
LI ET AL.: EPI-BASED ORIENTED RELATION NETWORKS 1

EPI-based Oriented Relation Networks for
Light Field Depth Estimation

Kunyuan Li
lkyhfut@gmail.com

Jun Zhang*
zhangjun1126@gmail.com

Rui Sun
sunrui@hfut.edu.cn

Xudong Zhang
xudong@hfut.edu.cn

Jun Gao
gaojun@hfut.edu.cn

School of Computer Science and
Information Engineering
Hefei University of Technology
Hefei, Anhui, China

Abstract

Light field cameras record not only the spatial information of observed scenes but
also the directions of all incoming light rays. The spatial and angular information implic-
itly contain geometrical characteristics such as multi-view or epipolar geometry, which
can be exploited to improve the performance of depth estimation. An Epipolar Plane
Image (EPI), the unique 2D spatial-angular slice of the light field, contains patterns of
oriented lines. The slope of these lines is associated with the disparity. Benefiting from
this property of EPIs, some representative methods estimate depth maps by analyzing
the disparity of each line in EPIs. However, these methods often extract the optimal
slope of the lines from EPIs while ignoring the relationship between neighboring pix-
els, which leads to inaccurate depth map predictions. Based on the observation that an
oriented line and its neighboring pixels in an EPI share a similar linear structure, we
propose an end-to-end fully convolutional network (FCN) to estimate the depth value of
the intersection point on the horizontal and vertical EPIs. Specifically, we present a new
feature-extraction module, called Oriented Relation Module (ORM), that constructs
the relationship between the line orientations. To facilitate training, we also propose
a refocusing-based data augmentation method to obtain different slopes from EPIs of
the same scene point. Extensive experiments verify the efficacy of learning relations and
show that our approach is competitive to other state-of-the-art methods. The code and the
trained models are available at https://github.com/lkyahpu/EPI_ORM.git.

1 Introduction
Light field cameras record both 2D spatial and 2D angular information of the observed
scene [13]. The lenslet-based light field camera [18], a compact and hand-held light field
camera, is able to achieve the dense sampling of the viewpoints by utilizing a micro-lens
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Figure 1: An overview of the proposed network architecture. The input is a pair of EPI
patches obtained from the horizontal and vertical EPIs. Each branch consists of two oriented
relation modules (ORMs), seven convolutional blocks, and a residual module (RM). The
output of the two branches is integrated by a merging block to estimate the depth value of
each pixel.

array inserted between the main lens and the photo sensor. The captured 4D light field data
implicitly contains geometrical characteristics such as multi-view geometry or epipolar ge-
ometry, which has attracted much attention in recent years to improve the performance of
depth estimation from light fields.

To visualize light fields and extract light field features, the 4D light field data is often
converted into various 2D images such as multi-view sub-aperture images [17], Epipolar
Plane Images (EPIs) [13], and focal stacks [14]. Some representative methods [20, 21, 24]
exploit different depth cues from sub-aperture images and focal stacks for depth estimation.
However, it is difficult to acquire dense and accurate depth maps from the lenslet-based
cameras owing to the optical distortions [11] and the narrow baseline [18] between sub-
aperture images. Besides, these methods are usually accompanied by heavy computational
burdens and carefully-designed optimization measures. To avoid these issues, some meth-
ods [4, 15, 23, 27] exploit EPIs that exhibit patterns of oriented lines with constant colors to
visualize light fields. Each of these lines corresponds to the projection of a single 3D scene
point, and its slope is called disparity [22]. Therefore, one can infer the depth of the corre-
sponding scene point by analyzing the disparity of the oriented line in the EPI. Moreover, the
oriented line and its neighboring pixels share the similar linear structure, which is beneficial
to estimate the slope of the EPI by constructing the relationship between the center region in
the EPI and its neighborhood. Nonetheless, current methods predict depth maps by extract-
ing the optimal slope of EPIs while ignoring the relationship between neighboring pixels in
EPIs, which makes the results inaccurate. It has been well recognized that the relation infor-
mation is capable of offering important visual cues for computer vision tasks, such as spatial
and channel relations in semantic segmentation [16] and object detection [8], and temporal
relations in activity recognition [29].

