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Abstract

We introduce an approach that enhances images using a color filter in order to create
adversarial effects, which fool neural networks into misclassification. Our approach,
Adversarial Color Enhancement (ACE), generates unrestricted adversarial images by
optimizing the color filter via gradient descent. The novelty of ACE is its incorpora-
tion of established practice for image enhancement in a transparent manner. Experi-
mental results validate the white-box adversarial strength and black-box transferability
of ACE. A range of examples demonstrates the perceptual quality of images that ACE
produces. ACE makes an important contribution to recent work that moves beyond Lp
imperceptibility and focuses on unrestricted adversarial modifications that yield large
perceptible perturbations, but remain non-suspicious, to the human eye. The future
potential of filter-based adversaries is also explored in two directions: guiding ACE
with common enhancement practices (e.g., Instagram filters) towards specific attrac-
tive image styles and adapting ACE to image semantics. Code is available at https:
//github.com/ZhengyuZhao/ACE.

1 Introduction
Despite the exceptional success of the Deep Neural Networks (DNNs), recent research has
shown that they are remarkably susceptible to adversarial examples [44], which are crafted
to induce incorrect model predictions. Adversarial image examples have been extensively
studied in image classification [5, 16, 22, 33, 34, 35, 49], and also explored in object detec-
tion [8, 53], semantic segmentation [2, 50] and image retrieval [31, 46].

A key property of adversarial images that makes them dangerous is that they cause deci-
sion conflicts between the model and human annotated labels in a way that is hardly recogniz-
able to human [15, 40]. Most conventional work on adversarial examples has focused on im-
perceptible additive perturbations, whereby imperceptibility is conventionally measured with
the Lp distance between the adversarial images and their clean versions [5, 34, 35]. Later
studies proposed to leverage more perception-aligned measurements [10, 32, 48, 52, 54] to
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Figure 1: Left: Original Images (top) and their adversarial versions (bottom) generated by
our Adversarial Color Enhancement (ACE). Additional examples can be found in our GitHub
repository. Right: Illustration of the color filter adopted in ACE (here K = 4 in Equation 3).

address the well known insufficiency of naive Lp norms as perceptual similarity metric [47],
but have still focused exclusively on imperceptible perturbations.

Recently, it has been pointed out that when small, imperceptible perturbations were orig-
inally introduced by [16], they were intended only to be an abstract, toy example for easy
evaluation, and that actually it is hard to find a compelling example that requires impercep-
tibility in realistic security scenarios [15]. In other words, imposing similarity with respect
to an original, clean image is not necessary in real-world threat models. For this reason,
recent work has moved beyond small imperceptible perturbations, and started exploiting
“unrestricted adversarial examples” [4] that have natural looks even with large, visible per-
turbations, but remain non-suspicious to the human eye [3, 13, 22]. In general, exploring
new types of threat models beyond conventional imperceptible perturbations will provide a
more comprehensive understanding of adversarial robustness of the DNNs [49]. And more
importantly, relaxing the tight bound on perturbations has been shown to yield practically
interesting properties, such as cross-model transferability for black-box adversaries applied
in real-world scenarios [3, 39].

Building on these recent developments, we propose a new approach to generating un-
restricted adversarial images using a color filter. The approach, called Adversarial Color
Enhancement (ACE), introduces non-suspicious perturbations, with minimal impact on im-
age quality, as shown in Figure 1 (left). Although previous work [9] has pointed out that
common enhancement practices (e.g., Instagram filters) can degrade the performance of the
automatic geo-location estimation, until now, no research has focused on the optimization
aspect of exploiting image filters to create adversarial images. Our approach makes use
of recent advances in automatic image retouching based on differentiable approximation of
commonly-used image filters [11, 19]. In sum, this paper makes the following contributions:

• We explore the vulnerability of the DNNs to commonly-used image filters, and specif-
ically propose Adversarial Color Enhancement (ACE), an approach to generating un-
restricted adversarial images by optimizing a differentiable color filter.

• Experimental results demonstrate ACE achieves a better trade-off between the adver-
sarial strength and perceptual quality of the filtered images than other state-of-the-art
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methods, implying a stronger black-box adversary for real-world applications.
• We explore two potential ways to further improve ACE on image quality: 1) using

widely-used enhancement practices (e.g., Instagram filters) as guidance to specified
attractive image styles, and 2) leveraging regional semantic information.

