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Abstract
Transfer learning by fine-tuning neural networks pre-trained on large-scale datasets

excels at accelerating the training process and improving the model performance for the
target task. Previous works have unveiled catastrophic forgetting in fine-tuning, where
the model is over-transferred thus losing pre-trained knowledge, especially facing large-
scale target dataset. However, when fine-tuning pre-trained networks to small data, under
transfer emerges instead, where the model sticks to the pre-trained model and learns lit-
tle target knowledge. Under transfer severely restricts the wide use of fine-tuning but
is still under-investigated. In this paper, we conduct an in-depth study of under transfer
problem in fine-tuning and observe that when we finetune model to small data, redun-
dant category correlation becomes stronger in the model prediction, which is a potential
cause of under transfer. Based on the observation, we propose a novel regularization
approach, Category Decorrelation (CatDec), to minimize category correlation in the
model, which introduces a new inductive bias to strengthen the model transfer. Cat-
Dec is orthogonal to existing fine-tuning approaches and can collaborate with them to
address the dilemma of catastrophic forgetting and under transfer. Experiment results
demonstrate that the proposed approach can consistently improve the fine-tuning perfor-
mance of various mainstream methods. Further analyses prove that CatDec alleviates
redundant category correlation and helps transfer.

1 Introduction
Deep learning has achieved revolutionary success in computer vision [8, 9, 23]. Though

obtaining significant improvement over previous shallow learning or rule-based methods,
deep learning requires a large amount of labeled data to train a highly generalizable model.
For practical problems, collecting enough labeled data for deep learning is laborious or even
prohibited, e.g. in medical image [12]. Apart from the burden of data collection, train-
ing deep networks from scratch usually needs intense computational resources and takes
tremendous time. Due to the limitations above, the wide use of deep learning is constrained.
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Figure 1: (a) Distribution of the distance between model parameters and the pre-trained ones. Different
curves correspond to different portions of target labeled data for fine-tuning. As the number of target
labeled data decreases, the parameter distance from the pre-trained model becomes smaller, which
means under transfer. (b) When data is abundant, the model suffers from catastrophic forgetting,
preserving little source knowledge. While when data is scarce, the model switches to under transfer,
which means that the model sticks to source knowledge and learns little target knowledge.

A simple yet effective approach to mitigate the limitations is fine-tuning, which is an
effective approach of transfer learning to deep networks. Fine-tuning typically initializes the
parameters as the model pre-trained on large-scale datasets and then tunes the parameters
with the data in the target domain. It exploits the advantage of deep learning models that the
deep representations learned on large-scale datasets are transferable across various tasks and
domains [5, 20, 33].

As the existed fine-tuning tasks include relatively abundant target data, the model is
likely to lose knowledge learned in pre-training when incorporating new information from
the target training data. Such a problem is called catastrophic forgetting, where the model
tends to over-fit the target data, which deteriorates the generalization performance. Most of
the previous fine-tuning works [16, 17] focus on catastrophic forgetting and introduce new
regularization methods to avoid catastrophic forgetting, where significant progress has been
made to alleviate the challenge.

Table 1: Comparison of different fine-tuning methods.

Method Challenge Dataset Size
Catastrophic Forgetting Under Transfer Small Large

L2 (original) × × × X
L2-SP X × × X
DELTA X × × X
CatDec (our method) × X X X
CatDec + existing methods X X X X

However, little attention has been paid to the other side of the coin: the situation when tar-
get data is relatively small, which is the focus of this paper. Note that it is also different from
few-shot learning [26] which assumes that target labeled data is too scarce to enable fine-
tuning while we assume the data amount is still eligible to perform fine-tuning. We conduct
analysis on the model parameters before and after vanilla fine-tuning. As shown in Figure 1,
with sufficient target labeled data, the fine-tuned model deviates from the pre-trained model
with a large divergence. While with insufficient target labeled data, the parameter divergence
drops dramatically, which means that the model sticks to the pre-trained model and learns
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little new target knowledge. As catastrophic forgetting can be viewed as over transfer, we
can consider this phenomenon as under transfer. Under transfer is caused by two reasons:
1) the small target data contains too insufficient target knowledge to draw the model to de-
viate from the source pre-trained model and approach the target domain; 2) regularization
terms for catastrophic forgetting in previous works exacerbate the under transfer problem by
constraining the fine-tuned model to stay near the pre-trained model. To address the dilemma
of catastrophic forgetting and under transfer, we cannot simply ask for more target data or
remove the regularization terms, since the former violates the small data prerequisite while
the latter may bring back catastrophic forgetting.

