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Abstract
Modern cameras are not designed with computer vision or machine learning as the

target application. There is a need for a new class of vision sensors that are privacy pre-
serving by design, that do not leak private information and collect only the information
necessary for a target machine learning task. In this paper, we introduce key-nets, which
are convolutional networks paired with a custom vision sensor which applies an opti-
cal/analog transform such that the key-net can perform exact encrypted inference on this
transformed image, but the image is not interpretable by a human or any other key-net.
We provide five sufficient conditions for an optical transformation suitable for a key-net,
and show that generalized stochastic matrices (e.g. scale, bias and fractional pixel shuf-
fling) satisfy these conditions. We motivate the key-net by showing that without it there
is a utility/privacy tradeoff for a network fine-tuned directly on optically transformed im-
ages for face identification and object detection. Finally, we show that a key-net is equiv-
alent to homomorphic encryption using a Hill cipher, with an upper bound on memory
and runtime that scales quadratically with a user specified privacy parameter. Therefore,
the key-net is the first practical, efficient and privacy preserving vision sensor based on
optical homomorphic encryption.

1 Introduction
Modern cameras are not designed with computer vision or machine learning as the target
application. Security cameras are designed for professionals performing a forensic video
analysis task, such that full images of a scene are collected which contain much more infor-
mation about a scene than may be necessary for a target computer vision task. For example,
a vision sensor with the task of face detection does not need images of nearby objects in the
background, however traditional cameras collect imagery of the entire scene that can reveal
much more information than intended. This is especially true for imagery collected in private
spaces such as homes or businesses. Ideally, a vision sensor is privacy preserving, such that
it never forms a human recoverable image that could leak information and violate end-user
privacy if exposed without consent.
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Figure 1: (left) A keynet is a convolutional network paired with a custom vision sensor
which optically transforms an image such that the keynet can perform exact inference on
this transformed image. The observed sensor measurement is not interpretable by a human
(or any other keynet) without knowledge of the private key, which is encoded in the optics
of the privacy preserving vision sensor. (right) A keynet is designed to perform inference
on optical/analog encrypted inputs, by generating keyed layers from a source conv-net. The
output of the keynet is equivalent to the encrypted output of the source conv-net, without
ever exposing the private image of the scene or the private weights of the conv-net.

There is a need for novel design for visual sensors that are privacy preserving. Our
goal is to replace traditional lens-based imaging system with a new visual sensor designed
with novel diffractive or reflective optics, optimized for input to machine learning (ML)
algorithms. Existing cameras have been successfully used for machine learning, however
in order to protect privacy, such cameras require digital encryption and are vulnerable to
exploitation through third party eavesdropping which risks making private images public.
Our objective is to develop a coupled vision sensor and ML system that: (i) does not create a
human interpretable image, (ii) the ML system can perform inference directly on the sensor
measurements, (iii) the ML system is “keyed” so that inference can only be performed on
observations from the target sensor, (iv) the parameters of the ML system are encrypted and
cannot be inspected or repurposed by an adversary and (v) images are encrypted and can
only be recovered with knowledge of the secret key physically encoded in the optics.

In this paper, we introduce keynets. A keynet is the combination of a novel vision sensor
and a convolutional network designed specifically for this vision sensor. The sensor incor-
porates an optical transformation in the optical imaging chain that transforms an image to
be uninterpretable by a human. However, the convolutional network can be designed to per-
form inference on this optically transformed measurement without requiring an inversion of
the optical transformation. This coupling of sensor and machine learning system enforces
privacy preserving vision sensing because a human interpretable image is never constructed
and only the keyed convolutional network can be used for inference on this sensor. This
forms a privacy preserving vision sensor that does not leak personal or private information
and cannot be repurposed to another ML task.

The key contributions of this paper are:

1. Optical transformation requirements. We describe five sufficient conditions for an
optical transformation realizable in the optics of a sensor to enable the design of a
keynet from a given source convolutional network.

2. Keynet specification. We introduce the design of a keynet to perform inference on the
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optical/analog transformation of the vision sensor, and show that a feasible family of
optical transformations is based on generalized stochastic matrices. This parameteri-
zation includes a user specified privacy parameter (a).

3. Optical element simulation. We show that the vision sensor can be physically realized
using optical 3D printed fiber bundles and analog gain preprocessing, as shown by
end-to-end simulated performance.