2 Related Work
Differentiable Image Filters. The state of the art for automatic photo retouching mainly
uses supervised learning to determine editing parameters via gradient descent, in order to
achieve specific image appearances. Most approaches [7, 14, 21, 51, 56] utilize DNNs for
the parameterization of the editing process, but inevitably they suffer from high computa-
tional cost, fixed image resolution, and more importantly, a lack of interpretability. For this
reason, some recent work [11, 19] has proposed to rely on intuitively meaningful edits that
are represented by conventional post-processing operations, i.e., image filters, to make the
automatic process more understandable to users. Moreover, such methods have much fewer
parameters to optimize, and can be applied resolution-independently.
Problem Formulation. A neural network can be denoted as a function F(x) = y that outputs
y∈Rm for an image x∈Rn. Here we focus on the widely-used DNN classifier with a softmax
function, which expresses the output y as a probability distribution, i.e., 0 ≤ yi ≤ 1 and
y1 + · · ·+ym = 1. The final predicted label l for x is accordingly obtained by l = argmaxi yi.
An adversary aims to induce a misclassification of a DNN classifier F(x) through modifying
the original image x into x′ such that F(x′) 6= y.
Restricted Adversary with Imperceptible Perturbations. As mentioned in Section 1,
in order to make the modification unrecognizable, most existing work forces the adver-
sarial image x′ to be visually close to its original image x with respect to specific dis-
tance measurements. The conventional solution is Lp distance (typically L∞ [5, 16, 26, 33]
and L2 [5, 34, 37, 44], but also L1 [6] and L0 [35, 43]). The earliest work in this direc-
tion [44] proposed to jointly optimize misclassification with cross-entropy loss and the L2
distance by solving a box-constrained optimization with the L-BFGS method [30]. The
C&W method [5] followed a similar idea, but replaced the cross-entropy loss with another
specially designed loss function, namely, the differences between the pre-softmax logits.
Moreover, a new variable was introduced to eliminate the box constraint. The method can
be expressed as:

minimize
w

‖x′− x‖2
2 +λ f (x′),

where f (x′) = max(Z(x′)l−max{Z(x′)i : i 6= l},−κ),

and x′ =
1
2
(tanh(arctanh(x)+w)+1),

(1)

where f (·) is the new loss function, w is the new variable, and Z(x′)i is the logit with respect
to the i-th class given the intermediate modified image x′. The parameter κ is applied to
control the confidence level of the misclassification.

This joint optimization is straightforward but suffers from high computational cost due
to the need for line search to optimize λ . For this reason, other methods [12, 16, 26, 33, 37]
instead rely on Projected Gradient Descent (PGD) to restrict the perturbations with a small
Lp norm bound, ε . Specifically, the fast gradient sign method (FGSM) [16] was designed to
succeed within only one step and was extended by [12, 26, 33, 37] to exploit finer gradient
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information with multiple iterations. The iterative approach can be formulated as:

x′0 = x, x′k = x′k−1 +α · sign(∇xJ(x′k−1, l)), (2)

where α denotes the step size in each iteration. The generated adversarial perturbations will
be clipped to satisfy the L∞ bound. A generalization of this formulation to the L2 norm can
be achieved by replacing the sign(·) with a normalization operation [34, 37]. L0 and L1-
bounded adversarial images were also studied [6, 35, 43], but not widely adopted since the
resulting sparse perturbations are not stable in practice.

Recently, there have also been several attempts to address the limitations of naive Lp by
using more perception-aligned solutions for measuring similarity. A straightforward way is
by incorporating existing metrics, such as Structural SIMilarity (SSIM) [38], Wasserstein
distance [48], and the perceptual color metric CIEDE2000 [54]. Other methods [10, 32, 52]
adapted the Lp measurements to the textural properties of the image, i.e., hiding perturbations
in image regions with high visual variation. Local pixel displacement was also explored [1,
49]. In general, these solutions yield a better trade-off between adversarial strength and
imperceptibility than conventional Lp methods.

Unrestricted Adversaries with Large yet Non-Suspicious Modifications. Due to the as-
sumption of imperceptible perturbations, now considered unrealistic, as mentioned in Sec-
tion 1, recent work has started to pursue non-suspicious adversarial images with large per-
turbations, which make more sense in practical use scenarios. Common approaches to cre-
ating such unrestricted adversarial images can be divided into three categories: geometric
transformation, semantic manipulation, and color modification. The geometric transforma-
tion method penalizes image differences with respect to small rotations and translations of
the image [13]. Semantic manipulation has been so far mainly studied in the domain of
face recognition, where the perturbation is optimized with respect to specific semantic at-
tribute(s), such as colors of skin and extent of makeup [22, 36, 41].