Human beings also face the problem of under transfer when there is little data in the
target domain. For example, we are shown a few images of several new species and then
asked to recognize these species. We usually address the problem by using inductive bias,
such as the fact that one instance cannot belong to two species and different species should
not have too strong correlation or they are likely to be the same species.

In this paper, we also leverage inductive bias to introduce an ’extra force’ to strengthen
the model transfer. We observe that heavy category correlations exist in the model predic-
tion, especially in the target domain, which are mostly redundant. Such redundant correla-
tions are learned by the source pre-trained model and preserved due to under transfer, which
causes the probability of some classes to be simultaneously high and thus harms classifica-
tion. Based on the observation, we propose Category Decorrelation (CatDec) to address
the under transfer challenge in fine-tuning. We design a new regularization term to minimize
the correlation between classes, which introduces new inductive bias into transfer learning
to remove redundant correlations of the pre-trained model and enhance the model transfer.
Note that our work is orthogonal to existing methods and can be embedded into current meth-
ods to mitigate both under transfer and catastrophic forgetting. A comparison of previous
fine-tuning methods and our CatDec is presented in Table 1. The contributions of the paper
can be summarized as:

• We conduct an in-depth study of the under transfer problem occurring in fine-tuning
with small data, which is overlooked by previous works;

• We propose Category Decorrelation (CatDec) to alleviate under transfer by min-
imizing redundant category correlation, which introduces a new inductive bias to
strengthen the model transfer.

• We conduct experiments on several benchmarks with both small target data and full
target data. Experiment results prove that the proposed CatDec approach consistently
improves previous fine-tuning methods. Further results demonstrate that CatDec re-
moves redundant category correlation and boosts model transfer under small data.

2 Related Works

Transfer learning is an important machine learning paradigm which transfers knowledge
from a source domain to a target domain [2, 22]. Different transfer learning settings are pro-
posed such as inductive transfer learning [30], multi-task learning [2] and domain adaptation
[25]. In this paper, we focus on inductive transfer learning for deep networks, where the
target label space is different from the source one and target labeled data is available.
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Fine-tuning is a promising approach to inductive transfer learning for deep networks. Fine-
tuning firstly pre-trains the deep network on existing large-scale datasets and then tunes the
network with target labeled data. Donahue et al. [5] fix the feature extractor weight and train
a label predictor to classify the features. Yosinki et al. [33] demonstrate that representations
learned by deep networks are transferable and quantify the transferability. Huh et al. [11]
dig deeper into deep transfer learning by analyzing features extracted by different networks
trained on ImageNet. Recently, plentiful works emerge to improve the fine-tuning from
varieties of perspectives, including filter distribution constraining [1], sparse transfer [18],
and filter subset selection [4, 7]. Kornblith et al. [14] further investigates the influential
factors on deep inductive transfer.
Catastrophic forgetting is an important challenge in inductive transfer learning, which is
originated from incremental learning [28] and lifelong learning [29]. In inductive transfer
learning, the pre-trained networks may lose previously learned knowledge when being tuned
to the target task and obtaining knowledge specific to the target task. L2-SP [17] prevents
catastrophic forgetting by constraining the divergence between the current model parameters
and pre-trained parameters. DELTA [16] proposes a feature map regularization with attention
motivated by knowledge distillation for model compression [10, 24, 32, 34]. BSS [3] studies
and addresses negative transfer in fine-tuning.
Few-shot learning aims at classifying examples from new classes (called query instances)
with only a few labeled instances in each class (called support instances) [6, 21, 27]. In
few-shot learning, labeled data is very scarce, e.g. only one or several pieces in each class.
So typical few-shot learning methods do not re-train the whole network. But for fine-tuning,
we have much more data in each class, e.g. 10%, which are enough to re-train the whole
network. As shown in fine-tuning works [3, 16], even naive fine-tuning outperforms few-shot
methods by a large margin.
Under Transfer means that the pre-trained model is not transferred to the target domain
enough, which usually happens with small data. The previous works on fine-tuning empha-
size the hazard of catastrophic forgetting while neglecting the under transfer problem. Apart
from inadequate target knowledge caused by small data, their regularization terms make
the under transfer problem worse since they generally reduce the divergence between the
fine-tuned model parameters and the pre-trained model parameters. Aiming to avoid under
transfer, we propose Category Decorrelation (CatDec) to remove redundant category corre-
lation, which produces a new inductive bias to bolster model transfer. Note that our work
is orthogonal to existing methods on catastrophic forgetting and can enhance fine-tuning
performance of these methods.