In this paper, we propose an end-to-end fully convolutional network to estimate the
depth value of the intersection point on the horizontal and vertical EPIs, as shown in Figure
1. We design a Siamese network without sharing weights (i. e. pseudo-Siamese [26]) so
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that the convolution weights of the horizontal and vertical EPIs can be learned separately.
Specifically, we propose a new feature extraction module, called Oriented Relation Mod-
ule (ORM), to learn and reason about the relationship between oriented lines in EPIs by
extracting oriented relation features between the center pixel and its neighborhood from EPI
patches. The proposed method can be considered as the first work on modeling relation fea-
tures in EPIs, which is novel and different from existing relation models in two aspects: First,
existing works [16, 29] focus on modeling temporal relation between frames and spatial re-
lations between pixels. In contrast, our method proposes the geometric relation between line
orientations in EPI patches, which is beneficial to extract the accurate slopes of EPIs for
light field depth estimation. Second, the proposed method models dependencies between
oriented lines, without making any assumptions on their feature distributions and locations.
Our network is trained using the 4D light field benchmark dataset [7], where the ground truth
disparities are available. However, we find that it is hard to train such a deep network with in-
sufficient data. To mitigate this issue, we propose a data augmentation method by refocusing
EPIs so that EPIs with different slopes as well as the corresponding ground truth dispari-
ties can be obtained at the same scene point. We show that the newly proposed ORM and
EPI-based data augmentation can bring performance boost for light field depth estimation.

2 Related Work
Conventional depth estimation from light fields mainly relies on different assumptions [14,
21] and handcrafted depth features [20, 24] based on sub-aperture images and focal stacks.
In this section, we restrict ourselves to methods that exploit EPIs, and review some represen-
tative works with relation reasoning.

Light field depth estimation based on EPIs. There exist a few methods that exploit the
EPI for light field depth estimation due to its linear structure associated with depth [22]. For
example, Wanner et al. [23] used a structured tensor to compute the slope of each line in ver-
tical and horizontal EPIs. Zhang et al. [27] introduced the Spinning Parallelogram Operator
(SPO) to find matching lines in EPIs. The lines with different slopes are located by maximiz-
ing the distribution distances of the regions. Zhang et al. [28] located the optimal slope of
each line segmentation on EPIs by using the locally linear embedding. Differing from these
methods, some methods applied CNNs to extract light field features from EPIs. Sun et al.
[25] presented a data-driven approach to estimate the object depths from an enhanced EPI
feature using CNN. Heber and Pock [4] used CNNs for predicting 2D per-pixel hyperplane
slope orientations in EPIs. Based on this work, Heber et al. [5, 6] improved their work by
utilizing an U-shaped network and EPI volumes to predict the depth map. Luo et al. [15]
designed an EPI-patch based CNN architecture to estimate the depth of each pixel. Feng et
al. [2] proposed a two-stream network that learns to estimate the depth values of multiple
correlated neighborhood pixels from EPI patches. Shin et al. [19] introduced a multi-stream
network to extract features for epipolar property of four viewpoints with horizontal, vertical
and both diagonal directions. This method reaches state-of-the-art results on the 4D light
field benchmark [7]. One of the most recent works by Leistner et al. [12] shift the light
field stack to retain a small receptive field, which improves the performance of depth esti-
mation for large-disparity light fields. Some of these previous methods [2, 6, 12, 15] require
data pre-processing and subsequent optimization. In contrast, we present an end-to-end fully
convolutional network architecture to predict the depth values of center pixels from the cor-
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responding horizontal and vertical EPIs. We explore the similar linear structure information
in EPIs and model the relationship between the oriented lines and their neighboring pixels,
which help to estimate the slope of the oriented line.

Relation modeling. A few recent papers [8, 16, 29] have shown that relations have been
exploited to improve the performance of computer vision tasks. Zhou et al. [29] proposed a
temporal relation network to learn and reason about temporal dependencies between video
frames at multiple time scales. Hu et al. [8] proposed an object relation module to model
relationships between sets of objects for object detection. Mou et al. [16] proposed the
spatial and channel relation modules to learn and reason about global relationships between
any two spatial positions or feature maps, and then produced relation-augmented feature
representations for semantic segmentation. Motivated by these works, we propose a oriented
relation module to construct the relationship between the center pixel and its neighborhood
in the EPI, which allows the network to explicitly learn the relationship between the line
orientations and improve the performance of depth estimation.

3 Proposed Method

In this paper, we present an end-to-end fully convolutional network to predict the depth
values of center pixels in EPIs of light fields. Two branches are designed to process the hori-
zontal and vertical EPIs separately. The newly proposed oriented relation module is capable
of modeling the relationships between the neighboring pixels in EPIs. A refocusing-based
EPI augmentation method is also proposed to facilitate training and improve the performance
of depth estimation. An overview of the network architecture is shown in Figure 1.

