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Abstract

The ability to capture good quality images in the dark and near-zero lux conditions
has been a long-standing pursuit of the computer vision community. The seminal work
by Chen et al. [5] has especially caused renewed interest in this area, resulting in methods
that build on top of their work in a bid to improve the reconstruction. However, for prac-
tical utility and deployment of low-light enhancement algorithms on edge devices such
as embedded systems, surveillance cameras, autonomous robots and smartphones, the
solution must respect additional constraints such as limited GPU memory and process-
ing power. With this in mind, we propose a deep neural network architecture that aims to
strike a balance between the network latency, memory utilization, model parameters, and
reconstruction quality. The key idea is to forbid computations in the High-Resolution
(HR) space and limit them to a Low-Resolution (LR) space. However, doing the bulk
of computations in the LR space causes artifacts in the restored image. We thus propose
Pack and UnPack operations, which allow us to effectively transit between the HR and
LR spaces without incurring much artifacts in the restored image. State-of-the-art al-
gorithms on dark image enhancement need to pre-amplify the image before processing
it. However, they generally use ground truth information to find the amplification factor
even during inference, restricting their applicability for unknown scenes. In contrast, we
propose a simple yet effective light-weight mechanism for automatically determining the
amplification factor from the input image. We show that we can enhance a full resolution,
2848× 4256, extremely dark single-image in the ballpark of 3 seconds even on a CPU.
We achieve this with 2−7× fewer model parameters, 2−3× lower memory utilization,
5−20× speed up and yet maintain a competitive image reconstruction quality compared
to the state-of-the-art algorithms.

1 Introduction
The ability to swiftly capture high quality images with modest computations has led to the
widespread proliferation of digital images. These advantages are, however, limited to good
lighting conditions. Achieving similar results under low light is still a significant challenge.
While much of the work in this direction has focused on enhancing weakly illuminated

* Corresponding author
c© 2020. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Chen, Chen, Xu, and Koltun} 2018



2 LAMBA, BALAJI, MITRA: EXTREMELY FAST LOW-LIGHT RESTORATION

Marker Size ∝ Memory Utilization Marker Size ∝ Model Parameters
Figure 1: Performance comparison of the proposed method with state-of-the-art methods
Chen et al. [5], Gu et al. [10], Maharjan et al. [23] and traditional methods LIME [11], and
Li et al. [20] for extreme low-light single-image enhancement. Refer to Table 1 for more
details.

images [11, 16, 18, 20, 27, 28, 40], enhancement of extremely dark images has received
comparatively lesser attention.

Recently, however, a landmark paper by Chen et al. [5] has shown that it is possible to
restore extremely dark images captured under near-zero lux conditions. Following this work,
several modifications have been proposed in a bid to improve the reconstruction quality. This
includes the incorporation of attention units [1], recurrent units [3], the adoption of a multi-
scale approach [10, 24] and the usage of deeper networks [23]. With these added complex-
ities, these methods are constrained to run on desktop GPUs such as NVIDIA RTX 2080Ti
with 12GB storage. But, real-world applications require image enhancement algorithms to
run on embedded systems and edge devices with limited CPU RAM or minimal GPU capac-
ity. One possible solution is to process the images in VGA resolution [11, 20, 22, 38, 40, 48].
But, this is in contrast to the current trend of capturing and processing high-definition im-
ages. Consequently, we aim to design a deep network that can restore an extreme low-light
high-definition single-image with minimal CPU latency and low memory footprint, but at
the same time has a competitive image restoration quality.