3 Method

In fine-tuning, as shown in Figure 3, we have a pre-trained model consisting of a feature
extractor (F0) and a classifier (C0) and a labeled target dataset. We train the model to fit
the target dataset, where the fine-tuned feature extractor and classifier are denoted by F and
C. The main difference between fine-tuning and domain adaptation is that the former has
labeled target datasets, while the latter has purely unlabeled target datasets. We focus on
small data fine-tuning in this paper. In this section, we first investigate 1) under transfer
phenomenon in fine-tuning and 2) category correlation caused by under transfer. Based on
this, we propose Category Decorrelation to alleviate under transfer.
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3.1 Under Transfer in Fine-tuning
When fine-tuning with large data, the model parameters are tuned to fit the target data

well and the model is transferred to the target domain adequately. Under such a situation,
as shown in Figure 1, the parameter divergence between the fine-tuned model and the pre-
trained model is large. To achieve adequate model transfer when only small data is available,
the parameter divergence should be at least comparable to the divergence for large data.
However, with smaller data, the parameter divergence actually decreases significantly, which
demonstrates that under transfer occurs in previous fine-tuning methods.

Under transfer is attributed to the inadequate target knowledge and the regularization
terms designed for catastrophic forgetting, which constrain the parameter divergence be-
tween the fine-tuned and the pre-trained model [16, 17]. Actually, under transfer and catas-
trophic forgetting are two extremes of the model transfer. Catastrophic forgetting over-
transfers the model and lose all pre-trained knowledge while under transfer learns little new
target knowledge and preserves too much pre-trained knowledge. To address the dilemma,
the solution should alleviate under transfer with small target data while at the same time not
cause severer catastrophic forgetting. Therefore, a new inductive bias, which requires no
new target data, is suitable for strengthening model transfer.

3.2 Category Correlation when Under Transfer

(a) 100% (fix) (b) 15% (c) 30% (d) 100%

Figure 2: Class dependence based on the predictions of fine-tuned models, darker color means higher
dependence (the diagonal entries are removed for clearer demonstration). Both models are fine-tuned
with L2-SP. The 4 figures, from left to right, correspond to models fine-tuned by 100%, 15%, 30%,
100% target labeled data while we fix the parameters of layers except the classifier for the first figure
and tunes all parameters for other figures.

To design a proper inductive bias, we conduct experiments to seek factors related to under
transfer. We evaluate the category correlation in the predictions made by fine-tuned models,
which is computed by the Harmonic mean of the probability of two classes. As shown in
Figure 2, with large data, there is only little category correlation, while fixing model param-
eters, i.e. zero parameter divergence, has highly redundant category correlations. With 15%
and 30% target labeled data, the redundant category correlations also exist. The redundant
correlations are learned by the source pre-trained model and preserved in the fine-tuning pro-
cess, which is part of under transfer. Such correlations add unnecessary constraints on the
probability of different classes, which influence the model performance. Therefore, in this
paper, we propose Category Decorrelation (CatDec) to reduce redundant category corre-
lation, which introduces a new inductive bias to strengthen model transfer. Our approach is
orthogonal to existing fine-tuning methods and easy to implement.
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3.3 Category Decorrelation
We propose our category decorrelation loss in this section. Suppose N is the number of

examples, we use Z ∈ RN×|C| to denote the raw logit output of the classifier and P̂ ∈ RN×|C|

to denote the model prediction, i.e. a probability distribution over all classes, for all the
samples, where both Z and P̂ are matrices and each line corresponds to a data sample. For
the ith instance, the probability that it belongs to the jth class P̂i j can be derived by Zi j as

P̂i j =
exp(Zi j/T )

∑
|C|
j′=1 exp

(
Zi j′/T

) , (1)

where T is the temperature for scaling. P̂ indicates the temperatured softmax output, which
shrinks to original softmax prediction when T = 1.0. We can tune T to achieve smoother or
sharper probability distributions.

