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Abstract

Point cloud super-resolution aims at transforming a low-resolution (LR) point cloud
into a high-resolution (HR) one, which is important for 3D reconstruction and point cloud
understanding. In this paper, we focus on improving the performance of existing point
cloud super-resolution algorithms. The key idea is to exploit the local similarity of point
cloud and the analogy between the LR input and the HR output. For the former, we
design a deep graph convolutional network. For the latter, we propose residual graph
convolution blocks and introduce a skip connection between the input and the output.
Our network is trained with a novel loss function, graph adversarial loss, which can
capture the characteristics of HR point clouds automatically. Experiments show that our
method achieves state-of-the-art performance and generalizes well to unseen data.

1 Introduction
When modeling an object from the real world for 3D printing or animation, a common way is
to first obtain the point cloud with depth scanning devices or 3D reconstruction methods [6,
7] and then recover the mesh from the point cloud [3]. However, the captured point cloud
is usually sparse and noisy due to the restrictions of devices or the limitations of methods,
which leads to a low-quality mesh.

A widely-used method to improve the quality of the recovered mesh is point cloud super-
resolution, which takes a LR point cloud as the input and generates a HR point cloud with
richer details and fewer noisy points, as shown in Figure 1. In point cloud super-resolution,
the most powerful method is PU-Net [25], which is a data-driven algorithm based on deep
learning. As the first deep learning based method, PU-Net outperforms many traditional
methods such as EAR [8] and achieves state-of-the-art performance.

In this paper, we aim to advance the performance of existing point cloud super-resolution
algorithms by overcoming the defects of PU-Net. The first problem is that PU-Net directly
regresses the point coordinates based on PointNet++ [18] without exploiting the local sim-
ilarity of point cloud and the analogy between the LR input and HR output. The second
problem is that PU-Net designs a complicated loss function manually with a strong assump-
tion on the uniform distribution of HR point clouds. Manually designed losses tend to overfit
human priors, which fail to capture many other properties of HR point clouds like continuity.
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(a) Input (b) GT (c) PU-Net [25] (d) Ours

Figure 1: Point Cloud Super Resolution. (a) is the input LR point cloud with 5,000 points.
(b) is the HR point cloud with 20,000 points. (c) and (d) are the HR point clouds generated
by PU-Net [25] and our method. Ours is sharper at edges while having fewer noisy points.

To solve the first problem, we design a deep graph convolutional network (GCN) for
exploiting the local similarity of point cloud. To exploit the analogy between the LR and HR
point cloud, we introduce residual connections for graph convolutions, resulting in residual
graph convolution blocks. Besides, we also add a skip connection between the input and
the output. To solve the second problem, we propose a graph adversarial loss. The pro-
posed loss function is more expressive than manually designed ones, which can capture the
characteristics of HR point clouds automatically.

In this way, we propose a novel method for point cloud super-resolution, named Ad-
versarial Residual Graph Convolutional Network (AR-GCN). Experiments show that AR-
GCN achieves state-of-the-art performance on both seen dataset [25] and unseen dataset
(SHREC15). The contributions of our method are three-folds. First, we propose a novel ar-
chitecture for point cloud super-resolution. Second, we introduce the graph adversarial loss
to replace manually designed loss functions. Third, we advance the state-of-the-art perfor-
mance on both seen and unseen datasets.

2 Related Work

Point Cloud Super Resolution In most earlier works, point cloud super-resolution is for-
mulated as an optimization problem. [2] first compute the Voronoi diagram on the moving
least squares surface and then add points at the vertices of the Voronoi diagram. [13] present
a locally optimal projection operator for surface approximation based on L1 median, which
is parameter-free and robust to noisy points. The above methods have a strong assumption
on the smoothness of the underlying surface, which tend to generate vague edges. [8] intro-
duce an edge-aware method, which first samples away from the edges and then progressively
samples the point cloud while approaching the edge singularities.

