lights, extreme head angles, or self-occlusion. Finally, we show
that the proposed method achieves better results than the current state-of-the-art method
in within and cross-dataset evaluations.

1 Introduction

Appearance-based gaze estimation methods based on convolutional neural networks (CNNs)
have recently surpassed classical methods, particularly for in-the-wild settings [31]. How-
ever, they are still not suitable for high-accuracy applications. Current CNN-based methods
typically take either a single eye patch [5, 14, 25, 30, 34] or the eye region containing both
eyes as input [4, 18]. While these approaches are sufficient for cases in which the face is
mostly frontal and well lit, the question of which part of the image carries most of the in-
formation becomes important in uncontrolled settings with difficult lighting conditions and
extreme head pose angles [19, 32]. For example, attempting to crop the two-eyes from a
side-view or from an unevenly lit face is difficult at best and may result in non-informative
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Figure 1: We propose a novel gaze estimation method that dynamically selects regions ac-
cording to the properties of the input face image. Compared to selecting fixed eye regions
(left), our method can select regions which are more informative, adapting to changing visi-
bility and lighting conditions (right).

inputs (see Figure | for examples). Recent work has therefore proposed to leverage combina-
tions of two eye patches in a probabilistic fashion [3] or to use the full face either alone [32]
or in combination with eye patches [11].

We posit that the most informative regions in an image that is fed to a gaze estimator
should be selected dynamically based on the image content. To this end we propose a novel
gaze estimation method that combines the tasks of region selection and gaze estimation into a
single end-to-end trainable framework. To the best of our knowledge, this is the first method
that takes a dynamic region selection approach in the appearance-based gaze estimation task.
The key technical challenge in learning to select good regions for gaze estimation is the
mutual dependency between region selection and gaze estimation. For example, training a
network to select good regions can be guided by the final gaze estimation accuracy. However,
CNNs are usually sensitive to the type of images in the training data and typically do not
generalize well to out-of-distribution samples. Therefore, once a gaze estimator has been
trained with some hand-picked regions, a “better” crop may actually lead to reduced gaze
estimation accuracy.

To address this issue we propose a training procedure in which a Region Selection
Network (RSN) and the final gaze estimation network (gaze net) are trained in an alter-
nating fashion. First, we train the gaze net by feeding randomly selected regions from a pool
of potential region locations. Thus, the network learns to correlate input samples with gaze
labels without over-fitting to the particular type of regions cropped from the input image. We
then use this partially trained gaze net to train the RSN to select single or multiple regions
from the source image. This process is guided by a novel loss that aligns the probability of
picking a particular location with the gaze estimation error out of the gaze net. Once the
RSN is fully trained, we re-train the gaze net to learn to predict more accurate gaze estimates
given optimized region selections.

In summary, in this paper we contribute:

e A novel network architecture that combines a region selection and a gaze estimation
network to dynamically select informative regions for gaze estimation.

e A three-stage training strategy alongside a novel loss to guide the training of the RSN
module without the label.

e Experimental evidence that this approach leads to significant improvements compared
to our own baseline as well as state-of-the-art static approaches on within GazeCapture
and cross-dataset evaluations, particularly for challenging cases, e.g. difficult lighting
conditions, extreme head angles, self-occlusion.
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2 Related Work

