
LAMBA, BALAJI, MITRA: EXTREMELY FAST LOW-LIGHT RESTORATION 1

Towards Fast and Light-Weight Restoration
of Dark Images

Mohit Lamba*
ee18d009@smail.iitm.ac.in

Atul Balaji
ee16b002@smail.iitm.ac.in

Kaushik Mitra
kmitra@ee.iitm.ac.in

Computational Imaging Lab
Dept. of Electrical Engineering
Indian Institute of Technology Madras
Chennai, India

Abstract

The ability to capture good quality images in the dark and near-zero lux conditions
has been a long-standing pursuit of the computer vision community. The seminal work
by Chen et al. [5] has especially caused renewed interest in this area, resulting in methods
that build on top of their work in a bid to improve the reconstruction. However, for prac-
tical utility and deployment of low-light enhancement algorithms on edge devices such
as embedded systems, surveillance cameras, autonomous robots and smartphones, the
solution must respect additional constraints such as limited GPU memory and process-
ing power. With this in mind, we propose a deep neural network architecture that aims to
strike a balance between the network latency, memory utilization, model parameters, and
reconstruction quality. The key idea is to forbid computations in the High-Resolution
(HR) space and limit them to a Low-Resolution (LR) space. However, doing the bulk
of computations in the LR space causes artifacts in the restored image. We thus propose
Pack and UnPack operations, which allow us to effectively transit between the HR and
LR spaces without incurring much artifacts in the restored image. State-of-the-art al-
gorithms on dark image enhancement need to pre-amplify the image before processing
it. However, they generally use ground truth information to find the amplification factor
even during inference, restricting their applicability for unknown scenes. In contrast, we
propose a simple yet effective light-weight mechanism for automatically determining the
amplification factor from the input image. We show that we can enhance a full resolution,
2848× 4256, extremely dark single-image in the ballpark of 3 seconds even on a CPU.
We achieve this with 2−7× fewer model parameters, 2−3× lower memory utilization,
5−20× speed up and yet maintain a competitive image reconstruction quality compared
to the state-of-the-art algorithms.

1 Introduction
The ability to swiftly capture high quality images with modest computations has led to the
widespread proliferation of digital images. These advantages are, however, limited to good
lighting conditions. Achieving similar results under low light is still a significant challenge.
While much of the work in this direction has focused on enhancing weakly illuminated
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Marker Size µ Memory Utilization Marker Size µ Model Parameters
Figure 1: Performance comparison of the proposed method with state-of-the-art methods
Chen et al. [5], Gu et al. [10], Maharjan et al. [23] and traditional methods LIME [11], and
Li et al. [20] for extreme low-light single-image enhancement. Refer to Table 1 for more
details.

images [11, 16, 18, 20, 27, 28, 40], enhancement of extremely dark images has received
comparatively lesser attention.

Recently, however, a landmark paper by Chen et al. [5] has shown that it is possible to
restore extremely dark images captured under near-zero lux conditions. Following this work,
several modifications have been proposed in a bid to improve the reconstruction quality. This
includes the incorporation of attention units [1], recurrent units [3], the adoption of a multi-
scale approach [10, 24] and the usage of deeper networks [23]. With these added complex-
ities, these methods are constrained to run on desktop GPUs such as NVIDIA RTX 2080Ti
with 12GB storage. But, real-world applications require image enhancement algorithms to
run on embedded systems and edge devices with limited CPU RAM or minimal GPU capac-
ity. One possible solution is to process the images in VGA resolution [11, 20, 22, 38, 40, 48].
But, this is in contrast to the current trend of capturing and processing high-definition im-
ages. Consequently, we aim to design a deep network that can restore an extreme low-light
high-definition single-image with minimal CPU latency and low memory footprint, but at
the same time has a competitive image restoration quality.