3.1 EPI Patches for Learning

The light field, indicated as L(u,v,x,y), is generally represented by the two-plane parame-
terization [13]. Here, (x,y) and (u,v) are spatial and angular coordinates, respectively. The
central sub-aperture (center view) image is formed by the rays passing through the opti-
cal center of the camera main lens (u = u0,v = v0). As shown in Figure 2, given a pixel
P(xi,yi) in the center view image, the horizontal EPI of the row view v0 can be formulated
as L(u,v0,x,yi), which is centered at (u0,xi). Similarly, the vertical EPI of the column view
u0, with the center at (v0,yi), is written as L(u0,v,xi,y).

Z can be obtained by analyzing the slope ∆x
∆u of the line [23],

∆x =−∆u
Z

f (1)

where f is the focal distance and Z is the depth value of the point P. The slope of the oriented
line is shown in the EPI patch b of Figure 2.

To learn the slope of the oriented line of P(xi,yi), we extract patches of size H ×W ×C
from L(u,v0,x,yi) and L(u0,v,xi,y) as inputs. Here, H and W indicate height and width of
the patch, respectively, and C is the channel dimension. The size of the patch is determined
by the range of disparities. The proposed network predicts the depth of the center pixel from
the pair of EPI patches.
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Figure 2: EPIs from the light field: each image in angular coordinates (u,v) yields a sub-
aperture view of the scene. Given a pixel P(xi,yi) in the spatial coordinate, its horizontal or
vertical EPIs are obtained by fixing the view v0 or u0, respectively. Three pairs of horizontal
and vertical EPIs at different refocused depths are shown. The similar linear structure infor-
mation between the oriented line marked by the yellow and its neighboring pixels is shown
among three EPI patches. The disparity ∆x

∆u of the EPI patch b describes the pixel shift of the
scene point P when moving between the views.

3.2 Network Architecture
As shown in Figure 1, the proposed network shares the similar structure with the pseudo-
Siamese network proposed in [26], where two branches are designed to learn the weights
for the horizontal and vertical EPI patches, respectively. Each branch contains two oriented
relation modules (ORMs), a set of seven convolutional blocks, a residual module (RM),
and a merging block. The ORM will be discussed in Sect. 3.3. The convolutional block is
composed of ‘Conv-ReLU-Conv-BN-ReLU’. To handle the small EPI slope, we apply the
convolutional filters with size of 2×2 or 1×2 and stride 1 to measure a small depth value.
However, detailed information of the EPI slope is lost as the network goes deeper. Inspired
by the residual learning [3] that can introduce detailed information of the shallower layer
into the deeper layer and effectively improve the network performance, we design a residual
module for each branch. The residual module consists of six residual blocks, each of which
consists of one convolutional block and one skip connection. We take a slicing operation
to implement the skip connection by extracting the center region of the input feature. The
final merging block, containing two different convolutional blocks (‘Conv-ReLU-Conv-BN-
ReLU’ and ‘Conv-ReLU-Conv’), is used for fusing the horizontal and vertical EPI features
to predict the depth value of each pixel.

3.3 Oriented Relation Module
We propose a new Oriented Relation Module (ORM) to reason about the relationship be-
tween the center pixel and its neighborhood in each EPI patch. As shown in Figure 3, given
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Figure 3: The proposed oriented relation module.

Figure 4: The light field refocusing. (a) before refocusing. (b) after refocusing.

an EPI patch III of size H×W ×C, we apply two single-layer convolutions of 1×1 kernel size
to model a compact relationship in the EPI patch. The output features are converted into FFF111
and FFF222, respectively, which are followed by a dot product to construct the oriented relation
feature FFF333 of size (H ·W )× (H ·W ). Furthermore, to obtain the relationship between the
center pixel and its neighborhood in FFF333, we extract the feature fff 333 of size W × (H ·W ) from
the relational feature FFF333. Then, we apply the reshaping and ReLU activation on the feature
fff 333 to obtain a new feature FFF444 of size W ×H ×W . Finally, we concatenate the original EPI
patch III with the feature FFF444 to obtain the output feature FFF555 of size W ×H × (W +C).

3.4 EPI Refocusing-based Data Augmentation

To alleviate the problems of insufficient data and overfitting, we propose a new data augmen-
tation method by refocusing EPIs. Differing from general augmentation techniques such as
rotation, scaling and flipping [19], we refocus EPIs to generate multiple EPIs focused at
different depth levels. The light field refocusing shifts the sub-aperture images to obtain im-
ages focused at different depth planes [1]. Figure 4 shows sub-aperture images at the same
horizontal or vertical views that are stacked together. Lines with different slopes (i.e. the
lines in EPIs) are inserted into the scene points of different depth planes on the sub-aperture
images. The line at the focal depth should be vertical (slope = 0), while the other lines are
inclined (slope > 0 or slope < 0). Taking the center view as the reference, the disparity shift
between sub-aperture images changes the slope of the line. Thus, refocusing at a different
depth plane changes the orientation of the structure in the EPI.