Traditional approaches for remote gaze estimation often require specialised devices, use
hand-crafted features, or perform model fitting [2, 24]. In contrast, appearance-based meth-
ods learn mappings between holistic eye appearances and gaze labels [6]. Appearance-based
gaze estimation methods can take a variety of image patches as input. Most commonly a
single eye-patch input [14, 16, 17, 21, 22, 25, 26, 27, 28, 30, 34, 35], which allows for the
estimation of gaze from the left and right eyes of a person separately. Performance generally
improves when considering both eye regions simultaneously [3, 4, 8, 18] or use multiple
input regions, such as the two eyes alongside the face [4, 11]. However, it is unclear how to
best hand-craft these specific regions, and how many regions should be selected. As shown
in [3], some hand-picked regions may at times be unsuitable due to situational issues in il-
lumination condition, image quality, and occlusions. Their suggested solution involves a
separate evaluation network to select the better eye. Instead of hand-craft sub-regions, pre-
vious works also use the full-face input patches [9, 32] as single input. Such larger input
regions may include factors which distract from the main task of gaze estimation. Recasens
et al. [19] propose a model to learn the wrapping field that magnifies part of the input face
image to perform gaze estimation. This method can aid the network in focusing on more
important sub-regions. However, such magnification may destroy the geometry layout of
the face which is critical for gaze estimation task. We propose a fully learning-based region
selection framework for full-face appearance-based gaze estimation which only depends on
the input face image. Our contribution eliminates the need to hand-craft the position of input
regions, for gaze estimation networks.

Many attention mechanisms have been proposed for various computer vision tasks to at-
tend to certain spatial regions. Recurrent neural networks are used to locate important regions
for single object classification [15] with extensions to multiple objects [1], and dynamic
decision on the RNN sequence length [13]. NTS-Net [29] employs a localization network
(“Navigator”), and a classification network (“Scrutinizer”) for the task of object classification
where a “Teacher” network enforces ranking consistency between the Navigator-predicted
informativeness of regions and the classification output of the Scrutinizer. In our setting,
since gaze estimation is a regression task instead of classification, gaze net is sensitive to
its input and cannot output the reasonable gaze estimation accuracy for the region it has not
seen yet. Thus, RSN cannot use the gaze net net accuracy as a supervision signal. We solve
this challenge with a three-stage training strategy, where the gaze net is first trained with
random regions to act as a teacher network to the RSN .

3 Method

Most existing multi-region gaze estimation methods use image patches of the left and right
eye as input [4, 11, 18]. We argue that in many cases the most informative sub-region of
the face should be located dynamically based on head-pose, lighting and other extraneous
factors (cf. Figure 1). As illustrated in Figure 2, the proposed method consists of two main
components: RSN and gaze net. The RSN first takes a face image as input, from which it
dynamically selects M regions based on a location pool. The goal of this sub-network is to
identify the regions that are best suited for the task of gaze estimation. The gaze net then uses
the selected regions together with a region grid that indicates the region’s original location
as features for gaze estimation. A subset of the general population exhibits non-agreeing
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Figure 2: Method Overview. The RSN takes face image as input and outputs an index for the
location pool. This location index is then mapped to a pixel location in the face image from
which a surrounding region is cropped. The gaze net takes the cropped region image and the
corresponding region grid as inputs. We extract features from the crop and the region grid
and concatenate them. The combined feature vector is fed into three fully-connected layers
to estimate a 2D gaze direction g.

gaze directions from two eyes. Therefore, the gaze net can also take the full-face image as
an additional input to improve performance in such cases.

One of the main difficulties in this approach is in designing an effective training proce-
dure for the RSN. The reasons for this difficulty are two-fold. First, deciding which pixels
are the most informative for gaze estimation task is a hard task even for a human annotator
and hence there is no straightforward path to a fully-supervised scheme. Second, the gaze
net accuracy cannot be directly used as a supervision signal to RSN, since the RSN will eas-
ily get stuck in local minima as it would first have to select regions that have higher gaze
estimation errors than those on which the gaze net was originally trained. To alleviate these
issues, we propose a strategy to first train the gaze net with randomly cropped image regions
and use it as an imperfect but fair evaluator of candidate regions. In the following sections,
we describe the details of our network architecture and the necessary training procedure.

3.1 Network architecture

Region Selection Network (RSN) We formulate the task of the RSN (denoted as a function,
S) as a classification task, where the most appropriate location of one or more (M) fixed-size
regions must be selected based on a pre-defined location pool. The location pool includes
discrete locations denote the center of a potential region inside the input image. The number
of candidate locations K in the location pool defines the search space of the RSN.