Different from optimization based methods, [25] propose a data-driven method, PU-Net,
to exploit massive 3D data. Concretely, PU-Net first learns multi-level features per point with
PointNet++ [18] and then expands the point set via a multi-branch convolution. Through
end-to-end learning, PU-Net outperforms optimization based methods on multiple datasets,
achieving state-of-the-art performance. Following PU-Net, [24] advances the performance
with extra edge annotations. 3PU [23] proposes a progressive upsampling strategy, resulting
in a better performance than PU-Net. PU-GAN [10] proposes an adversarial loss to replace
the manually designed loss functions, which is the current art of point cloud super resolution.

Deep Learning for 3D Data [15, 19, 22] employ 3D CNNs to process 3D data in volumet-
ric grids. Differently, [11, 17, 18] process point clouds directly instead of volumetric grids.

Citation
Citation
{Yu, Li, Fu, Cohen-Or, and Heng} 2018{}

Citation
Citation
{Yu, Li, Fu, Cohen-Or, and Heng} 2018{}

Citation
Citation
{Yu, Li, Fu, Cohen-Or, and Heng} 2018{}

Citation
Citation
{Alexa, Behr, Cohen-Or, Fleishman, Levin, and Silva} 2003

Citation
Citation
{Lipman, Cohen-Or, Levin, and Tal-Ezer} 2007

Citation
Citation
{Huang, Wu, Gong, Cohen-Or, Ascher, and Zhang} 2013

Citation
Citation
{Yu, Li, Fu, Cohen-Or, and Heng} 2018{}

Citation
Citation
{Qi, Yi, Su, and Guibas} 2017

Citation
Citation
{Yu, Li, Fu, Cohen-Or, and Heng} 2018{}

Citation
Citation
{Yifan, Wu, Huang, Cohen-Or, and Sorkine-Hornung} 2019

Citation
Citation
{Li, Li, Fu, Cohen-Or, and Heng} 2019

Citation
Citation
{Maturana and Scherer} 2015

Citation
Citation
{Riegler, Ulusoy, and Geiger} 2017

Citation
Citation
{Wu, Song, Khosla, Yu, Zhang, Tang, and Xiao} 2015

Citation
Citation
{Li, Bu, Sun, and Chen} 2018

Citation
Citation
{Qi, Su, Mo, and Guibas} 2016

Citation
Citation
{Qi, Yi, Su, and Guibas} 2017



WU, HUANG: POINT CLOUD SUPER RESOLUTION 3

[21, 26] employ GCNs [5] for point cloud classification. [16] design a generative adversarial
network (GAN) for learning graph embeddings.

3 Method

3.1 Point Cloud Super Resolution

Given a point cloud x with shape n×3, the goal of point cloud super-resolution is to generate
a point cloud ŷ with shape N× 3 (N = γn,γ > 1). Each point of ŷ lies on the underlying
surface described by x, as shown in Figure 1.

3.2 Method Overview: AR-GCN

AR-GCN is a novel approach that contains three major components: the adaptive adversarial
loss LG, the graph generator G, and the graph discriminator D. As shown in Figure 2.a, the
LR point cloud x is directly fed into G to generate the HR output ŷ. Then, ŷ is sent into D to
produce LG, while another loss Lcd is calculated given ŷ and the ground truth y.

AR-GCN consists of two networks, the generator G and the discriminator D. G aims to
generate the HR point cloud by upsampling the LR input progressively, while D is respon-
sible for distinguishing the fake HR point cloud (ŷ) from the real one (y). To train G and D
simultaneously, we propose a joint loss function as shown in Equation 1:

L(x,y) = λLcd(G(x),y)+LG(G(x)), (1)

where λ controls the balance between Lcd and LG. Lcd measures the distance from y to ŷ,

Lcd(ŷ,y) = Σp∈yminq∈ŷ||p−q||22, (2)

which is a simplified version of Chamfer Distance, measuring how well ŷ covers y.
However, Lcd only measures the point-wise distance between y and ŷ, which ignores

high-order properties of HR point clouds, such as continuity. Existing methods like PU-Net
usually manually design a complex loss function to capture high-order properties, which
is inefficient and has strong assumptions about HR point clouds based on human priors.
Alternatively, we propose a loss function LG that is defined by the graph discriminator D,
which can automatically capture such properties by learning from data. Concretely, LG is a
graph adversarial loss that is adapted from LS-GAN [14],

LG(ŷ) = max
D
||1−D(ŷ)||22 + ||D(y)||22. (3)

Different from LS-GAN, D in this paper is a GCN designed for point clouds, while that in
LS-GAN is a CNN designed for image data.

