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Abstract

We address the problem of procedure completion in videos, which is to find and lo-
calize all key-steps of a task given only a small observed subset of key-steps. We cast the
problem as learning summarization from partial summaries that allows to incorporate
prior knowledge and learn from incomplete key-steps. Given multiple pairs of (video,
subset of key-steps), we address the problem by learning representations of input data
and finding the remaining key-steps that generalizes well to key-step discovery in new
videos. We propose a loss function on the parameters of a network that promotes to
recover unseen key-steps that together with the observed key-steps optimize a desired
subset selection criterion. To tackle the highly non-convex learning problem, involv-
ing both discrete and continuous variables, we develop an efficient learning algorithm
that alternates between representation learning and recovering unseen key-steps while
incorporating prior knowledge, via a greedy algorithm. By extensive experiments on two
instructional video datasets, we show the effectiveness of our framework.

1 Introduction
There exists a large number of instructional videos on the web. YouTube has over 2 billion
video search results for the phrase ‘how to’, with more than 500,000 results for tasks such
as ‘how to perform CPR’ or ‘how to setup Chromecast’. These instructional videos provide
great resource for procedure learning, which is to learn the sequence of key-steps to achieve
a certain task. Procedure learning can be used to teach autonomous agents perform complex
tasks [48] or help humans in achieving tasks [41], build large instruction knowledge bases,
or generate succinct instructions in time constrained settings [33].

The majority of existing work on procedure learning have focused on segmentation of
instructional videos when an ordered list of key-steps in each video is given [4, 6, 8, 23, 29,
38, 39, 53] or on unsupervised discovery of key-steps from narrations/text [1, 9, 32, 42, 49] or
from visual data [11, 14, 15, 20, 26, 40]. In practice, however, we may have prior knowledge
about some of the key-steps of a task, e.g., we may know only the few first steps but not
the remaining ones, i.e., we may know how to start a task but do not know how to fully
accomplish it. Thus, the goal would be to discover and localize the remaining key-steps using
available data, while incorporating the prior knowledge. We refer to this task as procedure
completion. Notice that unsupervised procedure learning methods cannot take advantage
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Figure 1: Left: The observed and recovered representatives by our SPS method for the task ‘changing tire’
from the Inria dataset are shown. While without training, we pick wrong representatives from background, after
training we successfully pick the key-steps. Right: Discovered key-steps by SPS for linear coding-based (L) and
clustering-based (C) subset selection for two videos, where only two key-steps are observed.

of provided key-steps [1, 14, 15, 26, 40], while supervised methods [52] treat the given
key-steps as the entire procedure steps, hence cannot find the remaining ones.

Paper Contributions. In this paper, we formulate and address the problem of procedure
completion in videos. We cast the problem as subset selection with partial summaries that
allows to incorporate prior knowledge and learn from partial key-steps. More specifically,
given multiple pairs of (video, subset of key-steps), we cast the problem as learning repre-
sentations of input data and finding the remaining key-steps under this representation while
generalizing well to new videos. To do so, we propose a loss function on the parameters of a
network that promotes to recover unseen key-steps that together with the seen ones optimize
a desired subset selection criterion, see Figure 1. To tackle the highly non-convex learning
problem, involving both discrete and continuous variables, we develop an efficient learning
algorithm that alternates between representation learning (continuous variables) and recov-
ering the unseen key-steps (discrete variables) given prior knowledge, via a greedy algorithm
with closed-form updates. By experiments on two instructional video datasets, we show the
effectiveness of our framework.

Prior Work on Procedure Learning. Depending on the type of supervision, the exist-
ing work on learning from instructional videos can be divided into three main categories.
The first group of work assumes that annotations of the key-steps (also referred to as pro-
cedure steps) are given in videos and the goal is to learn how to segment new videos [52]
or anticipate future key-steps [41]. To reduce the costly and unscalable annotation require-
ment, the second group of work on weakly supervised learning assumes that each video is
accompanied with an ordered or unordered list of key-steps appearing in it, and the goals are
to localize the key-steps in videos and learn a model for each key-step [4, 8, 23, 38, 53].