The RSN takes an input image I with 224 x 224 pixels as input and outputs a matrix
of dimensionality M x K (in our experiments M < 4). Each element p,,; represents the
probability of selecting the k-th location as the m-th region. The final location index for
the m-th region is determined as k,, = argmax je{1,...k} Pmj» Which is used to crop the input
image to yield I,;,. The whole process can be written as I, = S(I). We compute the joint
probability of all M regions as p = H%zl Pm-

For training efficiency, we define the location pool to be a set of 7 x 7 = 49 uniformly
distributed locations. We set the size of all regions to be roughly the size of one eye as 0.3
times the original face image size results in 68 x 68 pixels. The pre-defined location pool
and the fixed region size constrain the search space of the RSN which drastically improves
training convergence.
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Figure 3: Training process for RSN. The gaze net takes the regions estimated by the RSN and
outputs a gaze direction vector g,. The gaze net takes region according to a random selection
from the location pool and outputs gaze direction vector g,. The gaze estimation error of g,
and g, are then used to calculate the location loss Ly, to update RSN.

Gaze net The gaze net G accepts multiple regions I,;, and corresponding region grid as
input and outputs a two-dimensional gaze direction g’ = G(I,,;,). All input region are re-
sized to 224 x 224 pixels and are passed through the convolutional layers of one ResNet-18
networks. Note the channel numbers of the first convolutional layer is modified to accept
multiple input images. To denote the region’s original location in the input image we pass
a region grid to the gaze net. The size of the region grid is 28 x 28 pixel with mostly zeros
values except a 8 x 8 patch indicating the region’s location. The region grid passes through
two convolutional layers and two max-pooling layers which results ina 5 x 5 x 50 = 1,250-
dimensional feature vector. The features from each region are concatenated and then fed
into one fully-connected layer to output the final gaze direction estimate g = (¢,6). ¢ and
0 represent yaw and pitch rotation angles in the spherical coordinate system.

After experimentally validating several CNN architectures including AlexNet [12] and
InceptionNet [23], we use ResNet-18 [7] for both RSN and gaze net architectures with min-
imal modifications such as defining the final output dimensionality.

3.2 Training procedure

First, to train the network we propose a novel three-stage training strategy, the gaze net is
trained by randomly selecting locations from the location pool to crop regions and evaluate
the gaze estimation loss Lgg;. Training with random crops prevents overfitting to a partic-
ular type of region. Assuming there are N training samples and we have ground-truth gaze
direction vectors g; for the i-th sample, the gaze estimation loss L, is given by

1Y ,
Egaze:NZ’gi_gi}' (D
i=1

Since this is a fully-supervised procedure, it can be assumed that the attained gaze estimation
accuracy is a good proxy for the utility of the region.

Second, we leverage this assumption to train the RSN based on the gaze estimates of the
initial gaze net. As shown in Figure 3, for this purpose we evaluate two different sets of
regions in the forward pass. We use regions I3, proposed by the RSN, and another set of
randomly selected regions I, at different locations. The gaze net outputs gaze direction
vectors g, and g, for regions I3, and I}, respectively.

We denote the probability of selecting I5,, and I, estimated by the RSN as p, and
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. . . . Two-region | Three-region
Single-region | Two-region | Three-region + Face + Face
Baseline o o o
(wlo RSN) 4.58 3.75 - 3.58 -
Ours 4.25° 3.60° 3.43° 3.51° 3.32°

Table 1: Comparison of our model against a baseline model without RSN, in the within-
GazeCapture evaluation setting. For the single region model, the baseline takes either left or
right eye images as input to the gaze net. For the two-region model, the baseline takes two
eye images as input to the gaze net. We also show results when supplying the face image as
additional input. Ours consistently outperforms the baseline.

pr. The goal is to link the gaze estimation errors g, and g, with the corresponding location
probabilities. Aligning these quantities then provides a supervision signal for RSN.