3.3 Graph Generator

As shown in Figure 2.a, the graph generator G consists of three novel building blocks, namely
residual graph convolution block (R-GCB), unpooling block, and feature net.
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Figure 2: (a) is the proposed AR-GCN consisting of a graph generator G, a graph discrimi-
nator D, a graph adversarial loss LG, and a point-wise loss Lcd . Specially, G upsamples the
input point cloud progressively. (b) is Residual Graph Convolution Block (R-GCB), which
is noted as Residual Graph Conv in (a).

Residual Graph Convolution Block The core of R-GCB (Figure 2.b) is the graph con-
volution layer, G-conv, which is defined on a graph G=(υ , ε) and calculated as follows,

f p
l+1 = w0 f p

l +w1Σq∈N(p) f q
l ,∀p ∈ υ . (4)

w is the learnable parameters and f p
l is the feature of vertex p at layer l. N(p) is the vertices

that directly connect to p as defined in the adjacency matrix ε . Point clouds do not have a
predefined adjacency matrix. Instead, we define N(p) as the k nearest neighbors of p in point
cloud xin. Besides G-conv, we also introduce residual connections into R-GCB. It helps to
exploit the similarity between LR and HR point cloud.

Unpooling Block The unpooling block takes the point cloud xin and the corresponding
feature fin as inputs. It first employs a G-conv layer to transform fin with shape n̂× c to
a tensor with shape n̂× 6. The tensor is then reshaped to n̂× 2× 3, noted as δx. The
upsampled point cloud xout is obtained by adding xin and δx pointwisely, where each point is
transformed into 2 points. The unpooling block is designed to predict the residual between
xin and xout instead of regressing xout directly, which exploits the similarity between xin and
xout , leading to a better performance. The corresponding output feature fout is obtained as
follows, where N[xin](p) means the k nearest neighbors of point p in point cloud xin.

f p
out =

1
k

Σq∈N[xin](p) f q
in,∀p ∈ xout . (5)

Feature Net As shown in Figure 2.b, R-GCB takes both the point cloud and the corre-
sponding feature as inputs. Given the input point cloud x, we design a simple block named
feature net to generate the corresponding feature f . Specifically, for each point p ∈ x with
shape 1×3, we first obtain its k nearest neighbors P with shape k×3. Then, several point-
wise convolutions and a max-pooling layer transform P̂ = P− p into f p with shape 1× c.
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Progressive Super Resolution Instead of directly upsampling the LR point cloud with
the desired upscale ratio, we generate the HR point cloud step by step. The point cloud
is upsampled by 2× at each step, as shown in Figure 2.a. Experiment shows that such an
approach results in better accuracy.

3.4 Graph Discriminator
As shown in Figure 2.a, D is composed of a feature net, R-GCBs, and pooling blocks.

Pooling Block Given the input point cloud xin with shape 4n×3, we first employ farthest
point sampling (FPS) to generate xout with shape n× 3. The corresponding feature fout is
then obtained by f p

out = maxq∈N[xin](p) f q
in,∀p ∈ xout , where max is applied elementwisely.

4 Experiment
In this section, we first introduce the datasets and the implementation details. We then
present the quantitative and qualitative results to show the effectiveness of our method. To
demonstrate the effect of each proposed component in AR-GCN, we also conduct a compre-
hensive ablation study. Finally, we show several potential applications of our method.

4.1 Datasets
Two datasets are employed in the experiments. One is the train-test dataset, which our
method is trained with and tested on. The other is the unseen dataset, where our method
is directly tested without training or finetuning.

Train-Test Dataset The dataset proposed in PU-Net [25] is used for training and testing,
which contains 60 models from the Visionair repository. Following the protocol in PU-Net,
we use 40 models for training and the rest 20 models for testing. For training, we extract 100
patches from each model as the ground truth. Each patch contains 4,096 points. The input
patch is generated by randomly sampling 1,024 points from the ground truth patch. For
testing, we sample 20,000 points uniformly per model as the ground truth, while sampling
5,000 points as the input.