4. Optical homomorphic encryption. We show that a keynet is equivalent to a homomor-
phic encryption based on the Hill cipher [27], which is physically realized in the optics
of the vision sensor. We describe two well known weaknesses of the Hill cipher and
argue that while these weaknesses are present for a generic cryptosystem, they do not
introduce a practical risk for a privacy preserving vision sensor.

2 Related Work
The related work can be broadly categorized into three areas: visual sensors for machine
learning, design of novel computational optics and homomorphic encryption.

First, sensors for machine learning considers redesigning vision sensors for a targeted
machine learning task. An example is the movement of early layers of a convolutional net-
work into the optical [6][16][19][59] or analog processing [12] in order to reduce power
consumption. The trend towards optical processing has progressed to consider an all-optical
convolutional network [39], nanophotonic CNN systems [42][70] or optical and analog
CNN hybrids [15] to address the challenges of non-linearities in CNN architectures. Re-
cently, there has also been work adapting adversarial learning principles for vision sensor de-
sign [17][37][41][44][50][51][68][69]. However, these privacy preserving approaches have
demonstrated a clear (and undesirable) privacy/utility tradeoff, such that privacy increases
at the expense of primary ML task performance. Our goal is to enable privacy preserving
visual sensing without this privacy/utility tradeoff.

The design and fabrication of novel visual sensors considers introducing new compu-
tational optics or in-sensor analog computation suitable for a target application. For ex-
ample, a coded aperture sensor [1][2][4][8][14][22][23][36] replaces the lens with phase
masks realized as diffractive optical elements (DOEs) [1][4][57], such that imagery can
be recovered using computational photography techniques. Such reconstruction-based ap-
proaches are also limited by a privacy/utility tradeoff [13][60]. Recent approaches attempt
to eliminate the reconstruction task, but are limited by strict camera assumptions and vision
tasks [20][21][67][72] or design sensors that produce partially human-interpretable images
[10][31][32][47][48][49][71]. Sensor design has considered angle sensitive [16][63] or dif-
ferential [62] pixels to compute precise motion or angle distribution of the light field, and
single photon avalanche diodes [34][55] for ultrafast observations. Recent work on 3D print-
ing based on two-photon lithography [64] has made possible mass production of custom op-
tical elements at large scales. Our goal is to leverage this capability to design novel privacy
preserving optical elements.

Homomorphic encryption (HE) [7][24][29][45] is a form of encryption which allows spe-
cific types of computations to be carried out on ciphertext and generate an encrypted result
which, when decrypted, matches the result of operations performed on the plaintext. Ho-
momorphic encryption has been applied to convolutional networks to perform computations
on encrypted images in: CryptoNets [18][25], FHE-DiNN [9], cryptoDL [26], MiniONN
[40] and Homomorphic CNNs (HCNNs) [5]. These approaches suffer from: inefficient
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runtime performance, integer discretized weights [9][25], limited network depth due to in-
creasing noise effects [5], polynomial approximations to non-linear activation layers [25] or
exhibit only partially homomorphic encryption for only additive or multiplicative compu-
tations [11][29][54]. Our goal is to enable optical homomorphic encryption that does not
suffer from these restrictions, but with weaker guarantees on security that we will argue is
an appropriate tradeoff for a visual sensor.

3 Keynets
A keynet is an optically transformed convolutional network that can perform inference on
data collected using a specifically designed sensor. In this section, we describe requirements
for optical transformation (§3.1) and network construction (§3.2-3.4) and optical realization
(§3.5). Privacy analysis is provided in supplemental material (§A.7).

Figure 1 shows an comparison of a keynet and a conv-net. In this example, there is a raw
image vectorized to (x0) which is input to a k-layer convolutional network. This network
is composed as xk = N (x0), includes linear and non-linear layers, such that linear layers
are represented as a sparse Toeplitz matrix (W ) and the network outputs inference result xk.
The keynet uses private layer keys Ai to transform the network weights Ŵ = AWA�1, such
that the source weights cannot be factored to recover either A or W . The keynet is paired
with a custom vision sensor that physically realizes the private image key A0 in an optical
and analog transformation chain. Finally, we will show that if the non-linear layers of the
source conv-net are limited to ReLU, then the keynet can operate on the transformed input
x̂k = N̂ (x̂0) and x̂k = Akxk. We call this approach optical homomorphic encryption.