We propose a deep neural network, called Low-Light Packing Network (LLPackNet),
which is faster and computationally cheaper than the existing solutions. Recognizing the
fact that a neural network’s complexity increases quadratically with spatial dimensions [36],
we perform the bulk of computations in a much lower resolution by performing aggressive
down/up sampling operation. This is in contrast with much of the existing literature that
down/up sample the feature maps in gradations [5, 21, 35, 47, 49], which increases network
latency and memory utilization. For performing large downsampling operations, popular
choices such as max-pooling and strided convolution [7] cannot be used as they would cause
much loss in information. We therefore, propose Pack a× downsampling operation, which
rearranges the pixels in such a manner that it reduces the spatial dimension by a factor of
a , while increasing the number of channels by a factor of a2, see Fig. 2. We show that the
Pack operation bestows LLPackNet with an enormous receptive field which is not trivially
possible by directly operating in the HR space. We also propose UnPack a× operation,
which complements the Pack a× operation to do large upsampling. This operation is much
faster than the usual transposed convolution layer [7] and has no learnable parameters. For
upsampling, PixelShuffle [33] is another viable option but it lacks proper correlation between
the color channels and hence results in heavy color cast in the restored image as shown in Fig.
5. Altogether, the proposed Pack and UnPack operations allow us to operate in a much lower
resolution space for computational advantages, without significantly affecting the restoration
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quality. See Fig. 1 for a qualitative comparison with state-of-the-art algorithms.
State-of-the-art deep learning solutions on extreme low-light image enhancement need

to pre-amplify dark images before processing them [1, 5, 10, 23]. However, these methods
use ground-truth knowledge for predicting the ampli�cation factor. In a real-world setting,
because of lack of ground-truth (GT) knowledge, the ampli�cation factor cannot be estimated
properly and hence this would lead to degradation in performance. We therefore, equip the
proposed LLPackNet with an ampli�er module, which will estimate the ampli�cation factor
directly from the input image histogram.

To summarize, the main contributions of this paper are as follows — 1) We propose a
deep neural network architecture, calledLLPackNet, that enhances an extremely dark single-
image at high resolution even on a CPU with very low latency and computational resources.
2) We proposePackandUnPackoperations for better color restoration. 3) LLPackNet can
estimate the ampli�cation factor directly from the input image, without relying on ground-
truth information, making it practical for real world applications. 4) Our experiments show
that compared to existing solutions, we are able to restore high de�nition, extreme low-light
RAW images with 2–7� fewer model parameters, 2–3� lower memory and 5–20� speed
up, with a competitive restoration quality. Our code is available athttps://github.
com/MohitLamba94/LLPackNet .

2 Related Work

Low-light enhancement methods are chie�y comprised of histogram equalization [16, 27,
28], Retinex based decomposition [9, 11, 18, 20, 25, 45] and Deep learning based methods
[6, 17, 19, 22, 30, 32, 37, 39, 40, 46]. Most of them however, do not target extreme low-light
conditions or high resolution images. More recently, Chenet al. [5] proposed an end-to-end
pipeline to restore extreme low-light high-de�nition RAW images, which has spurred sev-
eral other works in this direction [1, 3, 10, 15, 23, 24]. Most of these methods, however,
have signi�cantly large processing time and memory utilization. As noted in Sec. 1 many of
them also require GT information for image pre-ampli�cation. However, other image ampli-
�cation techniques that involve the use of CRF [31, 44], image histogram [16, 28] or other
assumptions [11, 43] have been used in traditional image enhancement methods to estimate
ampli�cation, using only the input image. Borrowing from these ideas, we develop an am-
pli�er module that uses the histogram of the input dark image to predict the ampli�cation
factor automatically, without relying on GT information. To the best of our knowledge, this
has not been attempted before for deep learning based dark image enhancement.

Fast and ef�cient CNN models have been explored in other areas, especially image clas-
si�cation, but is mostly achieved by either approximating [29, 42] or pruning the learned
weights [8]. In contrast, we propose a network that is inherently fast and ef�cient without
using such weight-approximation or pruning approaches.

3 Low-Light Packing Network (LLPackNet)

We propose Low-Light Packing Network (LLPackNet) for enhancing extremely dark high
resolution single-images with low time–memory complexity. We �rst describe the network
architecture, shown Fig. 2, in Sec. 3.1 and then analyze the important components of our
network, the Pack and UnPack operations, in Sec. 3.2.
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(a) LLPackNet Architecture (b) Pack/UnPack Operations

Figure 2: Our proposed network, LLPackNet, learns the required ampli�cation factor di-
rectly from the dark input image and uses the novelPackandUnPackoperations to perform
aggressive down/up sampling with minimal color distortions. The network has low latency
and low memory footprint.