We convert the depth information into a disparity shift in every single EPI according to
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Eq. 1. The resulting disparity shift ∆x(u) related to the depth Z is defined following [1],

∆x(u) = (u0 −u)
∆u
Z

f (2)

Here, we assume that the center view (u0,v0) is the reference view. For the sake of simplic-
ity, we also assume that lenslet-based cameras have the same focal length f and the same
baseline ∆u for the neighboring views. Similarly, we can obtain the disparity shift ∆y(v).
Then we refocus the EPI based on the refocusing principle [18],

L(u,v,x,y) = L(u,v,x+∆x(u),y+∆y(v)) (3)

The EPI patches (a,b,c) in Figure 2 show three horizontal EPIs at different refocused depths.
Our strategy not only changes the slope of the orientation line but also changes the corre-
sponding ground truth (Eq. 2).

4 Experiments

4.1 Implementation Details
Following previous works [2, 15], we use the 4D light field benchmark [7] as our experimen-
tal dataset, which provides highly accurate disparity ground truth and performance evaluation
metrics. The dataset includes 24 carefully designed scenes with ground-truth disparity maps.
Each scene has 9×9 angular resolution and 512×512 spatial resolution. 16 scenes are used
for training and the remaining 8 scenes for testing. We randomly sample the horizontal and
vertical EPI patch pairs of size 9×29×3 from each scene as inputs. To avoid overfitting, we
increase the training data to 8 times the original data by the proposed EPI refocusing-based
data augmentation.

The bad pixel ratio (BadPix) [7], which denotes the percentage of pixels whose disparity
error is larger than 0.07 pixels, as well as the Mean Square Errors (MSE) are computed for
evaluation metrics. Given an estimated disparity map d, the ground truth disparity map gt
and evaluation region M, BadPix is defined as,

BadPix =
|{x ∈ M : |d(x)−gt(x)|> 0.07}|

|M| , (4)

and MSE is defined as,

MSE =

∑
x∈M

(d(x)−gt(x))2

|M| ×100. (5)

Lower scores are better for both metrics.
We use the Keras library [10] with the mean absolute error (MAE) loss to train the pro-

posed network from scratch. We formularize the depth estimation as a multi-label regression
problem to estimate the depth value of a single pixel. Note that the network is trained end-
to-end and does not make use of pre- and post-processing complications. We utilize the
RMSprop optimizer [30] and set the weight decay rate to 1e−5 and batch size to 128. Our
network training takes one day for 750k iterations on an NVIDIA GTX 1080 Ti 11GB GPU.
The memory footprint is about 65%.
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Metric Baseline w/ ORM w/ EPIR Full model
BadPix 9.45 7.98 7.41 5.66
MSE 2.058 1.621 1.475 1.393

Table 1: Effects of ORM and EPIR. Bold: the best.

Figure 5: Qualitative comparison of the baseline and the network with the ORM. (a) Original
scenes. (b) Ground truth maps. (c) Baseline. (d) Our network with the ORM.

Metric Baseline EPIR×2 EPIR×4 EPIR×6 EPIR×8 EPIR×10
BadPix 9.45 8.03 7.78 7.50 7.41 7.45
MSE 2.058 1.781 1.511 1.482 1.475 1.480

Table 2: Performance in terms of the number of EPI refocusing. Bold: the best.

4.2 Ablation Study
We use the proposed network without the oriented relation module (ORM) and data augmen-
tation based on EPI refocusing (EPIR) as the Baseline.

Effect of the oriented relation module. Table 1 shows that the network using the ORM
brings a significant improvement over the baseline, which can reduce the BadPix by around
1.5. Figure 5 shows qualitative results for comparison. Boxes and Cotton show that the ORM
can reduce the streaking artifacts and improve the accuracy in weakly textured areas. The
occlusion boundaries in Backgammon with multiple occlusions can also be better restored
through the ORM. In addition, our network with ORM generates smooth depth maps while
preserving discontinuity between different objects, yielding the increased MSE by about
21% compared to the baseline.