To reduce the redundant category correlation, we need to prevent class pairs from being
predicted with a high probability simultaneously. Thus, we maximize the distance between
the probabilities of class pairs. Let us take the columns of P̂ into consideration. For column
P̂., j and P̂.,k, the distance between the j-th and k-th classes R jk can be derived by

R jk =
∥∥∥P̂·, j− P̂·,k

∥∥∥
2
. (2)

Maximizing R jk for all the classe pairs can remove the redundant category correlation, which
enables us to strengthen model transfer.

Furthermore, we discover that different samples are not equally important when mod-
eling category correlation. The sample that is classified correctly with high confidence,
showing high ’peak’ on the right class, is more suitable than the sample that is classified in-
correctly. Therefore, we use the prediction probability of the ground-truth class as a measure
of importance and propose the following weight function on samples,

Wi =
N
(

1+ exp(P̂i,yi)
)

N
∑

i′=1

(
1+ exp(P̂i′,yi′

)
) , (3)

where N is the number of samples, yi is the ground-truth label of the ith sample. Samples
that the model gives wrong predictions to will be suppressed with this weighting mechanism.
We adopt Laplace Smoothing and sqrt function, forming a heavy-tailed distribution to avoid
over-penalization. Then the weighted classifier prediction matrix becomes

R′j,k = R j,k ∗ (Wi)
1/2, (4)

With the above R′, we can derive our regularization loss as follows,

L =− 1

|C|2
|C|

∑
i=1

|C|

∑
j 6=i

R′i, j, (5)

where C is the label space of the target domain. Minimizing the loss actually maximizes
the distance R′, so we add a negative in the loss. Our loss function can eliminate all the
non-negligible probability pairs, which removes the correlation between any two categories.
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The computation of R in Eq.(2) can be derived in the matrix form. The computation burden
can be reduced by advanced matrix multiplication algorithms such as Strassen algorithm. So
our method brings little computation burden.

Our overall optimization objective is

min
F,C

E(x,y)LCE

(
P̂,y
)
+αLCatDec

(
P̂,y
)
+βLReg, (6)

where LReg is the potential regularization terms of previous methods [16, 17] and can also be
LReg = 0, meaning using no other regularization. α and β are trade-offs for our and other reg-
ularization terms. In the experiments, we perform experiments with different regularization
terms and our CatDec consistently improves the performance.

Cross
Entropy

*+ Cross
Entropy

* ,

CatDec
Pre-train

Fine-tune

Large-Scale Dataset Small Sample
�15% of Stanford Cars)

,+

Fine-tune

Regular-
zation

Necessary Optional

Cars

Figure 3: The architecture for fine-tuning. The left figure is the pre-training phase, where the model
is trained with large-scale datasets such as ImageNet with cross-entropy loss. The right figure is the
fine-tuning phase. We initialize the feature extractor F with the pre-trained feature extractor but random
initialize the classifier C. Then the model is trained end-to-end by our CatDec loss, cross-entropy loss
and optional regularization terms of previous fine-tuning methods.

3.4 Training Process
As shown in Figure 3, the overall training is two-phased, the first phase is the pre-training

phase where the model is trained with source data. This phase can be ignored if the pre-
trained model is directly available. The second phase is the fine-tuning phase, where the
model is initialized with the parameters of the pre-trained model except the classifier. The
last fully connected layer is randomly initialized since the class space of the target domain is
always different from the source domain. Then the overall model is trained end-to-end with
target labeled data with the objective function in Equation 6.

Our Category Decorrelation reduces the redundant category correlation in the prediction
to introduce a new inductive bias to address under transfer, which is orthogonal but compat-
ible with current fine-tuning methods. Plugged into current fine-tuning methods for catas-
trophic forgetting, the overall approach can mitigate the dilemma of catastrophic forgetting
and under transfer.

4 Experiments
We plug CatDec to mainstream inductive transfer learning methods: L2, L2-SP [17] and

DELTA [16] on several benchmarks for evaluation since CatDec is orthogonal to them.
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4.1 Dataset

We choose the following four benchmark datasets in our experiments, among which the
first one is highly similar to ImageNet (a subset), while the other three datasets are quite
different from ImageNet.