Keynets assume the following public and private information. First, the image key A0 is
secret. The physical sensor containing image key A0 is secret, and controlled with physical
security (e.g. in a locked room). The source convolutional network N is secret. The keyed
convolutional network N̂ is public. Optically transformed images (A0x) are public, and raw
images (A�1

0 A0x) are only recoverable with the secret image key. Output inference results
can be either public or private (§3.4), and if private can only be recovered knowing the secret
embedding key, Ak. The keyed convolutional network N̂ cannot be used to recover A or W ,
due to the hardness of non-negative matrix factorization (§A.7.1). Therefore, an adversary
would be able to observe only the encrypted inference result N̂ (A0x), an uninterpretable
image (A0x) and the keyed layer weights (Ŵ ) but not the raw image (x0) or the weights of
the source network (W ) or the raw inference (xk).

3.1 Optical Transformation Function
Consider a family of transformation functions F . A transformation function f 2 F must
satisfy the following five sufficient feasibility conditions to be considered an optical trans-
formation function:

1. Linear. The function f must be linear ( f = A).
2. Invertible. Matrix A must be positive definite.
3. Non-negative. A � 0 for all matrix elements.
4. Commutative. There exists a non-linear activation function g that is commutative with

A, such that A(g(A�1x)) = g(AA�1x) = g(x).
5. Sparse. Given an A 2 F and B�1 2 F , there exists an upper bound such that for any

sparse matrix W , the product AWB�1 is sparse with |AWB�1|0  s|W |0.
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Condition 1 states that the transformation function must be linear, since optical image for-
mation can be modeled as a linear transformation. Note that this is not a necessary condition,
as optical propagation can include non-linear effects due to non-linear optics or diffraction.
Condition 2 states that the transformation is lossless and the original image can be recov-
ered by A�1Ax. Condition 3 limits a matrix to be physically realizable as a linear optical
element and closely connects the proposed framework with the computational complexity of
non-negative matrix factorization. Condition 4 enables inference in optically encrypted con-
volutional networks with non-linear activation function layers. Finally, Condition 5 ensures
that the end-to-end inference in the optically encrypted convolutional network is efficient and
does not require the product of an infeasibly large dense matrix. A family of transformation
functions F is defined to be an optical transformation function if all members of the family
satisfy the five feasibility conditions.

3.2 Optical Transformation Convolutional Networks
Consider a convolutional network N (x) which is the composition of Nk layerwise functions:

N (x) =Nk(Nk�1(...N1(x))) (1)

Given an optical transformation function A and a raw image x, x̂ = Ax is the optical transfor-
mation of the raw image into a sensor observation x̂. First, we will consider the case where
N is linear only, then we will extend to consider a full conv-net with non-linear layers.

Consider the case where all layers are linear. In this case, layers Ni = W are given
by a weight matrix W which encodes the linear transformation of a trained convolutional
network. For example, in a typical conv-net, linear layers include convolutional, affine, fully
connected, dropout and average pooling layers. Note that since a convolution is a linear
operation, it can be represented as a matrix in the form of a sparse Toeplitz matrix, where
the kernel is replicated rowwise. Furthermore, multi-channel tensor inputs can be flattened
to a vector x, such that the linear transformation of the layer is the matrix product of a sparse
weight matrix and dense data vector. Finally, note that without loss of generality, a bias b
can be applied by projective embedding x = [x 1]T and affine augmentation [W b;0 1]. Then,
the conv-net simplifies to a matrix product:

N (x;W ) = ’
k

Wkx (2)

where the notation N̂(x;W ) corresponds to network N with input x and parameters W . Given
an optical transformation function A, the input Ax can be trivially input to the convolutional
network as N (A�1Ax) by inverting the data prior to inference. However, this requires expos-
ing the image to the network. An ideal network would be able to perform inference directly
on the optically transformed input, Ax, without requiring inversion.

The linear convolutional network can be constructed to operate on optical transformed
inputs as follows. Linear layers can be replaced by keyed layers Ŵ = AWA�1 using secret
layer keys Ai, and a secret image key A0 such that:

N (x;W ) = AkWK . . .(A2W2A�1
1 )(A1W1A�1

0 )A0x (3)

Recall that the keys A and inverse A�1 exist by conditions 1 and 2. By associativity, terms
(A�1A = I) cancel, so it follows that (3) is equivalent to (2). Furthermore, by associativity,
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Figure 2: Generalized Doubly Stochastic Matrices combine optical and analog processing to
form a human uninterpretable image (bottom right), while preserving the flexibility for par-
tially interpretable images (middle column) that is similar to etched “optical privacy glass”.

terms can be grouped into the product Ŵ = AWA�1. Condition 3 requires that elements of
A are non-negative, which enables a proof that the factorization of Ŵ is equivalent to non-
negative matrix factorization, which is NP-hard in general (§A.7.1). This protects recovery
of A from Ŵ . Finally, by condition 5, the product AWA�1 is sparse, and is at most a factor of
a less sparse than W . This bounds the complexity of matrix multiplication Ŵx to be at most
a times slower than Wx. This enables a practical linear convolutional network operation that
preserves sparsity of Ŵ does not require operations on an impossibly large dense matrix.