Unsupervised procedure learning methods, on the other hand, have focused on exploiting
the structure of videos of the same task in order to discover and localize key-steps [1, 15,
20, 26, 40, 42]. Several work have addressed understanding procedures from narration or
text [1, 10, 32, 42, 49]. However, reliably obtaining text from spoken natural language
using Internet videos still requires manual cleaning the automatic speech recognition results.
Moreover, existing methods assume that the text and visual information are aligned [1, 32,
49], which could be violated in real videos. Thus, to learn reliable visual models of key-
steps, recent work have focused on learning key-steps directly from visual data [15, 26, 40],
using a Mallows model [40], joint sequential summarization [15], embedding and clustering
of visual features [26] and self-supervised DNN learning [14]. Unsupervised procedure
learning, however, remains a challenging problem, due to large variations in unconstrained
videos with substantial amount of background irrelevant activities.

In this paper, we address the new setting in which each video is partially labeled with a
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small subset of key-steps, with the goal of learning reliable visual models for key-steps and
localizing all key-steps in videos.

Prior Work on Subset Selection. Subset selection is the task of finding a small subset
of most informative data points from a large dataset. It involves design and optimization
of objective functions that characterize the informativeness of selected data points, referred
to as representatives. Different criteria have been studied in the literature, including (se-
quential) facility location [11, 12, 13, 36, 46], maximum cut [30, 34], maximum marginal
relevance [5, 31], sparse coding [16, 18] and DPPs [7, 27, 43]. Given that almost all subset
selection criteria are, in general, non-convex and NP-hard, approximate methods, such as
greedy algorithms for optimizing graph-cuts and (sequential) facility location [11, 24], sam-
pling from Determinantal Point Process (DPP) [27, 28] as well as convex relaxation-based
methods [2, 17, 35] have been studied in the literature.

The majority of existing research on subset selection falls into the unsupervised category,
where one finds representatives of a dataset by optimizing the above criteria. On the other
hand, supervised subset selection has been more recently studied in the literature [7, 19, 21,
22, 37, 43, 45, 47, 50, 51], with the goal of learning from human-generated summaries.
More specifically, given a training set composed of multiple datasets and their ground-truth
representatives, [47] learns data representations whose input to facility location recovers
ground-truth representatives, [22, 45] learn a mixture of submodular functions, and [7, 19,
21, 43, 50] learn a DPP kernel to obtain ground-truth representatives by running subset
selection on training data.

Despite its importance, the problem of learning from partial ground-truth summaries has
not been addressed in the literature. Applying conventional supervised subset selection to
these data results in learning criteria whose optimization on training data will return only the
seen representatives, ignoring the fact that many representatives are yet undiscovered, hence,
generalizing poorly to test datasets. In the paper, we develop subset selection methods that,
for multiple datasets with partial ground-truth representatives, recover the remaining repre-
sentatives, learn a subset selection criterion whose optimization over training data recovers
both seen and unseen representatives, and generalize well to new datasets.

2 Procedure Completion

In this section, we develop a procedure completion framework by formulating the problem
as subset selection using partial summaries and proposing an efficient algorithm to solve
it. Assume we have a collection of L videos,

{
Y (`)}L

`=1, where Y (`) ,
[
y(`)1 . . .y(`)N`

]
∈ Rd×N`

corresponds to the matrix of N` segments/frames from the video ` and y(`)j ∈ Rd denotes the
feature vector of the j-th segment/frame in the video `. Assume we observe some of the
ground-truth key-steps for each video, gathered in {S`}L

`=1, where S` denotes indices of the
observed key-steps in video `. The remaining key-steps, denoted by {U`}L

`=1, are unknown.
Given a specific subset selection model, M, our goal is to find a transformation of data
under which the subset selection model recovers the observed and unobserved key-steps in
the videos. We denote by Λ` the set of all representatives from the video `, i.e.,

Λ` , S`∪ U`, ∀`= 1,2, . . . ,L, (1)
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Let fθ : Rd → Rd′ be transformation of data, parametrized by θ , which in our case corre-
sponds to the unknown parameters of a deep neural network. Let

f (`)i , fθ (y
(`)
i ) ∈ Rd′ , F(`) , fθ (Y (`)) ∈ Rd′×N` (2)

denote, respectively, the transformation of the frame/segment i in the video ` and transfor-
mation of the video `, where fθ (·) is applied to each column. Finally, we let F(`)

Λ`
be the

submatrix of F(`) whose columns are indexed by Λ`.