The gaze estimation errors e; and e, for both g, and g, are then computed. To train
the RSN with the precise physical error metrics, we use the angular gaze estimation error
instead of the approximate L1 loss as Lg,.. To calculate the angular gaze estimation error,
we first convert the yaw and pitch angles g = (¢, ) into three-dimensional representation in
the Cartesian coordinate system as v = (cos ¢ cos 8, —sin @, cos ¢ sin 0). The angular error e
between ground-truth v and prediction ¥ is defined as e = arccos “",‘T—‘:‘ The training objective
for RSN is to output selection probabilities for the two regions that correspond to the gaze
error. We formulate the following loss to enforce that the probabilities become proportional

to their corresponding gaze estimation errors

N

1
ﬁsel = ﬁ Z

i=1

min(22 5)— &
Pr s

; @)

i

where i indicate the indices for training samples. We experimentally found that the ratio
ps/ pr can be excessively large to cause large gradient updates and resulting in oscillations of
Ler. To address this issue by constraining the gradient update, we use clipped surrogates [20]
with threshold 0. We set the threshold 6 = 3.0 in our implementation.

After convergence of the RSN, we train the gaze net from scratch, now with regions
suggested by the RSN (in some experimental settings we also provide the face image as
8 =G([S(I),I])). While it is also possible to fine-tune the initial gaze net, we opt to train the
gaze net from scratch to ensure fair comparison with baselines during experiments.

4 Experiments

In this section, we discuss our experiments conducted to assess the effectiveness of the pro-
posed method. We first perform experiments with a single-region model, contrasting to a
strong baseline and to evaluate the region selection strategy in Sec. 4.1. We then increase the
number of regions proposed by RSN in Sec. 4.2. Finally, we compare our method with the
current state-of-the-art in Sec. 4.3.

Datasets. We used GazeCapture [11], EYEDIAP [5] and MPIIGaze [34] datasets for
the evaluation. We pre-processed these datasets following the data normalization procedure
described in [33] to extract the face image and the corresponding gaze direction labels. In
short, the data normalization procedure places a virtual camera to re-render the eye image
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(@) (b) (©

(d) (e) () (9) (h)

Figure 4: Examples of the selected regions for the single-region model. The green rectangle
indicates the selected region. Our model selects the eye with better visibility (a-d) or lighting
condition (e-g). Extreme motion blur is one failure case (h).

from a reference point with the head upright, which results in normalized face images with-
out any in-plane rotation. Since the GazeCapture dataset only provides gaze labels on a 2D
screen, we used the pre-processing pipeline from [18] to attain 3D head pose from GazeCap-
ture. Note that the same ground-truth gaze vectors in the normalized face coordinate system
are always used in the following experiments, including the single-eye baseline methods.
We performed most of our experiments on the GazeCapture dataset which includes more
data and appearance variations than EYEDIAP and MPIIGaze. We used both phone and
tablet sessions in GazeCapture, and the pre-defined training and test split from [11]. We se-
lected screen target (CS/DS) and static head pose sequences (S) from the EYEDIAP dataset,
sampling every 15 seconds from its VGA video streams.

Training details. We used the Adam [10] optimizer with initial learning rate 1 x 1074,
batch size 90, and with the momentum values set to §; = 0.9 and B, = 0.95. The gaze net
was trained for 25 epochs with random regions, and then the RSN was trained for 25 epochs.
Finally, the gaze net was re-trained for 25 epochs with the regions proposed by RSN. We
stopped the training after 25 epochs, equating to two days of training with a modest GPU.
The learning rate was decayed with a factor of 0.1 for every 10 epochs. The baselines with
eye patches as regions were trained with the same network architecture as the gaze net for
20 epochs. For data augmentation, we applied random horizontal and vertical translations to
the the input image with a factor of 0.3 times the image size.

4.1 Single-region selection

We experimented first with the most simple condition, where the RSN outputs only a single
region. We designed our baselines to be exact re-implementations of the prior art. Previous
works have either mirrored the right eye to the left, to double the training data [25, 26, 30,
34], or they have trained two separate models for the left and right eyes and averaged the in-
dependent predictions afterwards [5, 14]. We choose the latter approach for our single-region
baseline. This choice keeps the number of training samples consistent across baselines, to
ensure a fair comparison. Specifically, the baseline is formed by training two gaze nets with
a left and right eye respectively, and then computing the average of the estimates. The eye
region was cropped by data normalization with facial landmarks.

