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Abstract

Unpaired multimodal image-to-image translation is a task of converting a given im-
age in a source domain into diverse images in a target domain. We propose two ap-
proaches to produce high-quality and diverse images. First, we propose to encode a
source image conditioned on a given target style feature. It allows our model to generate
higher-quality images than existing models, which are not based on this method. Sec-
ond, we propose an information-theoretic loss function that effectively captures styles
in an image. It allows our model to learn complex high-level styles rather than sim-
ple low-level styles, and generate perceptually diverse images. We show our proposed
model achieves state-of-the-art performance through extensive experiments on various
real-world datasets.

1 Introduction
Unpaired multimodal image-to-image translation (multimodal translation) is a task of trans-
lating an image belonging to one domain into diverse images in another domain without
aligned data across the two domains. Multimodality means that a single image can be trans-
lated into diverse images in the other domain. For instance, the man in the first row of Fig. 1
can be converted into many different styles of women. We will define content as a factor
that is invariant between domains (e.g., angle of face and gaze) and style as a varying factor
within each domain (e.g., hair length, make-up, and beard). Multimodal translation is a chal-
lenging task because it should achieve high-quality and high-diversity of generated images
at the same time, i.e., both high-quality but low-diversity images and high-diversity but low-
quality images are not desirable. Our aim is to achieve them at the same time by focusing on
two issues with the existing multimodal translation models as follows.

The first issue is that the existing multimodal translation models independently encode
the source image and the target image with the two separate encoders [13, 21, 25]. In other
words, one encoder extracts information only from a given image without considering what
information is extracted from the other encoder. In contrast, when encoding the source
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Figure 1: Results of our proposed model (MISO). Given the source image on the leftmost,
MISO can generate high-quality and diverse images with the different high-level styles (e.g.,
different hairstyle, age, and skin color in Male↔Female) rather than manipulating the low-
level styles such as overall color tone (for the low-level styles, please see the results of
other models in Fig. 3). Additionally, MISO can control fine variations such as make-
up (Male→Female), cloud shape (Summer→Winter), and light reflection (Edges→Shoes).
More results are in the supplementary material.

image, our model allows the encoder to consider which target style is applied to the source
image by using the concatenated source image and given target style feature as an input
of the encoder. Then, the output feature is decoded to an image in the target domain. We
assume that this encoder is encouraged to extract information from a source image that is not
contained in the given target style feature but necessary to complete a high-quality image.
We call this architecture style-conditioned encoder because our model extracts feature from
the source image conditioned on the target style feature. It allows our model to generate
higher-quality images than the existing models.

The second issue is that the self-reconstruction (SR) loss at an image level used in most
multimodal translation models [13, 21, 25] is inadequate to properly learn the styles that
play an important role in multimodal translation. Before discussing the SR loss, it is nec-
essary to consider the style. It is difficult to estimate styles from a single image accurately.
For example, in a human face, hair color and skin color may look different depending on
lighting conditions. This uncertainty makes it difficult to estimate accurate styles from an
image. In this regard, the assumption that an image has a deterministic style feature may not
be sufficient. Instead, to learn the styles involved in an image considering the uncertainty,
treating style feature as a random variable may be more effective because a random variable
can take into account uncertainty and variation given a particular image. However, the SR
loss is simply computed on the mean value [18, 23], which may not be the best to learn
the complex styles in an image considering the uncertainty. This can be critical for multi-
modal translation model because what styles are learned is largely related to the diversity
of generated images. If the model learns simple low-level styles such as overall color tone,
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MUNIT DRIT MSGAN MISO(OURS)

MI LOSS × × ×
√

STYLE-CONDITIONED ENCODER × × ×
√

LATENT VARIABLE DV RV RV RV

Table 1: Comparisons of MISO with previous models. The last row, named as a latent
variable, shows whether each model interprets the style latent variable as a deterministic
value (DV) or a random variable (RV).

the generated images will not be perceptually diverse. Thus, we adopt a loss function based
on mutual information, which is similar to InfoGAN [6], that can estimate the underlying
uncertainty or the variance of the styles. Through comparative experiments with SR loss, we
show that the proposed loss is effective to learn complex high-level styles rather than simple
low-level styles and allows our model to generate perceptually diverse images.