2.1 Proposed Formulation
Given videos with partial key-steps

{
(Y (`),S`)

}L
`=1, to find the network parameters θ and

the unseen key-steps {U`}L
`=1, we propose to minimize a loss function L(θ ,Λ1, . . . ,ΛL) that

enforces three desired properties: i) we recover unseen key-steps that together with the ob-
served ones optimize the subset selection criterion,M; ii) the seen and the recovered unseen
key-steps capture all modes in the learned embedding space; iii) the transformation extracts
meaningful feature representation of data that generalizes well to future test videos.

Notice that the set of all (seen and unseen) key-steps, Λ`, must well encode the video
`. However, the representativeness depends on the particular subset selection criterion,M,
which we use. More specifically, we can define the encoding loss function as

Lenc,M(θ ,Λ1, . . . ,ΛL),
L

∑
`=1

dM(F(`)
Λ`
,F(`)) (3)

where dM(·, ·) measures the goodness of the transformed key-steps F(`)
Λ`

for representing the
`-th video, F(`), under the subset selection modelM. In the paper, we advocate using a linear
encoding loss that allows having smooth assignment of transition frames between key-steps.
More specifically, we assume that each data point can be written as a linear combination of
representatives. Hence, the encoding of a subset of frames/segements can be measured by
how well they reconstruct the entire video, i.e.,

dM(F(`)
Λ`
,F(`)),

1
N`

N`

∑
j=1

min
z(`)j

(∥∥ f̃ (`)j − F̃(`)
Λ`

z(`)j

∥∥2
2 +ρ

∥∥z(`)j

∥∥2
2

)
. (4)

The regularization via ρ ≥ 0 prevents picking redundant (linearly dependent) representatives.
Here, f̃ (`)j and F̃(`)

Λ`
are vectors and matrices with normalized columns, in order to remove

the undesired effect of different scalings of data (without normalization, we tend to choose
columns with large norms as they require small coefficients to reconstruct other points).

On the other hand, the (seen and unseen) key-steps of a video should ideally capture all
distribution modes of the feature representation, under the learned transformation. Enforcing
diversity leads to the natural desired property of key-steps being well spread. Thus, we
consider the loss function

Lenc,M(θ ,Λ1, . . . ,ΛL)+α1Ldiv(θ ,Λ1, . . . ,ΛL) (5)

where α1 ≥ 0 is a regularization parameter and the dissimilarity loss, Ldis, is define as

Ldis(θ ,Λ1, . . . ,ΛL),−
L

∑
`=1

∑
i∈Λ`

∑
j∈Λ`
j 6=i

∥∥ f (`)i − f (`)j

∥∥2
2, (6)
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which promotes to embed key-steps in a space where the pairwise Euclidean distances be-
tween them are maximized. Notice one could use other loss functions, such as the cosine
dissimilarity. However, (6) has the desired property of finding a good Euclidean embed-
ding for data, which also worked well in our experiments. The encoding loss also prevents
arbitrary scaling of transformed data by a large value to make the dissimilarity loss smaller.

Given that the key-steps constitute only a small part of the data, learning representation
using {(Y (`),S`)}L

`=1 by minimizing the two previous losses is prone to overfitting. The
overfitting is more severe in the studied setting, as we are given only a subset of all key-steps.
To prevent overfitting and to learn representations that preserve local similarities in data, we
take advantage of the available data {Y (`)}L

`=1 and find representations via autoencoders,
which are used to reconstruct the original data. Thus, we propose to solve

min
θ ,Λ1,...,ΛL

L(θ ,Λ1, . . . ,ΛL), Lenc,M+α1Ldis +α2Lae

s. t. |U`| ≤ k`, Λ` = S`∪U`, ∀`= 1, . . . ,L,
(7)

where Lae is the autoencoder loss, α1,α2≥ 0 are regularization parameters which control the
trade-off between the three terms, k` denotes the budget on the number of unseen key-steps.
In the next subsection, we propose an algorithm to efficiently optimize (7).