Unseen Dataset: SHREC15 To validate the generalization ability, we directly test AR-
GCN on SHREC15 [12] after training with the train-test dataset without finetuning. There
are 50 categories in SHREC15 and 24 models in each category. We randomly choose one
model from each category for testing, since the models in each category only differ in poses.
We sample 20,000 points per model as ground truth and 5,000 points as input.

4.2 Implementation Details
Our method is implemented in Tensorflow [1]. To avoid overfitting, the training data is
augmented with random rotation, shift, and scaling. Adam [9] is employed for optimization,
where batch size is 28 and learning rate is 0.001. The network is first trained with Lcd for 80
epochs and then finetuned with L for another 40 epochs. As for the network architecture, the
number of neighbors k is set to 8. The number of channels c in G is set to 128 and that in D
is set to 64. Each R-GCB in G contains 12 G-convs while that in D contains 4 G-convs.
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Dataset Method CD EMD
F-score NUC with different p Deviation

τ = 0.01 0.2% 0.4% 0.8% mean

Train-Test

Input 0.0120 0.0036 41.33% 0.315 0.224 0.163 -
MLS 0.0117 0.0043 57.70% 0.364 0.272 0.204 0.18
PU-Net 0.0118 0.0041 43.24% 0.206 0.165 0.137 0.78
PU-GAN 0.0081 0.0050 73.53% 0.202 0.170 0.150 0.32
AR-GCN 0.0084 0.0035 70.28% 0.204 0.164 0.134 0.26

SHREC15

Input 0.0077 0.0031 27.86% 0.310 0.220 0.163 -
MLS 0.0067 0.0032 84.69% 0.253 0.199 0.159 0.33
PU-Net 0.0103 0.0050 56.39% 0.283 0.230 0.189 0.90
PU-GAN 0.0054 0.0051 92.08% 0.214 0.184 0.166 0.24
AR-GCN 0.0054 0.0031 93.07% 0.201 0.162 0.135 0.18

Table 1: Quantitative Comparison on the Train-Test Dataset and SHREC15 Dataset.

4.3 Quantitative Results

Evaluation Metrics To measure the difference between ŷ and y pointwisely, Chamfer Dis-
tance (CD) and Earth Mover’s Distance (EMD) are employed, for which the smaller is the
better. F-score [20] is also used as the metric, which treats point cloud super-resolution as
a classification problem. Concretely, precision and recall are first obtained by checking the
percentage of points in ŷ or y that can find a neighbor from the other within a certain thresh-
old τ . F-score is then calculated as the harmonic mean of precision and recall. For F-score,
the larger is the better. The metrics in [25] are also utilized. Deviation is used to measure
the difference between ŷ and the ground truth mesh, while normalized uniformity coefficient
(NUC) is for measuring the uniformity. For Deviation and NUC, the smaller is the better.

Quantitative Comparison Results on train-test dataset and SHREC15 are reported in Ta-
ble 1. The LR input is used as the preliminary baseline. For traditional methods, we choose
Moving Least Squares (MLS) [2] as the baseline.1 As for deep learning based methods, PU-
Net and PU-GAN serve as the baselines, which are the best existing algorithms.2 As shown
in Table 1, our method outperforms all the other methods on both datasets in most metrics.
In train-test dataset, our method outperforms PU-GAN in 4 metrics. Compared to MLS and
PU-Net, our method improves the F-score by more than 10% and advances CD a large step.
Surprisingly, our method even outperforms PU-Net in NUC, although it is not trained with
the repulsion loss in PU-Net [25] that forces the generated point cloud uniform. We attribute
this to the effect of the proposed adversarial loss. In SHREC15, our method outperforms all
the other methods in all metrics by a large margin, which shows the generalization ability of
our method on the unseen dataset.