Based on these ideas, the main contributions of this work include the following:
•We model an improved framework for multimodal translation with the style-conditioned

encoder. It enables our model to generate higher-quality images than the existing models.
• We introduce a loss function that improves over the self-reconstruction loss. This

loss function uses mutual information to effectively learn the styles. It allows our model to
learn complex high-level styles rather than low-level styles and generate perceptually diverse
images.
• Using extensive experiments on numerous datasets and metrics, we show that our

model produces the highest-quality yet diverse outputs in comparison to state-of-the-art mul-
timodal translation models.

2 Related Work

2.1 Multimodal Image-to-Image Translation

Image-to-image translation has shown the remarkable performance in the various areas such
as colorization [22, 28], super resolution [20, 26], and image synthesis [2, 3, 7, 8]. How-
ever, early image-to-image translation models [16, 31] can only generate a single output for
a single input. BicycleGAN [32] proposed two-phase training using paired data to produce
multimodal outputs. Augmented CycleGAN [1] extended this task into an unpaired setting.
MUNIT [13] and DRIT [21] are the state-of-the-art frameworks for multimodal image trans-
lation, and MSGAN [25] further improved DRIT by introducing an additional regularization
term to increase diversity. MUNIT, DRIT, and MSGAN follow the two-phase training of Bi-
cycleGAN, and our model also follows this two-phase training like these models. However,
these models encode the source image and the target image independently, but our model
introduces the style-conditioned encoder that enables our model to generate higher-quality
images than the existing models. Furthermore, these models use the SR loss, but previous
studies pointed out that this SR loss fails to capture detailed features [14, 19] because pix-
els may be blindly averaged out, resulting in blurry output. Motivated by this, we adopt a
loss function based on mutual information to learn the style of an image for the multimodal
translation problem. This loss shows the difference not only with MUNIT, DRIT, and MS-
GAN but also with BicycleGAN that utilizes image reconstruction loss that benefits from the
paired dataset. Table. 1 shows the differences between our model and the existing unpaired
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Figure 2: Architecture of our proposed model. Fig. 2a and Fig. 2b show the training
phases using the encoded style feature, i.e., the style feature extracted from aenc

real , and the
random style feature sampled from N (0, I), respectively. The superscripts enc and rand are
used to distinguish these phases. Our model jointly learns from these phases by optimizing
Eq. (4) and Eq. (5). Note that the style encoder has two outputs, mean (µ) and standard
deviation (σ ). The grey rectangle indicates the style feature that is sampled from N (µ, σ)
except for the left grey rectangle in Fig. 2b, which is sampled from N (0, I). Although the
sampling process from N (µ, σ) is not described in Fig. 2 for brevity, some loss functions
use µ and σ instead of the style feature, which are specified in Section 3.

multimodal translation models. In addition, although CVAE-GAN [4] has a similar structure
with one of our training phases (Fig. 2a), it also uses SR loss. Recently, StarGAN-v2 [9]
extended multimodal image translation task into a multi-domain setting.

2.2 Mutual Information
Mutual information is effectively used to learn deep representations [5, 12]. Measuring mu-
tual information is usually intractable, so InfoGAN [6] introduces a lower bound on mutual
information. AttGAN [10] and CFGAN [15] use mutual information to learn the styles.
AttGAN defines style feature as a categorical latent feature with dimensions of a predefined
number of factors and uses cross-entropy loss. CFGAN defines style feature as a continuous
latent feature, which is the same with our model, and adopts the loss function proposed in
InfoGAN. It means that CFGAN learns the styles by maximizing the correlation between a
generated image and a randomly sampled latent variable. In this regard, minimizing latent
reconstruction loss (Section. 3.3) also can be interpreted as maximizing mutual information,
but it is not our contribution. In contrast, our loss function (Section. 3.1) learns the styles by
maximizing the correlation between a generated image and a latent variable extracted from
a real image. This loss function contributes to our model achieving state-of-the-art perfor-
mance by allowing our model to learn complex high-level styles and generate perceptually
diverse images.