Existing colorization-based work has explored uniform color transformation [18, 28, 39]
and automatic colorization [3]. Specifically, the early method [18] randomly adjusts the
hue values of each image pixel to search for possible adversarial images. The ColorFool
method [39] improves on [18] by imposing semantic-aware norm constraints for better image
quality, but still relies on costly random search. The ReColorAdv method [28] optimizes
color transformation over a discretely parameterized color space with post-interpolation and
regularization on local uniformity, and impose L∞ bounds on the perturbations. The cAdv
method [3] takes a different route, optimizing a pre-trained automatic colorization model
to re-colorize the gray-scale version of the original image. It increases the computational
overhead due to the huge number of parameters in the deep colorization model, and also has
been shown to cause abnormal color stains (see examples in [3] and our Figure 3).

Our ACE falls into the colorization category but is markedly different from existing ap-
proaches. Specifically, ACE creates adversarial images by optimizing with gradient informa-
tion, and, in this way, is fundamentally different from the random search-based approaches
in [18, 39]. In Section 4, we also show that our gradient-based ACE outperforms its alter-
native with random search. Our color filter is simpler and more transparent than the deep
colorization model in [3]. Compared with [28], our ACE enjoys a more elegant and contin-
uous formulation. Experimental results in Section 4 demonstrate that our ACE outperforms
these approaches in both adversarial strength and image quality.
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3 Adversarial Color Enhancement (ACE)
This section describes our proposed Adversarial Color Enhancement (ACE), which generates
visually realistic adversarial filtered images based on a commonly-used color filter. Specifi-
cally, we adopt the differentiable approximation in [19] to parameterize the color filter by a
monotonic piecewise-linear mapping function with totally K pieces:

Fθ (xk) =
k−1

∑
i=1

θi +(K · xk− (k−1)) ·θk,

s.t. 0≤ θi ≤ 1 and ∑
i

θi = 1,
(3)

where xk denotes any image pixel whose value falls into the k-th piece of the mapping func-
tion, and Fθ (xk) is its corresponding output after filtering. An example of this function with
four pieces (K = 4) is illustrated in Figure 1 (right).

Note that we are not optimizing in the pixel space but in the latent space of filter param-
eters, and the three RGB channels are operated on in parallel. The parameters θ (K in total)
can be optimized via gradient descent to achieve a specific objective. Obviously, an image
will remain unchanged (Fθ (x) = x) when all the parameters are equal to 1/K. As a result,
we propose to control over the adjustment by imposing constraints on the distance between
each parameter and its initial value 1/K. The misclassification objective and the proposed
constraints on the parameters will be jointly optimized with a balance factor λ , expressed as:

minimize
θ

f (Fθ (x))+λ ·∑
i
(θi−1/K)2, (4)

where f (·) is the C&W loss on logit differences in Equation 1.

4 Experiments
We evaluate our ACE in two different tasks: object classification and scene recognition, and
consider the following two datasets. ImageNet-Compatible Dataset consists of 6000 im-
ages associated with ImageNet class labels, and has been used in the NIPS 2017 Competition
on Adversarial Attacks and Defenses [27]. Here we use its development set containing 1000
images. Private Scene Dataset was introduced by the MediaEval Pixel Privacy task [29],

→Alex →R50 →V19 →D121 →Inc3

Alex 99.9 6.26 7.10 6.85 2.08
R50 48.50 98.3 15.83 13.21 5.96
V19 39.52 11.29 98.5 10.65 10.30
D121 46.50 18.51 15.16 98.4 5.61
Inc3 41.12 16.42 14.87 12.35 93.2

→Alex →R18 →R50

Alex 100.0 16.40 12.30
R18 48.52 99.2 22.43
R50 48.98 30.47 99.0

Table 1: White-box success rates (diagonal) and black-box transferability of our ACE in
ImageNet classification (left) and private scene recognition (right). Considered models:
AlexNet (Alex), ResNet18 (R18), ResNet50 (R50), VGG19 (V19), DenseNet121 (D121),
and Inception-V3 (Inc3). The success rates are measured with respect to the models in the
columns when applying ACE on the models in the rows.
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which aims to develop image modification techniques that help to protect users against au-
tomatic inference of privacy-sensitive scene information. It contains 600 images with 60
privacy-sensitive scene categories, selected from the Places365 dataset [55]. For the Image-
Net task, we consider five distinct classifiers that are pre-trained on ImageNet: AlexNet [25],
ResNet50 [17], VGG19 [42], DenseNet121 [20], and Inception-V3 [45]. For the scene task,
we consider AlexNet, ResNet18, and ResNet50 pre-trained on the Places365 dataset.