Stanford Dogs [13] is a subset of ImageNet with over 20,000 images from 120 breeds.
CUB-200-2011 [31] is a benchmark dataset for fine-grained image classification with

11,788 images from 200 bird breeds.
Stanford Cars [15] is a dataset with 16,815 images from 186 different kinds of cars.
FGVC Aircraft [19] is a benchmark dataset for aircraft classification with 102 different

kinds of aircraft, each class has 100 images, so there are 10,200 images in total.

4.2 Implementation Details

In our experiments, we sample 15%, 30%, 50%, 100% of the original train set respec-
tively, and evaluate the model performance on the test set to observe whether our method can
alleviate insufficient transfer. Since our work is orthogonal to previous methods, we compare
the performance before and after adding our CatDec term to previous fine-tuning methods,
including naive fine-tuning (L2), L2-SP [17] and DELTA [16]

For a fair comparison, we follow the fine-tuning protocol in mainstream methods [16],
fine-tuning ResNet-50 pre-trained on ImageNet to other target datasets. We adopt the optimal
hyper-parameter setting and training strategies in their original work. We note that the last
fully connected layer has a learning rate which is 10 times bigger than other layers since it
is trained from scratch. The trade-off α between CatDec loss and cross-entropy loss is set
to 1.0, which is tuned through cross-validation on the target labeled data. For each sample
rate, we sample 5 different subsets, run experiments 5 times on each dataset and report the
average top-1 accuracy.

4.3 Results

Regularization Term. CatDec can serve as a regularization term to various existing
fine-tuning methods. Table 2 shows the results of fine-tuning the ImageNet pre-trained mod-
els. We can observe that when the dataset has large divergence from ImageNet, such as
CUB-200-2011, Stanford Cars and FGVC Aircraft, our method can consistently improve the
model performance of existing methods, especially when the labeled data is limited (15%
or 30%). This demonstrates that CatDec specially addresses under transfer when fine-tuning
to small data. On the other hand, with sufficient labeled data, our method still has modest
improvement, which demonstrates that CatDec is also generally a good regularization term
for fine-tuning. For Stanford Dogs, CUB-200-2011, Stanford Cars and FGVC Aircraft, the
average standard deviations for one sampled subset are 0.28, 0.21, 0.30, 0.31 and 0.30, 0.48,
0.38, 0.25 for different sampled subsets under one sampling rate respectively, showing the
stability of our method and demonstrating the significance of the results.

Comparison with other methods. There are other regularization terms for fine-tuning,
among them the latest method is BSS [3]. Here, we compare our method with BSS on FGVC
Aircraft, the most difficult dataset we use in our experiments. Table 3 indicates that overall
CatDec outperforms BSS, especially when the target data is small for fine-tuning.
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Table 2: Comparison of Accuracy (ResNet-50) of Different Sampling Rate and Different Methods.

(a) Stanford Dogs

Method Sampling Rate
15% 30% 50% 100%

L2 81.05 84.47 85.69 86.89
+ CatDec 81.62 84.50 86.01 87.11

L2-SP 81.41 84.88 85.99 86.72
+ CatDec 81.52 85.06 86.31 86.77

DELTA 81.46 83.66 84.73 86.01
+ CatDec 81.98 83.75 84.80 86.34

(b) CUB-200-2011

Method Sampling Rate
15% 30% 50% 100%

L2 45.25 59.68 70.12 78.01
+ CatDec 47.41 64.84 72.63 80.08

L2-SP 45.08 57.78 69.47 78.44
+ CatDec 46.77 60.48 70.19 78.50

DELTA 46.83 60.37 71.38 78.63
+ CatDec 52.99 64.41 72.49 78.68

(c) Stanford Cars

Method Sampling Rate
15% 30% 50% 100%

L2 36.77 60.63 75.10 87.20
+ CatDec 40.13 66.51 79.39 87.55

L2-SP 36.10 60.30 75.48 86.58
+ CatDec 41.21 66.15 76.46 86.93

DELTA 39.37 63.28 76.53 86.32
+ CatDec 43.13 67.83 78.70 87.89

(d) FGVC Aircraft

Method Sampling Rate
15% 30% 50% 100%

L2 39.57 57.46 67.93 81.13
+ CatDec 42.21 61.50 72.79 81.53

L2-SP 39.27 57.12 67.46 80.98
+ CatDec 46.59 63.31 71.41 81.22

DELTA 42.16 58.60 68.51 80.44
+ CatDec 48.54 65.29 72.64 81.70

Table 3: Comparison of Accuracy with BSS.