3 Proposed Method
We introduce our unpaired multimodal image-to-image translation model called Multimodal
Image translation with StOchastic style representations and mutual information loss (MISO)
as well as its components. Our goal is to learn a one-to-many mapping between two domains
A⊂RH×W×3 and B⊂RH×W×3. These two domains can be used interchangeably as a source
domain S and a target domain T . One-to-many mapping between S and T can be achieved
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by learning a distribution p(t|s,z) where t ∈ T , s ∈ S and z ∼ N (0, I). z is a random noise
to achieve one-to-many mapping from given s. In other words, our model needs to learn a
one-to-one mapping of (S,Z) 7→ T where z ∈ Z . It is important to note that z ∼ N (0, I)
does not have any power to force a particular s to be mapped to a particular t. Therefore, we
use an encoder to extract a feature zt from t and make an arbitrary z obtain the information
in zt by minimizing the distance betweenN (0, I) and the conditional distribution of zt given
t. To this end, we can generate diverse images from a single image without the input images
for the target style features by sampling from p(t|s,z) where z∼N (0, I).

Fig. 2 shows the training process of MISO. Though not shown in the figure, the same pro-
cess is carried out with swapped domains. Our model consists of two style encoders for each
domain, EA : A 7→ ZA and EB : B 7→ ZB, two discriminators for each domain, DA : A 7→ R
and DB : B 7→ R, and two generators with encoder-decoder structure for each direction,
GAB : (A,ZB) 7→ B and GBA : (B,ZA) 7→ A. Unlike existing models, we do not encode the
source image and the target image independently. Instead, we use the style-conditioned en-
coder, and our generator with the encoder-decoder structure is designed to take the source
image and its target style as a condition. In Fig. 2a, benc

real is a source image and aenc
real is

a target image. The target style feature is extracted from aenc
real by EVAE

A , and the encoder
part in GBA encodes benc

real conditioned on the target style feature. Our style encoders are
based on variational autoencoder (VAE) [17] architecture because we do not assume deter-
ministic mappings for EA : A 7→ ZA and EB : B 7→ ZB. The VAE architecture can handle the
intractable true posteriors p(za|a) and p(zb|b) via their approximate posteriors q(za|a) and
q(zb|b), which can be regarded as normal distributions, where a ∈ A, b ∈ B, zA ∈ ZA and
zB ∈ ZB.

3.1 Mutual Information Loss
This section introduces our proposed loss function mutual information loss (MI loss). We de-
sign MI loss that maximizes mutual information between the target style feature za and image
generated with that feature GBA(b,za) written as I(za;GBA(b,za)). It is difficult to directly be
maximized, so we derive the lower bound to be maximized by following InfoGAN [6] as

I (za; G(b,za)) = H(za)−H(za|G(b,za))

≥ E za∼ p(za)[E a′∼ pg(a|(b,za))[logq(za|a′)]]+H(za)

≥ E za∼ p(za)[E a′∼pg(a|za)[logq(za|a′)]] (1)

where H indicates an entropy, q(za|a′) is an approximated distribution (or the encoded latent
distribution) of the intractable true posterior p(za|a′) and pg is a distribution of the generated
image G(b,za) . In Eq. (1), we consider a lower bound on a single source image b for brevity,
and we can treat H(za) as a constant by fixing the distribution of za. However, we have an
unobserved prior of a latent variable, p(za) that we cannot directly sample from. Our model
addresses the problem that it is impossible to sampling directly from p(za) by using the
distribution p(a) that we can easily sample from. That is, Eq. (1) is rewritten as∫

za

E a′∼pg(a|za)[logq(za|a′)]p(za)dza =
∫

za

∫
a
E a′∼pg(a|za)[logq(za|a′)]p(za,a)dadza

=
∫

a

∫
za

E a′∼pg(a|za)[logq(za|a′)]p(za,a)dza da

= E a∼p(a)[E za∼p(za|a)[E a′∼pg(a|za)[logq(za|a′)]]]. (2)