Let N (Ax;Ŵ ) be the shorthand notation for the keyed network formed from keyed layers
Ŵ on transformed input A0x, such that:

N (A0x;AWA�1) = ’
k

ŴkA0x (4)

Finally, by associativity, it follows that AkN (x;W ) =N (A0x;AWA�1), since (4) is shorthand
for (3) and we previously showed that (3) is equivalent to (2). This is a homomorphism, such
that the transformed conv-net output on the original image x is equivalent to the keyed conv-
net output on the optical transformed image A0x.

Next, consider a non-linear activation function g. An activation function is a non-linear
function typically used in a convolutional network structure to generate the output of a node
given inputs. For example, common non-linear activation layers include rectified linear unit
(ReLU), tanh and sigmoid. By condition 4, we assume that there exists a function g such
that g and A are commutative:

Ag(A�1x̂) = g(AA�1x̂) = g(x̂) (5)

This assumption simplifies the non-linear layer to operate directly on the input, which allows
the non-linear layer to be included in the keynet without modification.

Finally, any combination of linear and commutative non-linear layers can be composed
into a keynet as follows.

Ni =

(
Ni(xi�1, AiWA�1

i�1) if Ni linear
Ni(xi�1) if commutative non-linear

(6)

This shows that the keyed network can be constructed with an optical transformation func-
tion A to enable the homomorphism AkN (x;W ) =N (A0x;AWA�1). Inference in the keyed
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network on the optical transformation is equivalent to inference in the source network on
the raw image. This construction enables efficient inference (condition 5) and is secure
from recovery of A (condition 3). Therefore, N (Ax;AWA�1) is a homomorphic encryption
scheme for inference of linearly encrypted images in a keyed conv-net. We call this optical
homomorphic encryption.

3.3 Generalized Doubly Stochastic Matrices
Section 3.1 specified the five conditions for a feasible optical transformation function. Sec-
tion 3.2 showed that a feasible optical transformation function can be used to construct a
convolutional network that operates directly on optical transformed input. In this section, we
show that the family of generalized doubly stochastic matrices satisfies the conditions of an
optical transformation function, for choice of activation function g = ReLU.

A doubly stochastic matrix is defined as follows. First, a permutation matrix or mono-
mial matrix P is a square matrix that has exactly one entry of one in each row and each
column and zero elsewhere, and is constructed by permuting the rows of an identity matrix.
A doubly stochastic matrix is a non-negative matrix such that each row and column sums to
one, that encodes a “soft” permutation. It is well known (i.e. the Birkhoff–von Neumann
theorem) that every doubly stochastic matrix can be decomposed into a convex combina-
tion of permutation matrices. A generalized doubly stochastic matrix has arbitrary non-zero
entries without requiring the rows and columns to sum to one. This matrix can be defined
as the product of a diagonal matrix D and a doubly stochastic matrix defined as a convex
combination of a permutation matrices:

P = D Â
ia

qiPi (7)

where P = Âi qiPi such that Âi qi = 1, q � 0. The convex coefficients q are selected to
enforce that P is positive definite. The parameter a encodes the “softness” of the stochastic
matrix such that larger a is more stochastic, and a = 1 is equivalent to a permutation matrix.
Furthermore, observe that D can be extended to encode an (optional) additive bias b through
an affine augmentation as [D b;0 1]. The term D encodes an elementwise multiplicative
scaling and additive bias or photometric degradation, while the term P encodes a pixelwise
fractional shuffling or geometric degradation.

A generalized doubly stochastic matrix satisfies the five conditions of an optical trans-
formation function (§3.1).

1. Linear. P is a linear function as represented by a square matrix DP.
2. Invertible. P is positive definite if and only if both D and P are positive definite. A

sufficient condition for P to be positive definite is selecting q in (7) such that P is
diagonally dominant, and enforcing diag(D) > 0.