ACE is optimized using Adam [23] with a learning rate of 0.01, under a maximum budget
of 500 iterations. Early stopping is triggered when the optimization is no longer making
progress as implemented in [5, 37]. If not mentioned specifically, ACE is implemented with
the optimal settings, K = 64 and λ = 5. When executed on a single NVIDIA Tesla P100
GPU with 12 GB of memory and with 40 batches of 25 image samples, the implementation
in ImageNet takes about 2 seconds per image. Table 1 shows that our ACE can achieve high
white-box success rates and have good cross-model transferability. It can also be observed
that models with more sophisticated architecture are generally harder to fool in the white-
box case, and transferring from a sophisticated architecture to a simple one is easier than
the other way around. Note that the transferability is calculated on images for which the
prediction of both the models involved is the same.

4.1 Comparisons on Adversarial Strength and Image Quality
We further compare ACE with the following gradient-based baseline methods in terms of
adversarial strength and image quality, in the ImageNet task:
FGSM [16] with a L∞ norm bound ε = 2/255 for ensuring imperceptibility.
BIM [26] with a L∞ norm bound ε = 2/255, and 10 iterations of gradient descent.
C&W [5] optimized on L2 with fewer iterations and higher confidence level (iters=3×100
and κ = 40) than usual to yield larger perturbations for stronger adversarial effects.
ReColorAdv [28] (Unrestricted) with ε = 16/255 and lr=0.001 as in [28], and another ver-
sion allowing larger perturbations (ε = 51/255 and lr=0.005), denoted as ReColorAdv+.
cAdv [3] (Unrestricted) with the settings leading to optimal color realism (k = 8). Note that
cAdv can only produce adversarial images sized 224×224 due to the fixed output resolution
of its pre-trained deep colorization model.

We adopt Inception-V3 as the white-box model because it is the official model used
in the NIPS 2017 Competition. As shown in Table 2, ACE can consistently achieve better

Lp Norm Success Rate
L0 (%) L2 L∞ Inc3 →Alex →R50 →V19 →D121

FGSM [16] 49.34 4.05 2.00 78.10 7.84 5.40 5.74 5.50
BIM [26] 39.23 3.09 2.00 99.1 8.16 4.95 6.44 4.71
C&W [5] 29.06 3.00 15.66 99.6 8.16 4.72 6.79 4.38

ReColorAdv [28] 70.81 18.87 64.00 79.3 9.76 4.50 3.40 2.58
ReColorAdv+ [28] 82.50 47.53 97.21 89.2 31.20 15.64 13.58 10.77
cAdv [3] 41.42 20.54 116.15 91.8 30.08 11.25 11.01 13.47
Our ACE 42.99 40.61 45.98 93.2 41.12 16.42 14.87 12.35

Table 2: White-box success rates and black-box transferability of our ACE compared with
other baselines. L0 is the proportion of the perturbed pixels and L∞ is shown in [0,255]. Here
the Inception-V3 is used as the target white-box model.
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Figure 2: Adversarial images and perturbations by our ACE and Lp methods FGSM [16],
BIM [26] and C&W [5]. ACE yields more natural appearances without abnormal patterns.

Figure 3: Examples from three different unrestricted methods. From left to right: original
image, adversarial images generated by cAdv [3], ReColorAdv+ [28], and our ACE. ACE
yields more acceptable images with smooth appearances and fewer artifacts.

transferability than conventional Lp methods, while not introducing visually suspicious noisy
patterns (see Figure 2). Iterative Lp methods (BIM and C&W) could achieve the strongest
white-box adversarial effects by fully leveraging the gradient information, but these effects
are less generalizable to other unseen models, i.e., worse transferability. Among the unre-
stricted methods, our ACE achieves the highest white-box success rates and overall best
transferability, while yielding smooth adjustment without abnormal colorization artifacts
(see Figure 3). Such smoothness is also reflected in L∞ norms that are lower than other
unrestricted methods, meaning that ACE tends to avoid excessive local color changes.

4.2 Ablation Study

Hyperparameters. Figure 4 (left) shows the success rates of ACE with a different number
of pieces K under different factor λ values used for balancing the two loss terms in the
joint optimization. We can observe that increasing K slightly improves the performance
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Figure 4: Left: White-box success rates of ACE when varying the number of pieces K with
four different λ values. Right: Adversarial images with varied λ . For each example, from
left to right: original image, adversarial images with λ =10, 5 and 0. Too large a λ makes
ACE not reach its full potential, while setting λ = 0 may cause unrealistic colorization.

by expanding the action space of the adversary. Moreover, increasing K allows more fine-
grained color adjustment in the images that have rich colors. It should also be noted that
using more pieces means more computational cost during the optimization.