Effect of EPI refocusing-based data augmentation. From Table 1, we can see that the
network using the EPIR is better than the baseline. Moreover, by using both the ORM and the
EPIR, the performance is further boosted. To further show the effect of EPI refocusing in the
network, we compare the performance by varying the number of refocusing in Table 2. We
refocus the training data to the foreground and the background of the original depth plane.
From the table, we observe that there are performance gains when increasing the number
of refocusing. However, there is no gain from EPIR×8 to EPIR×10 when comparing with
Table 2.
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Figure 6: Qualitative results on the 4D light field benchmark [7]. For each scene, the top row
shows the estimated disparity maps and the bottom row shows the error maps for BadPix.
(a) Ground truth. (b) LF [9]. (c) CAE [24]. (d) LF_OCC [21]. (e) SPO [27]. (f) EPN [15].
(g) EPINET [19]. (h) Ours.

4.3 Comparison with State-of-the-Arts
We compare our approach with other state-of-the-art methods: LF [9], CAE [24], LF_OCC
[21], SPO [27], EPN [15], and EPINET [19]. The qualitative comparison is shown in Figure
6. The Cotton scene contains smooth surfaces and textureless regions, and the Boxes scene
consists of occlusions with depth discontinuity. As can be seen from the figure, our approach
can reconstruct the smooth surface and the region with sharp depth discontinuity compared
to other methods. For the Sideboard scene with the complex shape and texture, our approach
preserves more details and sharper boundaries by distinguishing the subtle difference of EPI
slopes. In addition, our approach obtains better disparity maps in the Boxes and Sideboard
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Scenes LF [9] CAE [24] LF_OCC [21] SPO [27] EPN [15] EPINET [19] Ours

boxes 24.572 17.885 24.526 15.889 15.304 14.190 13.373
cotton 8.794 3.369 6.548 2.594 2.060 0.810 0.869
dino 21.478 4.968 15.466 2.184 2.877 2.970 2.814
sideboard 23.906 9.845 17.923 9.297 7.997 6.260 5.580
backgammon 4.810 3.924 18.061 3.781 3.328 4.130 2.511
dots 2.441 12.401 5.109 16.274 39.248 9.370 25.930
pyramids 10.949 1.681 2.830 0.356 0.242 0.540 0.240
stripes 35.394 7.872 17.558 14.987 18.545 5.310 5.893

Table 3: Quantitative comparison of different methods using the BadPix metric. The best
three results are shown in red, blue, and green, respectively (Best viewed in color).

Scenes LF [9] CAE [24] LF_OCC [21] SPO [27] EPN [15] EPINET [19] Ours

boxes 16.705 8.424 9.095 9.107 9.314 6.440 4.189
cotton 11.773 1.506 1.103 1.313 1.406 0.270 0.313
dino 1.558 0.382 1.077 0.310 0.565 0.940 0.336
sideboard 4.735 0.876 2.158 1.024 1.744 0.770 0.733
backgammon 15.109 6.074 20.962 4.587 3.699 4.700 1.403
dots 4.803 5.082 2.731 5.238 22.369 3.320 6.754
pyramids 0.243 0.048 0.098 0.043 0.018 0.020 0.016
stripes 17.380 3.556 7.646 6.955 8.731 1.160 1.263

Table 4: Quantitative comparison of different methods using the MSE metric. The best three
results are shown in red, blue, and green, respectively (Best viewed in color).

scenes than the recent state-of-the-art method [19], which uses the vertical, the horizontal,
the left diagonal and the right diagonal viewpoints as inputs. The number of the viewpoints
is almost double that of our approach. Compared with the 28-layer network of 4 branches
in [19], our network consists of 30 layers with 2 branches, which makes our trainable pa-
rameters be about half of those in [19]. However, our network cannot produce good depth
predictions for the Dots scene that contains a lot of noise, which is also the common down-
side of applying EPIs to the CNN-based method (e.g. EPN [15]). The reason is that noises
may lead to the false straight line estimation of EPI patches. Therefore, one of the future
works could introduce global constraints of oriented lines into our model.

Quantitative results are shown in Tables 3 and 4, which show that the proposed approach
performs the best in 4 out of 8 scenes. In particular, the proposed approach predicts more ac-
curate disparity values on the Boxes and Backgammon scenes under multi-occlusions. Note
that we do not apply any post-processing for depth optimization while most other methods
[9, 15, 21, 24, 27] are accompanied by post optimization.

5 Conclusion
In this paper, we propose an end-to-end fully convolutional network for depth estimation
from light fields by exploiting horizontal and vertical EPIs. We introduce a new relational
reasoning module to construct the relationship between oriented lines in EPIs. In addition,
we propose a new data augmentation method by refocusing the EPIs. We demonstrate the
effectiveness of our approach on the 4D light field benchmark [7]. Our approach is compet-
itive with the state-of-the-art methods, and is able to predict more accurate disparity map in
some challenging scenes such as Boxes and Sideboard without any post-processing.
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