3. Non-negative. P is non-negative by construction. If D is restricted to have strictly
positive diagonal entries diag(D)> 0, then P is both non-negative and positive definite.

4. Commutative. Let g(x) = ReLU(x) and A be restricted to a generalized permutation
matrix (e.g. a = 1 for eq. 7). Given this restriction, lemma A.1 in the supplementary
material provides a proof of commutativity.

5. Sparse. Given an a , there exists a selection of A 2 P and B�1 2 P such that the product
|AWB�1|0  a2|W |0, which is an upper bound on sparsity for s = a2. Lemma A.2 in
the supplementary material provides proof of this sparsity upper bound.
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3.4 Stochastic Keynets

Section 3.1 specified the five conditions for a feasible optical transformation function. Sec-
tion 3.2 showed that a feasible optical transformation function can be used to construct a
convolutional network that operates directly on optical transformed input. Section §3.3)
showed that the family of generalized doubly stochastic matrices (e.g. “soft” permutation
matrices) satisfied the conditions of an optical transformation function, for choice of activa-
tion function g = ReLU. A stochastic keynet is defined as the selection of doubly stochastic
matrices for keying and ReLU for non-linear activation.

Figure 2 shows examples of generalized stochastic matrices. The horizontal scale shows
optical transformations for increasingly random shuffling due to doubly stochastic matri-
ces. The vertical scale shows analog transformations for increasingly large gains due to the
diagonal matrices. The combination of these two effects results in a transformed sensor
measurement in the bottom right that is uninterpretable to a human observer.

Construction of a stochastic keynet is as follows:

1. Select a pre-trained source conv-net N that contains only linear and ReLU layers, and
a user selected privacy parameter a on Fa .

2. Randomly select a secret image key A0 2Fa . This is physically realized in the optical
and analog imaging chain for a vision sensor as described in section 3.5.

3. If layer Ni is convolutional, randomly select secret layer key Ai 2 Fa . Convert con-
volutional kernel to a sparse Toeplitz matrix and keyed layer following (3). If the
convolution includes a bias term, perform an affine augmentation of the Toeplitz ma-
trix as: [W b;0 1], with projective embedding of input tensor [x;1]. If the layer includes
a downsampling stride, the layer keys encode the proper shape.

4. If Ni is ReLU, randomly select secret layer key Ai 2 Fa=1 such that Ai is restricted to
be a scaled permutation matrix. Transform the input g(AiA�1

i�1x).
5. If Nk is the output layer, select embedding key Ak = I if the inference result is public

data, else randomly select Ak 2 Fa if the inference is private data.
6. Compose the stochastic keynet N̂ (A0x; AWA�1) from N (x) following (6).

The stochastic keynet has two restrictions on allowable conv-net topologies. The only
non-linear layer supported by this network is ReLU or ReLU-like variants (e.g. Leaky-
ReLU, Parametric ReLU), as this activation function is commutative with the proposed op-
tical transformation function. All other non-linear layers are unallowable including: max-
pooling, local response normalization (LRN), sigmoid, tanh and softmax. However, all-
convolutional networks have shown that replacing max-pooling with average pooling and
limiting activation functions to ReLU maintains state-of-the-art performance [58]. We ex-
perimentally validate this claim in section 4.

Finally, the keynet exhibits a tradeoff between privacy and memory. A naive Toeplitz
matrix construction has O(N2K) additional parameters than the source network for a layer
input tensor of size (N,N) with K channels. However, these replicated channels are highly
compressible. In our supplemental software, we introduce a sparse matrix format that lever-
ages repeated submatrices as “tiles”. In general, the keynet memory requirements scale as
O(a2KT ), given an additional tiling factor T dependent on the sparse matrix storage format.
We show keynet memory requirements as a function of privacy parameter a in section 4.
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Figure 3: Simulation of a 3D printed optical fiber bundle [64] and analog preprocessing to
realize a generalized doubly stochastic matrix.

3.5 Optical Realization
The sufficient conditions for an optical transform in section 3.1 define a feasible family of
transformations for use in a privacy preserving vision sensor. In the supplemental material
(§A.5), we show that the selected family of optical transforms based on generalized stochas-
tic matrices can be physically realized using an analog and optical processing chain based on
3D printed incoherent fiber bundle faceplates. An optical fiber bundle faceplate is an optical
element constructed using a bundle of multi-micron-diameter optical fibers bundled into a
thin plate with polished faces. A simulated example is shown in Figure 3.