Remark 1 We can use other loss functions for the encoding. In the experiments, we compare
our linear encoding loss against the facility location loss [24], which is a clustering-based
subset selection criterion. It finds an assignment of each point to one representative so that
the total encoding cost of the data via representatives is minimized, i.e.,

dM(F(`)
Λ`
,F(`)),

1
N`

N`

∑
j=1

min
i∈Λ`

∥∥ f (`)j − f (`)i

∥∥2
2. (8)

2.2 Proposed Optimization Algorithm
The loss function in (7) is non-convex, involving both continuous and discrete variables,
where in addition to the non-convexity with respect to θ imposed by using a network, the un-
known optimization variables θ and {U`}L

`=1 depend on each other. In fact, to find all unseen
key-steps {U`}L

`=1, by minimizing L, we must use the transformed data points {F(`)}L
`=1,

which requires knowing the optimal representation parameters θ . On the other hand, to find
the optimal embedding parameters θ , we need to have access to all key-steps {U`∪S`}L

`=1.
Alternating Minimization. To tackle the above problem, we use an alternating optimiza-
tion framework, where starting from an initialization of the parameters θ , at each iteration,
we first find the optimal set of key-steps given a fixed representation and then update the
parameters given the recovered key-steps. We initialize θ by pretraining the autoencoder
via minimizing Lae using all datasets {Y (`)}L

`=1. Algorithm 1 shows the steps of the method.
Finding θ for a fixed {U`}L

`=1 is done by minimizing the loss in (7), where all three losses are
being optimized over. On the other hand, finding the unseen key-steps given the parameters
requires conditioning on the observed key-steps.
Recovering Unseen Key-Steps: To find the unseen key-steps, we use a greedy approach,
motivated by (approximate) submodular function maximization [24], which has been shown
to work well for general non-submodular functions as well [3]. Notice that optimizing over
unseen key-steps only depends on Lenc and Ldis. Thus, for simplicity of notation, for a fixed
θ = θ̄ , we define

J(Λ1, . . . ,ΛL),Lenc
(
θ̄ ,{Λ`}L

`=1
)
+α1Ldis

(
θ̄ ,{Λ`}L

`=1
)
. (9)
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Algorithm 1 : Procedure Completion
Input: Video datasets {Y (`)}L

`=1 and seen key-steps {S`}L
`=1

1: Initialize θ by pretraining the autoencoder using {Y (`)}L
`=1;

2: while (Not Converged) do
3: For fixed θ , recover unseen key-steps {U`}L

`=1 using Algorithm 2;
4: For fixed {U`}L

`=1, set Λ` = S` ∪ U` for `= 1, . . . ,L and update θ by minimizing the loss in (7);
5: end while

Output: Optimal parameters θ and all key-steps {Λ`}L
`=1.

Given the definitions of the encoding and dissimilarity losses (3) and (6), respectively, we
can decompose (9) over individual videos as

J(Λ1, . . . ,ΛL),
L

∑
`=1

J(`)(Λ`),

J(`)(Λ`), dM
(
F(`)

Λ`
,F(`)

)
+α1dis

(
F(`)

Λ`

)
,

(10)

where dis
(
F(`)

Λ`

)
is the dissimilarity score for the video ` and is computed using the term

inside the first summation in (6). Hence, for θ , the minimization over unseen key-steps
decomposes into finding unseen key-steps from each video independent from the others.

To minimize J(`)(Λ`) over unseen key-steps, we take a greedy approach by considering
an active set Γ` that is incrementally grown to select at most k` unseen key-steps. Initializing
Γ` to S`, at each iteration, we add the data point from the dataset ` that minimizes the
cost function the most compared to only using Γ`. More specifically, we find the point
i∗ ∈ {1, . . . ,N`}\Γ` for which the gain, δΓ`

(i), J(`)(Γ`)− J(`)(Γ`∪ i∗), is maximum. Thus,
including the point i∗ gives the largest decrease in the loss function. We include i∗ in the
active set and repeat the process until a budget on the number of unseen key-steps is met or
the gain becomes insignificant, i.e., becomes smaller than a predefined threshold. Algorithm
2 shows the steps of the greedy method.