Experiments on Large Datasets We directly test our model on the test set of two large
3D datasets: ModelNet40 [22] and ShapeNet [4] without retraining or fine-tuning. 512/640
points are sampled as the input and the original point clouds serve as the ground truth. Ex-
periments show that our method (33.37%/56.89%) outperforms PU-Net (32.48%/36.53%)
by a large margin in F-score on both datasets.

1The result of MLS is produced by Point Cloud Library (PCL).
2The results are reproduced with the official code by following the authors’ instructions.
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(a) Input (b) GT (c) PU-Net (d) Ours

Figure 3: Qualitative Results. (a) is the LR input point cloud and (b) is the correspond-
ing HR point cloud. (c) and (d) are the HR point clouds generated by PU-Net [25] and
our method. Ours are sharper at edges, which have richer details but fewer noisy points,
especially inside the red boxes.

(a) Input-ModelNet40 (b) Ours-ModelNet40 (c) Input-ShapeNet (d) Ours-ShapeNet

Figure 4: Visual results on ModelNet40 and ShapeNet with 2,048 points as input.

4.4 Qualitative Results
Figure 3 presents the point clouds in both datasets visually, where the 1st row is from the
train-test dataset and the 2nd row is from SHREC15. Compared to PU-Net, the HR point
clouds of our method have richer details and sharper edges. Besides, ours are more uniformly
distributed in the smooth area with fewer noisy points. On the contrary, the results from PU-
Net are noisy and blurry on the edges. It tends to outspread uniformly without preserving
the underlying surface. The differences around the legs, feet and horns are most significant,
as shown in the red boxes. Figure 4 shows the visual results on ModelNet40 and ShapeNet.
Our method can generate a denser point cloud while preserving the underlying structure.

Real-Scanned Point Cloud We also conduct an experiment on real-scanned and un-even
point clouds. As shown in Figure 5, our method can generate a denser point cloud with more
uniformly distributed points while maintains the underlying surface. It can also fill small
holes by uniformly adding points in sparse regions.

4.5 Ablation Study
The ablation study is shown in Table 2, which verifies the effect of each proposed component.
Residual Prediction: Compared to GCN4×

points, GCN4× adds a skip connection between in-
put and output, which forces the model to predict the residual δx instead of directly regress-
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LR

HR

(a) (b) LR (c) HR (d) LR (e) HR

Figure 5: Visual results on real-scanned and un-even point clouds.

Method Train-Test Dataset SHREC15
CD F-score Deviation CD F-score Deviation

GCN4×
points 0.0971 3.96% 13.7 0.0925 8.03% 10.3

GCN4× 0.0092 63.79% 0.31 0.0061 87.98% 0.24
ResGCN4× 0.0090 65.04% 0.36 0.0059 90.57% 0.25
PU-Net [25] 0.0118 43.24% 0.78 0.0103 56.39% 0.90
ResGCN 0.0086 68.75% 0.30 0.0056 92.32% 0.21
ResPoint 0.0121 41.45% 0.85 0.0076 78.28% 0.56
ResGCN + Lpu 0.0096 60.71% 0.36 0.0064 86.46% 0.26
AR-GCN w/o FT 0.0085 69.53% 0.27 0.0055 92.46% 0.18
AR-GCN 0.0084 70.28% 0.26 0.0054 93.07% 0.18

Table 2: Ablation Study on the Train-Test Dataset and SHREC15 Dataset.