Citation
Citation
{Kingma and Welling} 2013

Citation
Citation
{Chen, Duan, Houthooft, Schulman, Sutskever, and Abbeel} 2016



6 NA ET AL.: MULTIMODAL IMAGE TRANSLATION WITH STOCHASTIC STYLE

In Eq. (2), it is still impossible to sample from the true posterior za ∼ p(za|a). Instead, we
use q(za|a), which is an approximation of p(za|a). As a result, we can derive

I(za;G(b,za))≥ E a∼p(a)[E za∼q(za|a)[E a′∼pg(a|za)[logq(za|a′)]]].

We assume q(za|a′) to be a normal distribution because we use a VAE-based encoder, and
thus q(za|a′) can be represented as N (µout ,σ

2
out) where µout and σout are outputs of the

encoder given a′ as an input. Since N (µout ,σ
2
out) has a closed form of a probability density

function f (za|µout ,σ
2
out), we can represent log f (za|µout ,σ

2
out), and the final MI loss, Lin f o,

to minimize is defined as

Lin f o =− log f (za|µout ,σ
2
out) =

1
2

log2πσ
2
out +

(za−µout)
2

2σ2
out

. (3)

3.2 Adversarial Loss

To render the generated images indistinguishable from real images, we employ the ad-
versarial loss. In Fig. 2, both aenc

f ake generated with za ∼ q(za|a) and arand
f ake generated with

z∼N (0, I) are needed to guarantee high-quality outputs, so we define two adversarial losses
for each generated image. In other words, we define Lenc

adv as an adversarial loss on aenc
real

and aenc
f ake, and Lrand

adv on arand
real and arand

f ake. Finally, the full adversarial loss can be written as
Ladv = Lenc

adv +Lrand
adv .

3.3 Other Loss functions

Cycle-Consistency Loss. It is important to preserve the contents of the source image
and only change its style. To this end, the cycle-consistency loss [31] is used, i.e., Lcyc =
E a∼p(a),b∼p(b)[||GAB(ā,EB(b))− b ||1] where ā := GBA(b,EA(a)) corresponds to fake image
of domain A, aenc

f ake, in Fig. 2a. Note that DRIT [21] and MSGAN [25] obtain style features
from generated images which can be imperfect when compared to real images. In contrast,
MISO extracts un-impaired style features EB(b) from real image b.

KL-Divergence Loss. At the test phase, we want to generate diverse outputs GAB(a,z)
and GBA(b,z) where z∼N (0, I), without requiring actual style images. The KL-divergence
loss encourages the encoded latent distribution q(za|a) and q(zb|b) to be close to N (0, I),
i.e., LKL = Ea∼p(a)[DKL(q(za|a) ||N (0, I))]+Eb∼p(b) [DKL(q(zb|b) ||N (0, I))].

Latent Reconstruction Loss. We encourage an invertible mapping between A and Z
with the latent reconstruction loss starting from z ∼ N (0, I) which is the key part of the
phase in Fig. 2b. However, L1 loss between z ∼ N (0, I) and za ∼ q(za|a) can be too strict
and may bring instability to the training process. To avoid this, the latent reconstruction
loss is defined as Llat = E b∼p(b),z∼N (0,I)[||z−µout

A ||1] where µout
A is one of the outputs from

EA(GBA(b,z)).
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(a) Male→Female (b) Monet→Photo

(c) Dog→Cat (d) Winter→Summer
Figure 3: Comparison results. Diverse outputs obtained by using z ∼ N (0, I). MISO
generates high-quality images with diverse high-level styles. However, other models can-
not preserve the contents well (MUNIT), control only low-level styles such as overall color
tone (DRIT, MSGAN, SRSO), or generate artifacts (MSGAN). Furthermore, MISO con-
trols fine variations such as cloud shape in Winter→Summer. The superiority of MISO over
SRSO shows the effectiveness of the proposed MI loss in terms of learning high-level styles.