3 Experiments
We evaluate the performance of different algorithms, as a function of the number of observed
key-steps, on Inria [1] and Breakfast [25] datasets.

3.1 Algorithms and Baselines
We refer to our method as Summarization with Partial Summaries (SPS). We compare our
method against dppLSTM [50], a baseline, referred to as Uniform, and running subset se-
lection on features learned by an LSTM Autoencoder, which we refer to as Unsupervised.
Since dppLSTM is a supervised method, we train dppLSTM using the seen key-steps in the
training data. For the Uniform baseline, we select k key-steps uniformly at random from
all available segments. To demonstrate the effectiveness of our proposed algorithm, we also
compare against the unsupervised method, where we run subset selection on the features
obtained by the same network used by SPS, but without fine-tuning via our loss function.
In fact, when using linear coding, Unsup-LC corresponds to SMRS [16], and when using
facility location, Unsup-FL corresponds to Kmedoids [36] and.
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Algorithm 2 : Unseen Key-Step Recovery
Input: Set function {J(`)}L

`=1, seen key-steps {S`}L
`=1, budgets {k`}.

1: for `= 1, . . . ,L do
2: Initialize: Γ` = S`;
3: for j = 1, . . . ,k` do
4: for i ∈ {1, . . . ,N`}\Γ` do
5: Compute gain δΓ`

(i) = J(`)(Γ`)− J(`)(Γ` ∪ i);
6: end for
7: Compute i∗ = argmaxi δΓ`

(i);
8: if

(
δΓ`

(i∗)≥ ε
)

then
9: Update Γ`← Γ` ∪{i∗};

10: else
11: Break;
12: end if
13: end for
14: Set Λ` = Γ`;
15: end for
Output: Optimal key-step sets {Λ`}L

`=1.

3.2 Datasets
The Inria dataset [1] contains five instructional tasks, such changing tire or making coffee,
where each task has 30 videos. The Breakfast dataset [25] has 10 cooking activities by 52
individuals, such as making cereals or frying eggs, where each activity has approximately
200 videos, corresponding to different camera views of the same person doing the same
task. On both datasets, the ground-truth annotations provide the frame localization for all
key-steps as well as background. A main difference between the two datasets is the amount
of background activities (not associated with any key-step). The Inria dataset consists of a
large amount of background actions, while the Breakfast dataset has a very small amount
background at the beginning and end of each video. We use the entire Inria dataset and the
first two splits of the Breakfast dataset for training and evaluation. In our experiments, we
divide the videos of each task into 80% for training and 20% for testing.

3.3 Feature Extraction
We perform the subset selection at the segment level, where we divide each video into seg-
ments of 10-frame length. We extract visual features from the conv5 and fc2 layers of the
VGG16 network, respectively, for the Inria and Breakfast datasets to capture the content of
each frame. The conv5 features have already been shown to work well for the Inria dataset
[1] and, in our experiments, fc2 features worked best for all methods on the Breakfast dataset.
The visual features are then given as input to an LSTM autoencoder [44], which captures the
dynamics of the input segment. We set the length of the input sequence of the LSTM to 10,
thereby obtaining features for every segment.

3.4 Implementation Details
We use the LSTM Autoencoder with one hidden layer with 2,048 and 4,096 units for Inria
and Breakfast, respectively. We use the Adam optimizer with the learning rate of 1e-4 and
batch size of 256 during pre-training and run for 1,000 epochs until the reconstruction loss
converges. We report the results of the running the facility location and linear coding on
features obtained by the pretrained networks, which we refer to as Unsup-FL and Unsup-
LC, respectively. Our method, referred to as SPS-FL and SPS-LC, fine-tunes the network
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Inria Breakfast
Seen Key-Steps K = 2 K = 4 K = 6 20% 40% 60% 80%
Uniform 26.4 35.2 40.0 45.9 46.3 47.5 48.2
Unsup–FL 24.1 31.6 38.9 43.0 43.6 46.7 47.8
Unsup–LC 26.7 35.1 41.0 48.3 48.3 48.8 49.1
dppLSTM 21.8 32.3 46.7 40.6 42.3 47.1 47.6
SPS–FL 35.1 49.8 59.5 43.0 43.9 46.7 48.1
SPS–LC 47.9 58.0 62.1 51.8 53.1 53.3 54.7