3.1 Network architecture

Image ampli�cation: In general, dark images need to be pre-ampli�ed before enhancing
them. We estimate the ampli�cation factor using the incoming RAW imageIHR

i=p by construct-
ing a 64 bin histogram, with the histogram bins being equidistant in the log domain. This
provides a �ner binning resolution for lower intensities and a coarser binning resolution for
higher intensities. The histogram is used by a multilayer perceptron, having just one hidden
layer, to estimate the ampli�cation factor.

Fast and light-weight enhancement:As discussed in Sec 1, we want to perform most of
the processing in LR space. Hence, our �rst step is to downsample the input image, without
losing any information. For this purpose, we proposePacka � operation, that downsamples
the image by a factor ofa along the spatial dimensions while increasing the number of
channels by a factor ofa 2. This is shown in Fig. 2 (b) fora = 2. A pseudo code is
also provided in Algorithm 1. Our goal is to perform 16� downsampling, which we do in
two stages. In the �rst stage, the Pack 2� operation separates out the red, green and blue
color components lying in the 2� 2 Bayer pattern [13] of the ampli�ed imageIHR

i=p . This

reduces the spatial dimension by half and increases the channels from 1 to 4 (22). Once
the colors are separated into these channels, a subsequent Pack 8� operation is applied
individually on each color channel, further reducing the spatial dimension from 2� to 16�
lower resolution but increasing the number of channels from 1 to 64 (82). Now, using a 3� 3
convolution kernel, the channel dimension of each color component is reduced such that on
concatenation, the resulting feature map has only 60 channels. The channel reduction at this
stage is essential to prevent parameter and memory explosion in the downstream operations.
This downsampled representation is then processed by a series of convolution operations.
For this purpose, we use the Residual Dense Network [49] (RDN) — which consists of 3
residual dense blocks each with 6 convolutional layers and a growth rate of 32. RDN does
not perform any down/up sampling operation or cause any change in channel dimension
in its output. The output of the RDN now needs to be upsampled and for this we use the
proposedUnPack2� operation, which is the inverse ofPack 2� . UnPack2� , however,
reduces the number of channels from 60 to 15 (60=22) and this needs to be increased to 192
(82 � 3) to allow the �nal 8� upsampling using UnPack 8� . For this we use another set of
3� 3 convolutions. Except for this operation, all the computations are done in the 16� lower
resolution. We �nally perform UnPack 8� operation to get the restored image,IHR

o=p.
Loss function: Similar to Ignatovet al. [14], we compute the color loss, content loss

and total variation (TV) loss on the restored image to train the network. Speci�cally, we use,

Loss = l 1 � jjGT � IHR
o=pjj1 + l 2 � jj Y (GT) � Y (IHR

o=p)jj1 + l 3 � jj d(GT) � d(IHR
o=p)jj1

+ l 4 � TV(IHR
o=p) + l 5 � jjwjj1 (1)
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whereY is a feature map of VGG-19,d performs Gaussian smoothing andw denotes the
network weights. VGG-19 features are obtained right after the �nal 3 max-pool layers.

3.2 Pack/UnPack operation for better color restoration

The last section discussed LLPackNet from the vantage point of network complexity. In this
section we analyze the network from the standpoint of reconstruction quality.

Algorithm 1: Python code for performing Packa � and UnPacka � operation.
Packa � operation

Input: An RGB imageIHR of dimensionsH � W � 3.
Output: ILR of dimensionH

a � W
a � 3a 2.

count= 0
for row in range(a ) :

for col in range(a ) :
ILR[:; :; count: count+ 3] = IHR[row : H : a ; col : W : a ; :]
count = count+ 3

UnPacka � operation
Input: ILR of dimensionH

a � W
a � 3a 2.