3.4 Full Objective Function

We can formulate the full objective to be minimized as

LD =−λadvLadv, (4)
LGE = λadvLadv +λin f oLin f o +λcycLcyc +λKLLKL +λlatLlat . (5)

4 Experiments

To demonstrate the effectiveness of our model we conduct experiments on multiple datasets
with various evaluation metrics and compare with other competitive baselines. In the all
experiments, we sampled the style features from N (0, I).

4.1 Datasets

Various translations are experimented on: Male↔ Female on CelebA [24], Summer (Smr)
↔ Winter (Wnt) on Yosemite dataset [31], Mnt ↔ Pht on monet-to-photo dataset [31],
Cat↔ Dog on cat-to-dog dataset [21], Edg↔ Shs on edges-to-shoes dataset [29], and Edg
↔Hdb on edges-to-handbags dataset [27]. Although edges-to-shoes and edges-to-handbags
are paired datasets, we trained our model under an unsupervised seeting.
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Mnt↔Pht Yosemite Edg→Shs Edg→Hdb

N-Cycle 116.48 60.44 33.15 40.08
MUNIT 63.50 49.63 36.46 32.56
DRIT 57.27 45.30 56.24 42.61

MSGAN 56.04 44.67 54.15 39.75
SRSO 52.84 39.85 24.41 25.08
MISO 51.17 39.62 24.96 25.80

(a) FID. A low FID indicates high visual quality.

CelebA Mnt↔Pht Cat↔Dog

N-Cycle 12.08 9.42 1.43
MUNIT 3.79 2.63 4.29
DRIT 6.28 11.05 9.28

MSGAN 6.79 18.95 15.00
SRSO 25.27 12.11 27.86
MISO 45.79 46.84 42.14

(b) User Preference. A high user prefer-
ence score indicates high visual quality with
content preservation of the source images.

Table 2: Realism. Evaluation on visual quality of the generated images with two metrics.

Cat→Dog Dog→Cat Smr→Wnt Wnt→Smr Edg→Shs Edg→Hdb

N-Cycle 0.0053 0.0020 0.0007 0.0008 0.0315 0.0644
MUNIT 0.2403 0.1938 0.2377 0.2434 0.1132 0.1794
DRIT 0.0942 0.0675 0.0954 0.0854 0.0701 0.0955

MSGAN 0.1563 0.0719 0.1489 0.1375 0.1251 0.1446
SRSO 0.0760 0.1527 0.1414 0.0850 0.1149 0.1860
MISO 0.1694 0.1880 0.2434 0.1769 0.1383 0.2220

Real 0.2209 0.2102 0.3592 0.3652 0.2755 0.3555

Table 3: Diversity. A high LPIPS distance indicates diverse outputs. However, if it is even
higher than the distance of real samples, it is likely that the model made unrealistically high
diversities such as artifacts and/or failed to preserve the contents of a source image.

4.2 Baselines

We compared our model with several baselines. CycleGAN+Noise (denoted as N-Cycle)
is a modified version of CycleGAN [31], which injects noise vectors to the input layer of
its generator. MUNIT and DRIT are state-of-the-art multimodal translation models, and
MSGAN is an improved version of DRIT with an additional regularization term to increase
diversity. Note that Augmented CycleGAN [1] is excluded from the baselines as reproducing
reasonable results is not possible. SRSO is our proposed model equipped with the style-
conditioned encoder and the SR loss. MISO is the improved model of SRSO that replaces the
SR loss with the proposed MI loss. In brief, MUNIT, DRIT, and MSGAN can be represented
as the combination of independently encoded feature and the SR loss, SRSO as that of the
style-conditioned encoder and the SR loss, and MISO as that of the style-conditioned encoder
and the MI loss.

4.3 Evaluation Metric

Diversity. Learned Perceptual Image Patch Similarity (LPIPS) [30] measures a percep-
tual distance between images to mimic humans’ perceptual similarity. Diversity of translated
images are measured by calculating the average LPIPS distance between ten images gener-
ated from the same source image (i.e., average between ∑

10
i=1 LPIPS values per source image)

with the average distance of real data as an upper bound. That is, the diversity of real data
is measured between images with different styles and different contents, but the diversity of
translated images is measured between images with the different styles but same contents.
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(a) Male→Female (b) Female→Male

Figure 4: High-level styles learned by MISO. Images in each column are generated using
the same random vector for different source images. Each random vector contains distinct
high-level style (e.g., different hairstyle, skin color, age, and glasses).