Table 1: F1 score (%) comparison for different number/fraction of seen ground-truth key-steps.

using our loss function.
For our method, during training, we fine-tune the pretrained weights of the LSTM Au-

toencoder on the training set of each task via backpropagation. For training on Inria, we
use Adam optimizer with learning rate of 1e-4 for both linear coding and facility location
models and fine-tune the weights for 25 epochs (the loss converges around 25 epochs). We
perform backpropagation in each epoch using all training videos. We set the hyperparame-
ters α1 and α2 to one. In addition, the regularization parameter ρ is set to zero for the linear
coding model. For training on Breakfast, we set the learning rate of Adam optimizer to 1e-5,
for both version of our method. Given that Breakfast contains many redundant video for
each task, e.g., multiple viewpoints of a person demonstrating a cooking activity, we per-
form backpropagation using SGD for each epoch by selecting 25 videos randomly without
replacement. We train for 15 epochs for each task in the Breakfast dataset. We set α1 and α2
to 1e-5 and 1, respectively, and set ρ to 1e-4.

3.5 Evaluation Metrics
To investigate the performance of our framework as a function of the number of observed
key-steps in videos, we reveal 2, 4 and 6 key-steps for each task in the Inria dataset and 20%,
40%, 60% and 80% for each task in the Breakfast dataset1. We pick the middle segment in
the ground-truth of each selected key-step as the observed key-step. For all methods, we set
the budget k` to the number of unseen ground-truth key-steps in each video.

For evaluation, we report segment-wise precision, action-wise recall and F1 score [25].
These metrics measure the performance of finding a representative for each key-step and
the correctness of video segmentation based on assignments of segments to representatives.
The action-wise recall of a video is defined as the number of correctly localized key-steps
divided by the number of key-steps in the video. A key-step is correctly localized if at least
one representative segment overlaps with the ground-truth of the key-step. To compute the
segment-wise precision, we assign each segment of a video to its closest representative and
divide the number of segments in ground-truth key-steps assigned to a correctly localized
representative by the total number of segments in all key-steps of the video. The F1 score is
the harmonic mean between action-wise recall and segment-wise precision.

3.6 Experimental Results
Table 1 shows the average F1 score of different algorithms on Inria and breakfast datasets,
respectively, for different number/percentage of seen ground-truth key-steps. On Inria, both

1We set the minimum number of seen key steps to 2 for the Breakfast dataset so that there are at least two
revealed key-steps when videos have very few key steps.
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Figure 2: F1 scores on the Inria dataset for different number of observed key-steps, K. Tasks from
left to right: change tire, make coffee, perform CPR, repot plant, jump-start car.
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Figure 3: F1 scores on 5 activities from the Breakfast dataset for different percentages of observed
ground-truth key-steps. Tasks from left to right: milk, juice, cereals, scrambled eggs, pancake.

versions of our method significantly outperform other algorithms for all values of K. dp-
pLSTM performs poorly for K = 2,4 and does better than Unsup and Uniform for K = 6.
This is expected, since dppLSTM learns to output only seen key-steps that when K is small,
leads to poor learning and generalization. Notice that in both datasets, SPS-LC improves
over Unsup-LC (and similarly for FL), showing the effectiveness of our proposed loss func-
tion, which fine-tunes the network weights learned via Unsup. In both datasets, SPS-LC
performs better than SPS-FL, while the latter does not perform as well on Breakfast. This is
due to the fact that FL is a clustering-based subset selection that imposes and prefers clear
clustering of data, which does not hold well in the beginning of training and particularly on
Breakfast that has visually similar segments. We believe visually similar segments in Break-
fast is the reason that dppLSTM does not work well for more seen key-steps. Uniform on
Breakfast does well, since its videos have very small background, hence, randomly selecting
a segment has a higher chance of picking an unseen key-step.