4 Experimental Results
A privacy preserving vision sensor must consider the joint design of the sensor and the ML
system. To justify this claim, we consider the following three experiments:

1. Frozen System. Does there exist an optical transformation that degrades the input im-
age, while preserving performance of a pre-trained ML system? If such a transformation
exists, then a keynet would be unnecessary, since a conv-net could be applied directly to the
degraded image, and the degraded image would not be human interpretable. Experimental
results show that the maximum degradation for a pre-trained network to minimize human
perception [53][65] while preserving network performance is still clearly human observable.
This provides evidence that preserving image privacy requires joint design of the ML system
and the transformation. See supplemental material (section A.6.1), for detailed results.

2. Trained System. Can we jointly train an optical transformation and a conv-net to maxi-
mally degrade an image while minimizing an ML task loss? This would also render a keynet
unnecessary, as fine-tuning a conv-net on degraded images would suffice. Experimental
results show that jointly learning an image degradation and a network encoding using an
adversarial loss can sufficiently degrade an image to render it uninterpretable by a human.
However, this strategy introduces an undesirable privacy/utility tradeoff where face identifi-
cation performance degrades by 12% and object detection degrades by 55%. This provides
further evidence that preserving image privacy requires keying to preserve the source conv-
net performance. See supplemental material (section A.6.2 ) for detailed results.
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⍺ LeNet AllConvNet VGG-16 LeNet AllConvNet LeNet AllConvNet LeNet AllConvNet
Baseline (no privacy) - 0.106 1.435 145.0 0.989 0.991 0.742 0.904 0.646 0.866
Keynet 2 0.111 6.131 221.7 0.989 0.991 0.742 0.904 0.646 0.866
Keynet (more privacy) 4 0.113 27.1 391.5 0.989 0.991 0.742 0.904 0.646 0.866
Keynet (most privacy) 8 0.181 100.1 1309.1 0.989 0.991 0.742 0.904 0.646 0.866

CIFAR-10 (sim)Network Parameters (M) MNIST CIFAR-10

Figure 4: Keynet results. Model parameters and classification accuracy on raw and optically
simulated images for a small (lenet), medium (allconvnet) and large (VGG-16) conv-net and
a keynets with increasing privacy a = {2,4,8}.

3. Keyed System. What is the simulated performance of the keynet and proposed vision
sensor from Section 3.5? To demonstrate proof of concept of the proposed keynet, we have
implemented key-net construction as outlined in section 3.4 in PyTorch. This prototype
software exhibits exact inference performance to within floating point error. Furthermore, we
simulated the keynet optical element shown in Figure 3 with simulation strategy described in
detail in the supplemental material (section A.5). Results are shown in table 4 for the keynets
for three baseline conv-nets.

Table 4 shows experimental for three conv-net topologies: 5-layer LeNet, an 11-layer
All-Convolutional network [58] and a VGG-16 network [56]. All networks were constructed
replacing max-pooling with average pooling, as per the keynet requirements. Results show
the keynet memory requirements for a small (LeNet), medium (AllConvNet) and large (VGG-
16) conv-net as a function of the privacy parameter (a). Naive implementation of the Toeplitz
matrices in (4) results in an inefficient row-wise replication of the convolutional kernel. In
our supplemental software, we introduce a new tiled sparse matrix format which provides
compression of repeated submatrices. This results in a memory requirement for the keyed
network on the order of 4-8x larger than the unkeyed network, depending on the selection
of the privacy parameter a . Next, we trained keynets on MNIST [33] and CIFAR-10 [30],
using raw images, or simulated optically transformed images from Section 3.5. Results show
that the keynet achieves exact inference performance with the baseline, and that the optical
simulation results in slightly degraded performance due to minor blurring of the image from
fiber cross-talk. This provides proof of concept in simulation for the keynet optical element.

5 Conclusions

In this paper, we introduced keynets, which are the first practical optical homomorphic en-
cryption scheme for the design of privacy preserving vision sensors. Our experimental re-
sults justify next steps which include: a comprehensive study of keynet semantic security as a
function of privacy parameter a , GPU optimization of sparse tiled matrix-vector multiplica-
tion to improve runtime and creation and testing of a prototype optical element. Keynet soft-
ware for reproducible research is available for download at https://visym.github.io/keynet.
This includes two prize challenge images and public keynets for attack (§A.7.4) to encour-
age collaborative discovery of weaknesses in keynet security.
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