The results are summarized in the first column of Table 1. We can see that our method
achieves better performance (4.25 degrees) than the baseline single-region network (4.58
degrees) with significant margin (7.2%). We show some qualitative examples of the selected
regions in Figure 4. In general, the RSN selects either the left or right eye region since they
are naturally the most informative regions. Among two eyes, the RSN tends to pick the eye
with the better visibility by taking into account self-occlusion (Figure 4 (a,b)), reflections
on the surface of eyeglasses (Figure 4 (c)), the facial region being out of the frame (Fig-
ure 4 (d,e)), or the brighter eye under directional lighting conditions (Figure 4 (f,g)). On the
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Figure 5: Left: improvement of our model over the baseline in percentage across the head
pose distribution. The x-axis and y-axis are the yaw and pitch head rotations. Larger im-
provements can be observed under extreme head poses. Right: improvement of our model
over the baseline across horizontal differences between left and right parts of the face. The
dots are median improvements and the dashed line shows a linear polynomial curve fit.
Larger improvements happen under more challenging large intensity differences.

other hand, the RSN can fail at selecting the eye regions in challenging cases such as when
provided with low-quality blurry face images (Figure 4 (h)).

Robustness to hard cases In the left of Figure 5, we further show the performance gain by
our model with respect to head poses. The x-axis and y-axis correspond to the yaw and pitch
head rotations, and the heatmap represents the color-coded performance improvement from
the baseline method in percentage. It can be seen that larger improvements are achieved
under extreme head poses which typically cause self-occlusions. Similarly, we visualize
the improvement with respect to different lighting conditions in the right of Figure 5. The
horizontal axis corresponds to the difference between the mean intensity values of the left and
right sides of the face image, and a larger difference indicates that there is a strong directional
light. The dots are median improvements with a window of five (intensity differences), and
the dashed line shows a linear polynomial curve fit. The performance improvement depicted
in the figure is not stable since fewer data samples result in higher variance for large intensity
differences. As we can see, our model achieves larger performance improvements on images
with stronger directional lighting.

4.2 Multi-region selection

We now report experimental results when the RSN outputs multiple regions. For the baseline,
we pass both left and right eye regions as input to the gaze net, which resembles the previous
works using two eyes as input [4, 18]. In contrast, our model takes two or three regions
provided by the RSN as input to the gaze net. Results are summarized in the second and third
columns of Table 1. Our two-region model achieves better performance (3.60 degrees) than
the baseline (3.75 degrees), which indicates the advantage of selecting regions dynamically
instead of using fixed crops. Increasing the number of regions to three achieves the best
results (3.43 degrees) with 8.5% significant improvement (paired t-test: p < 0.01) over the
baseline (3.75 degrees), and demonstrates the potential of our approach.

Examples of the regions selected by the two-region and three-region RSN are shown in
the first and second rows in Figure 6, respectively. In general, for most input images, our
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(9)

Figure 6: Examples of region selection for the two-region (first row) and three-region (sec-
ond row) cases. The green rectangles indicate selected regions. Our model selects regions
that contain both eyes for most of the samples (a-c), focuses on a single eye due to visibility
(d,e) or brightness (f,g). Extreme motion blur can cause failure in selecting eyes (h).

Figure 7: Spatial distributions of selected regions by our three-region model for different
horizontal head angles. We visualize the regions’ locations using the jet color map and
overlay the heat maps on the averaged face images corresponding to each pose.

model picks regions around the left and right eye, sometimes with a small offset (Figure 6
(a-c)). Even with the multi-region selection strategy our model sometimes focuses on a
single eye due to visibility (Figure 6 (d,e)) or brightness (Figure 6 (f,g)). Under extreme
blur, the RSN selects regions away from the eye regions (Figure 6 (h)). We further show the
spatial distribution of the selected regions over different horizontal head angles by our three-
region model in Figure 7. We overlay the region-distribution heat maps over the averaged
face images. From these examples, we can see that our model can select the eye with better
visibility without self-occlusion. Such a trend becomes more evident for extreme head poses.