ing the point coordinates. The skip connection largely improves the stability of learning,
resulting in good performance. Without the skip connection, the model does not work at all.
Residual G-conv: Compared to GCN4×, ResGCN4× employs residual graph conv instead
of graph conv. The residual connection introduces a better initialization, making the opti-
mization more stable, which improves F-score by about 1.5% and 3% on both datasets.
Progressive Upsampling: Compared to ResGCN4×, ResGCN introduces progressive super-
resolution. As a result, the F-score increases by nearly 4% on the train-test dataset. The
Deviation also improves a lot on both datasets.
G-conv: Different from ResGCN, ResPoint employs the building block of PointNet [17]
to replace G-conv (Figure 2.b). Since G-conv has a better exploitation of neighbor points,
ResGCN significantly outperforms ResPoint.
Loss Function: (1) By changing Lcd into the loss proposed in [25], the F-score decreases by
about 8% as shown by ResGCN + Lpu and ResGCN. (2) With the adversarial loss, AR-GCN
achieves a better Deviation than ResGCN. As shown in Figure 6, by adding the adversarial
loss (LG), the points distribute more uniformly compared to that without the adversarial loss.
ResGCN: The difference between PU-Net and ResGCN + Lpu is the whole network architec-
ture. ResGCN + Lpu improves the F-score by more than 17%, which shows the effectiveness
of the proposed ResGCN.
Training Strategy: AR-GCN w/o FT is trained with L(x,y), while AR-GCN is trained with
Lcd firstly and then fine-tuned with L(x,y). Results show that AR-GCN outperforms AR-
GCN w/o FT consistently, which demonstrates the superiority of the 2-step training strategy.
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Method Train-Test SHREC15
F-score NUC Deviation F-score NUC Deviation

PU-Net 43.2% 0.131 0.78 56.4% 0.180 0.90
Ours 70.3% 0.128 0.26 93.1% 0.130 0.18
Ours+noisy 55.4% 0.128 0.59 78.8% 0.130 0.55
Ours+uneven 46.0% 0.202 0.56 75.5% 0.201 0.37

Table 3: Experiments on noisy data and uneven data.

(a) w/o LG (b) w/ LG

Figure 6: Visual results of the proposed adversarial loss.

4.6 Robustness of AR-GCN

To show the robustness of our method, we take experiments on noisy point clouds and
non-uniformly sampled point clouds. The quantitative results on the Train-Test dataset
and SHREC15 are shown in Table 3. Ours+noisy represents applying AR-GCN on noisy
point clouds (Gaussian noise z, where z ∼ N (0,0.01)). Results show that our method with
noisy point clouds outperforms PU-Net with clean ones. Ours+uneven means employing
our method on non-uniformly sampled point clouds. Our method with uneven point clouds
achieves similar performance to PU-Net with uniform ones on all the metrics except NUC.
We attribute this to the non-uniform distribution of the input point clouds.

4.7 Applications

3D Reconstruction: In 3D reconstruction, the quality and density of the point cloud have
a huge impact on the quality of the reconstructed mesh. Due to the limitations of scanning
devices, the point cloud is usually sparse and noisy. Thus, point cloud super-resolution
is important for improving the quality of 3D reconstruction. We employ our method and
PU-Net to generate the HR point cloud, which is then fed into Ball pivoting algorithm [3]
for mesh reconstruction. As shown in Figure 7, the mesh reconstructed from our method
contains richer details compared to that from the LR input. Besides, ours is smoother in
the flat area and sharper at the edges, while the mesh from PU-Net is noisy with unpleasant
artifacts, especially inside the red boxes.
LR Point Cloud Classification: The classification accuracy on the LR point cloud is usually
lower than that on the HR point cloud. To improve the performance of LR point cloud clas-
sification, one possible way is to upsample the LR point cloud into a HR point cloud before
classification. In the experiment, we employ PointNet++ [18] on ModelNet40 dataset [22]
for classification. PointNet++ achieves 91.05% (Acc) with 1,024 points as input. When we
randomly sample 256 points as the input, the performance drops from 91.05% to 46.96%.
By upsampling the 256 points 4× with our method, PointNet++ achieves 79.34% in Acc,
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(a) Input (b) GT (c) PU-Net [25] (d) Ours

Figure 7: Mesh Reconstruction from Point Cloud.

which outperforms 46.96% by a large margin. This experiment shows that point cloud super-
resolution is important for understanding LR point cloud.

5 Conclusion
We proposed a graph convolutional network AR-GCN for point cloud super-resolution,
which is composed of a graph generator, a graph discriminator, and a graph adversarial loss.
With comprehensive experiments, we demonstrated that residual connections and residual
prediction are effective for stable training and better performance. With the proposed graph
adversarial loss, our method generates more realistic HR point cloud compared to the man-
ually designed loss function. The experiment on train-test dataset showed that our method
outperforms other methods. The experiment on the unseen dataset SHREC15 further demon-
strated the better performance and generalization ability of our method.
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