Output: An RGB imageIHR of dimensionsH � W � 3.
count= 0
for row in range(a ) :

for col in range(a ) :
IHR[row : H : a ; col : W : a ; :] = ILR[:; :; count: count+ 3]
count = count+ 3

Improving color correlation with UnPack a � : Making abrupt transitions between
LR and HR spaces introduces several distortions in the restored image. To minimize these,
we propose the novel Packa � and UnPacka � operations. To understand these operations,
it is crucial to analyze PixelShuf�e [33] - a fast and effective upsampling method, based
on which they are formulated. Using an analysis similar to [2, 33, 34], we will show that
Pack/UnPack operations lead to better color correlation than PixelShuf�e.

First we analyze the PixelShuf�e operation. In Fig. 3 a),TLR refers to the penultimate
feature map, which is upsampled with zero padding and then convolved withwHR to obtain
the restored imageOHR. We now explain the color coding used in the �gure. WhenwHR

convolves withTHR, for each shifted position ofwHR, only the weights in one set of colors
in wHR contribute to an output pixel inTHR. We label the output pixel with the same color.
Doing convolution in HR is computationally expensive. However, an equivalent operation
in the LR space can be performed as shown in Fig. 3 b). This involves decomposingwHR

into smaller kernels ofwLR which are then convolved withTLR to produceOLR. Using
PixelShuf�e, OHR can then be obtained fromOLR . However, in this scheme, each kernel in
wHR maintains a monopoly on one of the red, green or blue color channels in the restored
imageOHR, see Fig. 3 c). Thus, restoring images using PixelShuf�e causes weak correlation
among the color channels ofOHR, leading to color artifacts as shown in Fig. 5.

The goal of UnPack operation is to enhance the correlation among the color channels of
OHR. For this purpose, along with the upsampling, zero-padding and convolution operations,
we introduce a re-grouping step as shown in Fig. 3 d). This may appear to be a complicated
two-stage operation, but using our UnPack operation we can easily perform an equivalent
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a) The usual upsampling operation in HR. b) Implementing (a) in LR using PixelShuf�e. c) Less color correlation.
with PixelShuf�e

d) Upsampling in HR followed by regrouping for better color correlation. e) Implementing (d) in LR using UnPack. f) Better color correlation
with UnPack.

Figure 3: Performing aggressive down/up-sampling causes several color distortions in the
restored image. The proposed UnPack operation limits this by improving the color correla-
tion in the restored image and simultaneously performing quick upsampling from LR to HR
space. The effectiveness of the proposed solution is demonstrated in Fig. 5.

operation in the LR space, as shown in Fig. 3 e). Note that this operation has the same time
complexity as the operation shown in Fig. 3 b). For this operation, we decomposebwHR into
bwLR and then apply UnPacka � . From Fig. 3 f), we see that all the kernels ofbwHR are
collectively responsible for all the colors inOHR. Thus, UnPack operation leads to better
color correlation than PixelShuf�e.

The effectiveness of the proposed UnPack operation can also be intuitively understood in
the LR space by comparing Fig. 3 b) and Fig. 3 e). UnPack preserves the RGB ordering in
the LR, whereas, PixelShuf�e breaks this ordering, especially for large upsampling factors.
For example, for a given spatial location in HR, PixelShuf�e separates the Red and Blue
pixels by 2x82 = 128 channels in LR for 8� upsampling. UnPack, however, always separates
them by only 1 Green pixel for any upsampling factor. This is crucial because for CNNs it
is well known that nearby features correlate more than spaced out ones [35]. Thus even
though, UnPack does not introduce any new parametrization, its arrangement favors better
color restoration. Therefore, in Fig. 5, PixelShuf�e's restored image is heavily affected by
color cast, but no such distortion is observed in the case of UnPack.

Increasing receptive �eld with Pack a � : Having a large receptive �eld is essential for
capturing the contextual information in an image. Downsampling the incoming feature map
using the novel Pack operation equips LLPackNet with a large receptive �eld. To illustrate
this fact, let us consider a large feature mapIHR which is downsampled toILR using Pack
10� operation. Note that the neighboring pixels inILR are actually 10 pixels apart inIHR.
Also, the pixels along the channel dimension ofILR are in a 10� 10 neighborhood inIHR.
Thus, even using a 3� 3 convolution kernel onILR with a stride of 1 leads to a receptive �eld
of 900 pixels inIHR. In contrast, to do a similar operation directly onIHR, requires a 30� 30
kernel with a stride of 10, which is impractical.