Figures 2 and 3 shows the F1 scores of different methods for each task in the Inria and
Breakfast datasets, respectively. Notice that on Inria both versions of our method, i.e., SPS-
LC and SPS-FL, perform better than their unsupervised counterparts and the supervised dp-
pLSTM in all tasks. On Breakfast, SPS-LC performs significantly better than other methods,
while the performance of SPS-FL is close to its unsupervised version. We believe this is due
to high visual similarity of key-steps in the dataset, which makes learning for a clustering-
based subset selection hard. Table 2 (left) shows the average precision and recall of our
method on Inria for different values of K. Notice that the precision and recall for SPS-FL is
much lower for K = 2 compared to SPS-LC, since clustering of data using only 2 seen key-
steps with a large number of unseen ones at the beginning of training has a large error, which
propagates into subsequent steps. However, both models improve the action-wise recall by
a large margin as we increase the number of seen key-steps. For larger seen key-steps, both
models are effective.

Figure 4 (left) shows the precision and F1 score of SPS-LC on the task CPR from Inria
for K = 2, demonstrating that within 10 epochs the scores significantly improve and does not
change much afterwards (notice the oscillation as we do not optimize the scores directly).

Ablation Studies. Table 2 (right) shows the effect of different components of the loss func-
tion in (7) on the F1 score on Inria. Notice that simply training the autoencoder without
ground-truth key-steps, as well as only optimizing dissimilarity loss or encoding do not do
well. Adding encoding or dissimilarity loss to the autoencoder improves the performance for
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Figure 4: Left: F1 score of SPS-LC as a function of training epochs for K = 2 on the task CPR from Inria.
Middle Left: Effect of hyperparameters α1 and α2 on F1 score. Middle Right and Right: T-SNE visualization of
feature representations from five videos of the task ‘Repot Plant’ with two observed key-steps before (left) and after
(right) training using SPS-LC. Circles of different colors correspond to segments from different key steps. The data
distribution changes after training where segments belonging to the same key step become better clustered.

K
Segment-wise

precision
Action-wise

recall
SPS-FL 2 30.1 45.0

4 41.4 64.7
6 47.3 83.0

SPS-LC 2 43.6 57.0
4 48.8 75.4
6 49.7 86.1

SPS-LC SPS-FL
Lae 26.7 24.1
Lenc 28.1 25.9
Ldis 27.8 26.2
Lae +Lenc 33.4 23.7
Lae +Ldis 32.0 28.1
Lae +Lenc +Ldis 47.9 35.1

Table 2: Left: Segment-wise precision (%) and action-wise recall (%) of our method on Inria for different numbers
of observed key-steps, K. Right: Effect of different loss functions on F1 score (%) on Inria for K = 2.

SPS-LC. Finally, using all losses significantly improves the F1 score of both linear coding
and clustering-based variants of our method. This is because the dissimilarity loss encour-
ages to select key-steps that are visually dissimilar, while without it, the method tends to
select representatives that belong to the same key step.

Effect of Hyperparameters. The second plot in Figure 4 shows the effect of hyperparame-
ters α1 and α2 of our loss function on the average F1 score (%) for SPS-LC with K = 2 on
Inria. When we have enough and almost equal emphasis on the diversity and reconstruction
losses, our method performs well, demonstrating the importance of both losses. Notice that
the performance is very low for small α1, which shows the importance of the dissimilarity
term in our loss function.

Qualitative Results. The third and fourth plots in Figure 4 shows the T-SNE plots for five
videos from the task ‘repot plant’ in Inria before and after training by our method. Notice that
different key-steps, which are initially mixed, become better clustered after training by our
method. Finally, Figure 1 shows the ground-truth and key-steps discovered by our method
for two training videos from the task ‘change tire’ in Inria. Notice thar SPS-LC correctly 7
key-steps in both video 1 and 2, while only finding 1 key-step from background in video 1.
Also the results show we might recover more than one representative for the same key-step.
This often happens when a key-step has large visual appearance variation within a video.
Handling such cases would be the subject of future studies.

4 Conclusions
We addressed the problem of procedure completion by learning from a small observed sub-
set of key-steps. We developed a subset selection method from partial summaries and an
efficient optimization algorithm, by simultaneously learning representations of input videos
and recovering remaining key-steps. By experiments on real instructional videos, we showed
the effectiveness of our framework.
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