We examined the effect of providing the face image as additional input (e.g., [11]) to our
model by treating the face image as one of the inputs for the gaze net. Note that only taking
the single face-patch as input results in 4.21 degrees error, which is worse than two-region
models. The results are summarized in the last two columns of Table 1. By adding the face
image input, the baseline model benefits more (4.5% from 3.75 degrees to 3.58 degrees) than
our two-region model (2.6% from 3.40 degrees to 3.31 degrees). One of the possible reasons
is that the selected regions by the RSN already cover the necessary information for the task.
Therefore, the additional pixels do not improve estimates for our method as much as in the
case of the baseline, where the crop is fixed and hence informative regions may be omitted.
Our three-region model still achieves the best overall performance with 3.32 degrees, which
again suggests that optimized region selection is helpful.

4.3 Comparison with the state of the art

In our final experiment, we compare to the current state-of-the-art methods [4, 16, 17, 18, 32]
in within MPIIGaze (15-fold), within EYEDIAP (5-fold), within GazeCapture, cross-dataset
from GazeCapture to MPIIIGaze, and cross-dataset from GazeCapture to EYEDIAP evalua-
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GazeCapture | GazeCapture
EYEDIAP | MPIIGaze | GazeCapture s MPIIGaze | — EYEDIAP
[32] 6.0° 4.8° - - -
[4] - 4.8° - - -
[16] 10.3° 4.5° - - -
[18] - - 3.5° 5.2° -
[17] 7.1° - - - -
Baseline 7.3° 5.0° 3.6° 5.4° 6.3
Ours 6.6° 4.5° 3.3° 4.9° 6.0

Table 2: Comparison with the state of the art. Ours consistently outperforms the baseline
model and is equal (MPIIGaze) or better than the state-of-the-art, except for the EYEDIAP
dataset. Note that both MPIIGaze and EYEDIAP are small datasets and don’t contain suffi-
cient samples to learn both region selection and gaze estimation. Note that ours performs
particularly well in the most challenging cross-dataset setting when trained on the large
GazeCapture dataset even if tested on MPIIGaze or EYEDIAP.

tions. We used the result from our Three-region + Face model in our experiments. Although
[18] mostly focuses on the few-shot person-specific task, it sets the current state-of-the-art
for within GazeCapture and cross-dataset from GazeCapture to MPIIGaze evaluations. Our
comparison with [18] is a fair comparison since the experimental setting without calibration
in Fig. 6 of [18] is the same as ours for the person-independent case. For the within EYE-
DIAP and within MPIIGaze evaluation, our method consistently outperforms the baseline
and achieves comparable results with respect to previous state-of-the-art methods. We note
that our method requires training of two networks and hence requires large training datasets.
Neither EYEDIAP nor MPIIGaze are particularly large which prevents our model from sig-
nificantly outperforming the SoA in this setting. However, when leveraging large amounts of
data such as GazeCapture our method outperforms [18] and the baseline (w/o RSN) on the
more challenging cross-dataset settings. A more sample efficient approach to the dynamic
selection module is another important direction for future work.

5 Conclusion

In this paper, we ask the questions: which part of an image is most informative towards the
task of eye gaze estimation, and how can we automatically extract these regions from the
input image? To address these questions we propose a novel architecture to jointly learns the
tasks of region selection and gaze estimation. Our core technical contribution is a novel loss
that aligns the probabilities of selecting a particular region with the final gaze estimation loss.
We empirically show that i) our technique learns meaningful region selection strategies, such
as picking the better illuminated eye, ii) dynamic region selection leads to better gaze esti-
mation performance compared to static heuristics, and iii) this improvement is particularly
pronounced for difficult cases, including extreme head-angles and self-occlusions.
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