Method Sampling Rate
15% 30% 50% 100%

L2 + BSS 40.41 59.23 69.19 81.48
L2 + CatDec 42.21 61.50 72.79 81.53

L2-SP + BSS 40.02 58.78 68.96 81.27
L2-SP + CatDec 46.59 63.31 71.41 81.22

DELTA + BSS 43.79 61.58 69.46 80.85
DELTA + CatDec 48.54 65.29 72.64 81.70

Table 4: Accuracy with Different Metrics.

Metric Sampling Rate
15% 30% 50% 100%

Baseline 45.25 59.68 70.12 78.01
Inner Product 46.67 63.95 71.71 79.67
Gaussian 46.22 64.39 72.13 78.97
Harmonic Mean 45.54 62.39 70.52 78.40
L2 Norm (CatDec) 47.41 64.84 72.63 80.08

(a) L2-SP (b) L2-SP + ours (c) 15% (d) 30%

15% 30% 50% 100%0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85 Accuracy (sensitivity analysis)

α   0.25
α   0.5
α   1.0
α   2.0

(e) Sensitivity analysis

Figure 4: (a)(b): Category Correlation of classifiers fine-tuned on 15% of Stanford Cars. Our method
significantly alleviates the high correlation between categories. (c)(d): Parameter Distances from the
pre-trained ones. Models are finetuned on 15% and 30% of Stanford Cars respectively. (e): Hyper-
parameter sensitivity on α .
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4.4 Analysis
Category Correlation. Figure 4 shows the category correlation of the classifier fine-

tuned on 15% of data from Stanford Cars. We can observe that L2-SP shows heavy category
correlation that does not exist in practice, while our method can obviously reduce such re-
dundant correlation.

Parameter Distance, As discussed in Figure 1, parameters of the classifier fine-tuned
on limited target data have smaller divergence from the pre-trained parameters, which is an
indicator of under transfer. Here, we visualize such divergence of models fine-tuned by L2-
SP and our method on limited data and L2-SP on the full set of data. As shown in Figure 4,
our method can enlarge the parameter divergence from the pre-trained model. Also, our
divergence is closer to the divergence of L2-SP on the full set, which is the optimal fine-
tuning model. The results prove that the proposed CatDec can enhance model transfer.

Metrics. In CatDec, we use R jk =
∥∥∥P̂·, j− P̂·,k

∥∥∥
2

to depict the category correlation be-

tween the jth and kth class. There are also other metrics that can reflect this correlation, such

as negative inner product R j,k = −P̂·, j · P̂·,k, gaussian kernel function R j,k = e−
1
2‖P̂·, j−P̂·,k‖2

2 ,

and harmonic mean R j,k =
1
N ∑

N
i=1

P̂i, j ·P̂i,k

P̂i, j ·+P̂i,k
. For the three metrics above, smaller R j,k means

stronger correlation between the jth and kth category. To examine their effectiveness, we sub-
stitute the Ri j in Equation 2 with these metrics and evaluate their performance. Table 4 shows
the results of different metrics when applying to L2 on CUB-200-2011. Alleviating cate-
gory correlation, all these metrics can bring about improvements to the vanilla fine-tuning
method, proving that category decorrelation is beneficial to knowledge transfer. Among
them, the metric used in CatDec, L2 norm, achieves the highest performance, proving that it
cooperates with the cross-entropy loss best.

Hyper-parameter Sensitivity. We conduct hyper-parameter sensitivity analysis on the
trade-off α between our loss and cross-entropy loss. Figure 4(e) shows the accuracy of
CatDec+L2 trained with different α values and different sampling rates on CUB-200-2011.
CatDec works stably within a range of α across different portions of target data.

5 Conclusion
In this paper, we conduct an in-depth study of under transfer in fine-tuning with small

data. Under transfer and catastrophic forgetting are two extremes of model transfer. To
address under transfer, we propose Category Decorrelation (CatDec) to reduce redundant
category correlation, which introduces new inductive bias to strengthen model transfer. Our
CatDec is orthogonal to previous works on catastrophic forgetting and can be easily plugged
into their methods to address the dilemma of catastrophic forgetting and under transfer. Ex-
periment results prove that the proposed CatDec consistently improves the fine-tuning per-
formance of previous fine-tuning methods on several benchmarks.
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