4 Experiments

4.1 Experimental settings

For extreme low-light single-image enhancement, we compare with Chenet al. [5] , Gu et
al. [10] and Maharjanet al. [23]. In addition, we also tried conventional techniques such
as LIME [11] and Li et al. [20] but they did not work well for dark images. The pub-
licly available training and test codes of these methods have been used for the comparisons.
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Model Processing Time Memory Parameters PSNR(dB) / SSIM
(in seconds) ( in GB) (in million) w/o GT exposure using GT exposure

Maharjan et al. [23] 120 10 2:5 20:98 / 0:49 28.41 /0.81
Gu et al. [10] 77 8 3:5 21:90 / 0.59 28.53/ 0.81
Chenet al. [5] 17 5 7:75 22.93 / 0.70 28.30 / 0.79

Chenet al. [5] + Our Ampli�er 17 5 7:76 22.98 /0.71 28.30 / 0.79
LLPackNet (Ours) 3 3 1.1 23.27/ 0.69 27.83 / 0.75

Table 1: Results on the SID dataset [5] for extremely dark 2848� 4256 RAW images. Com-
pared to existing approaches, we have 2–7� fewer model parameters, 2–3� lower memory,
5–20� speed up with competitive restoration quality.

For experiments on dark images, we use See-in-the-Dark (SID) dataset [5] captured with
high de�nition full-frame Sonya 7S II Bayer sensor. Unlike some methods that collect their
dataset by simulating pairs of low-light and GT images [19, 22, 25, 30, 37, 40], SID provides
physically captured extreme low-light RAW images of resolution 2848� 4256. We addition-
ally show comparisons on the LOL dataset [40] to evaluate the performance of LLPackNet
on a notably distinct test set-up. In contrast to SID, LOL has weakly illuminated VGA res-
olution PNG compressed images. Additionally, SID comes with GT and low-light exposure
information, which can be used for estimating the pre-ampli�cation factor, but LOL has no
such information.

We use the train/test split as given in the datasets. For LLPackNet, patches of size 512�
512 are used for training and full resolution for testing. For benchmarking, we use the
PyTorch [26] framework on Intel Xeon E5-1620V4 @ 3.50 GHz CPU with 64 GB RAM. We
use the default Adam optimizer of PyTorch with �xed learning rate of 10� 4. All convolutions
use kernels of size 3� 3 with He initialization [12]. Our network was allowed to train for
400,000 iterations. We use,l 1 = 1, l 2 = 3, l 3 = 1, l 4 = 400 andl 5 = 10� 6.

4.2 Restoration results for extreme low-light images

We compare our network with Chenet al. [5], Gu et al. [10] and Maharjanet al. [23] on
the SID dataset, see Table 1 and Fig. 4. These methods use the ratio of GT exposure to
that of the input dark image, available in the SID dataset, to pre-amplify the images. The
corresponding results are shown under the label `using GT exposure' in Table 1 and Fig.
4. But, since the GT information will not be readily available in a real-world setting, we
additionally show results in the absence of GT information. This is shown under the heading
`w/o GT exposure'. We also show results for `Chenet al. + Our Ampli�er' in which our
proposed ampli�er is added to their algorithm. We have chosen Chenet al. because they
have the least time and memory complexity, compared to the other existing methods. All the
methods are appropriately retrained before evaluation.

Network speed and memory utilization: As shown in Table 1, LLPackNet is 5� 20�
faster with 2� 3� lower memory and 2� 7� lesser model parameters. We achieve this be-
cause we do the bulk of operations in 16� lower resolution. In contrast, Maharjanet al. [23]
do not perform any downsampling operation and therefore, the feature maps propagating
through their network are huge. This results in very high network latency and memory con-
sumption. Guet al. [10] adopt a multi-scale approach that requires feature map propagation
at 2� and 4� lower resolution. But this marginal downsampling is not suf�cient to contain
the network latency and memory consumption. Chenet al. [5] have relatively better metrics
by performing up to 32� downsampling. But this is done only in steps of 2, requiring �ve
downsampling and �ve upsampling operations. Further, four out of �ve upsampling oper-