Figure 5: Influence of MI loss. If λin f o is too small (λin f o ↓), MISO generates low-level
diversites (e.g., overall color tone) for a source image. By increasing λin f o (λin f o ↑), MISO
can generate high-level diversities (e.g., species and open mouth) for a source image.

Therefore, it is difficult to exceed the distance of real data unless the model makes unrealistic
diversities such as artifacts and/or fails to preserve the contents of a source image. We used
all images from the test dataset as source images.

Realism. We use two metrics, FID [11] and user preference to evaluate the realism of
generated images. We measured the distance between the distribution of real images and
the distribution of generated images using FID. We generated 5000 images using all images
from the test dataset as source images. Furthermore, we performed a user study with 30
participants. We give a random source image and its corresponding generated outputs of
our model and baselines. We then ask each user which output has the best quality while
maintaining the contents of the source image.

5 Results
Content Preservation. The results of MUNIT in Fig. 3 is worse than those of all the
other models in maintaining contents of the source image (e.g., shoulders in the first row of
Fig. 3a, trees in Fig. 3b, face angles in Fig. 3c, and mountains in Fig. 3d). This is because
only MUNIT does not have a cycle-consistency loss. Note that this defect can be a reason
for the high diversity scores of MUNIT in Table. 3. In contrast, MISO maintains contents of
the source image while achieving the highest diversity scores for most datasets in Table. 3.

Diversity and Realism. In Figs. 3a, 3b and 3d, MUNIT generates unrealistic images com-
pared to DRIT and MSGAN, that is consistent with the results in Table. 2 for corresponding
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(a) Edges→Shoes (b) Edges→Handbags

Figure 6: Bilinear interpolation. It visualizes the style latent space that MISO learns.

datasets. This shows the importance of treating latent variables as a random variable. In
MUNIT, the latent variables are considered deterministic, so the KL-divergence loss is in-
applicable. Instead, MUNIT relies on the latent reconstruction loss that can cause problems
in generating images with unseen z ∼ N (0, I). In Fig. 3, DRIT and MSGAN only make
low-level diversities among generated samples such as changing overall colors. Even SRSO,
which adopts the style-conditioned encoder, only makes low-level diversities. It is consis-
tent with the lower diversity scores of these models than that of MISO which can generate
high-level diversities. However, SRSO generates high-quality images compared to DRIT
and MSGAN. For example, in Fig. 3d, DRIT generates blurry images without details such as
patterns on the left mountain. MSGAN generates unrealistic black spots or covers part of the
image white like the third row of Fig. 3d. This is because the regularization proposed in MS-
GAN to generate diverse images simply increases L2 distance between generated images at
pixel level. On the other hand, SRSO generates higher-quality images including details such
as patterns on the left mountain without artifacts in Fig. 3d. This is because the encoder of
our model can extract the information from the source image considering what information
is not contained in the given target style feature to generate a high-quality image due to the
style-conditioned encoder. However, SRSO only generates images with low-level diversi-
ties. By replacing SR loss of SRSO with MI loss, MISO generates high-quality images with
diverse high-level styles such as daytime scene and sunset scene in Fig. 3d. Fig. 4 shows that
MISO learns high-level styles, and Fig. 5 shows the importance of MI loss to learn high-level
styles. As a result, MISO achieves the highest performances for most datasets in Tables. 2
and 3 by generating diverse images with high-quality. Fig. 6 visualizes the style latent space
that MISO learns.

6 Conclusions
In this paper, we presented a novel framework of multimodal translation that achieves state-
of-the-art performances on various datasets by utilizing the style-conditioned encoder as
well as the mutual information loss function. Our model generates diverse yet high-quality
images while properly preserving the contents of the source image.
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