On the other hand, relaxing the constraints by decreasing λ gives the adversary larger
action space, leading to higher success rates. However, completely removing the constraints
(λ = 0) will lead to unrealistic image appearances, as can be observed in Figure 4 (right).
Specifically, in this paper, we use K = 64 and λ = 5 as optimal settings for a good trade-off.
Gradient Descent vs. Random Search. We compare our gradient-based ACE with a ran-
dom search-based implementation using the same color filter. In this case, the parameters
will be updated with gradient information in our ACE, while being uniformly sampled from
the valid range [0,1] for random search.

Figure 5 shows their white-box success rates as a function of iterations. For random
search, we repeat several times and got almost the same results. We can observe that our
ACE consistently outperforms random search, even with far fewer iterations. Moreover, ACE
gradually improves as the number of parameters K increases, indicating that it can benefit
from the expanded action space for more fine-grained color adjustment. In contrast, random

Figure 5: White-box success rates for our ACE (left) and random search (right) as a function
of maximum allowed iterations. Note that the scales on the two x-axes are not the same.
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Figure 6: Adversarial filtered images by ACE with guidance of specific image filters. Two
Instagram filters are considered: Hefe (top) and Gotham (bottom). For each, from left to
right: original image, Instagram filtered image and adversarial filtered image by ACE.

search becomes increasingly worse since the potentially successful adversarial samples can
no longer be feasibly found in the exponentially expanded parameter space. For comparison
we mention that, the grid search-based ColorFool [39] has a success rate of 64.6% (65.4%)
with 1000 (1500) iterations when testing on our dataset with the Inception-V3 as the white-
box model.

5 ACE Extensions

Adaptation on Image Styles. Previous work [9] has pointed out that popular image en-
hancement practices can potentially degrade automatic inference. Despite our ACE in Equa-
tion 4 achieving visually acceptable results, it is not directly optimized towards enhancing
image quality. Therefore, we explore the possibility to guide ACE towards achieving quality
enhancement in addition to the adversarial effects. Specifically, we propose to optimize the
adversarial image towards specific attractive styles that were obtained by using Instagram
filters. Accordingly, the optimization objective is adjusted to:

minimize
θ

f (Fθ (x))+λ · ‖Fθ (x)− xt‖2
2, (5)

where xt denotes the target Instagram filtered image, and the final adversarial filtered image
Fθ is therefore guided to have similar appearances with xt by minimizing their distance. As
shown in Figure 6, this adaptation of ACE can successfully enhance the image by mimicking
the effects of Instagram filters.
Adaptation on Semantics. ACE treats all the image pixels that have the same values in
the same way. Inspired by previous work [3, 39], we show that semantically adapting ACE
could better maintain image quality by hiding large perturbations in the semantic regions
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Figure 7: Adapting ACE on different semantics. Original image (left), successful adversary
with stronger constraints for cat but weaker for blanket (middle), or vice versa (right). The
middle case yields more realistic results since blanket naturally occurs with various colors.

that remain realistic with various colors. Specifically, Equation 4 is adapted to:

min
θ

∑
n
[J(Fθ n(x ·Mn))+λ ∑

i
wn · (θni −1/K)2], s.t. ∑

n
wn = 1, (6)

where wn is the weight for the n-th filter, Fn
θ
(·), which is optimized independently for a spe-

cific semantic region given its mask Mn obtained by a semantic segmentation method [24].
As shown in Figure 7, this adaptation avoids raising the sense of unrealistic colorization,
leading to improved image quality.

6 Conclusion

We have proposed Adversarial Color Enhancement (ACE), an approach to generating unre-
stricted adversarial images by optimizing a color filter via gradient descent. ACE has been
shown to produce realistic filtered images with good transferability, which results in strong
real-world black-box adversaries. We also present two potential ways to improve ACE in
terms of image quality by guiding it with specific attractive image styles or adapting it to
regional semantics.

In the current ACE, the single hyperparameter of the filter (K in Equation 3) is per-fixed
for all images without considering their individual properties. Since natural images would
differ in the range and complexity of their contained colors, adaptive strategies would be
worth exploring in order to yield more suitable modifications. For example, images with
most pixels concentrated in a certain color range should have larger action space in that
range than those with more uniform color distribution. It would also be interesting to carry
out user study on the visual quality of the images generated by ACE. On the other side,
developing defenses against the proposed adversarial color filtering is necessary to make
current neural networks more robust, based on either adversarial training or algorithms for
detecting adversarial modifications by ACE.
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