We propose a deep neural network, called Low-Light Packing Network (LLPackNet),
which is faster and computationally cheaper than the existing solutions. Recognizing the
fact that a neural network’s complexity increases quadratically with spatial dimensions [36],
we perform the bulk of computations in a much lower resolution by performing aggressive
down/up sampling operation. This is in contrast with much of the existing literature that
down/up sample the feature maps in gradations [5, 21, 35, 47, 49], which increases network
latency and memory utilization. For performing large downsampling operations, popular
choices such as max-pooling and strided convolution [7] cannot be used as they would cause
much loss in information. We therefore, propose Pack α× downsampling operation, which
rearranges the pixels in such a manner that it reduces the spatial dimension by a factor of
α , while increasing the number of channels by a factor of α2, see Fig. 2. We show that the
Pack operation bestows LLPackNet with an enormous receptive field which is not trivially
possible by directly operating in the HR space. We also propose UnPack α× operation,
which complements the Pack α× operation to do large upsampling. This operation is much
faster than the usual transposed convolution layer [7] and has no learnable parameters. For
upsampling, PixelShuffle [33] is another viable option but it lacks proper correlation between
the color channels and hence results in heavy color cast in the restored image as shown in Fig.
5. Altogether, the proposed Pack and UnPack operations allow us to operate in a much lower
resolution space for computational advantages, without significantly affecting the restoration
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quality. See Fig. 1 for a qualitative comparison with state-of-the-art algorithms.
State-of-the-art deep learning solutions on extreme low-light image enhancement need

to pre-amplify dark images before processing them [1, 5, 10, 23]. However, these methods
use ground-truth knowledge for predicting the amplification factor. In a real-world setting,
because of lack of ground-truth (GT) knowledge, the amplification factor cannot be estimated
properly and hence this would lead to degradation in performance. We therefore, equip the
proposed LLPackNet with an amplifier module, which will estimate the amplification factor
directly from the input image histogram.

To summarize, the main contributions of this paper are as follows — 1) We propose a
deep neural network architecture, called LLPackNet, that enhances an extremely dark single-
image at high resolution even on a CPU with very low latency and computational resources.
2) We propose Pack and UnPack operations for better color restoration. 3) LLPackNet can
estimate the amplification factor directly from the input image, without relying on ground-
truth information, making it practical for real world applications. 4) Our experiments show
that compared to existing solutions, we are able to restore high definition, extreme low-light
RAW images with 2–7× fewer model parameters, 2–3× lower memory and 5–20× speed
up, with a competitive restoration quality. Our code is available at https://github.
com/MohitLamba94/LLPackNet.

2 Related Work

Low-light enhancement methods are chiefly comprised of histogram equalization [16, 27,
28], Retinex based decomposition [9, 11, 18, 20, 25, 45] and Deep learning based methods
[6, 17, 19, 22, 30, 32, 37, 39, 40, 46]. Most of them however, do not target extreme low-light
conditions or high resolution images. More recently, Chen et al. [5] proposed an end-to-end
pipeline to restore extreme low-light high-definition RAW images, which has spurred sev-
eral other works in this direction [1, 3, 10, 15, 23, 24]. Most of these methods, however,
have significantly large processing time and memory utilization. As noted in Sec. 1 many of
them also require GT information for image pre-amplification. However, other image ampli-
fication techniques that involve the use of CRF [31, 44], image histogram [16, 28] or other
assumptions [11, 43] have been used in traditional image enhancement methods to estimate
amplification, using only the input image. Borrowing from these ideas, we develop an am-
plifier module that uses the histogram of the input dark image to predict the amplification
factor automatically, without relying on GT information. To the best of our knowledge, this
has not been attempted before for deep learning based dark image enhancement.

Fast and efficient CNN models have been explored in other areas, especially image clas-
sification, but is mostly achieved by either approximating [29, 42] or pruning the learned
weights [8]. In contrast, we propose a network that is inherently fast and efficient without
using such weight-approximation or pruning approaches.

3 Low-Light Packing Network (LLPackNet)

We propose Low-Light Packing Network (LLPackNet) for enhancing extremely dark high
resolution single-images with low time–memory complexity. We first describe the network
architecture, shown Fig. 2, in Sec. 3.1 and then analyze the important components of our
network, the Pack and UnPack operations, in Sec. 3.2.
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Figure 2: Our proposed network, LLPackNet, learns the required amplification factor di-
rectly from the dark input image and uses the novel Pack and UnPack operations to perform
aggressive down/up sampling with minimal color distortions. The network has low latency
and low memory footprint.

3.1 Network architecture
Image amplification: In general, dark images need to be pre-amplified before enhancing

them. We estimate the amplification factor using the incoming RAW image IHR
i/p by construct-

ing a 64 bin histogram, with the histogram bins being equidistant in the log domain. This
provides a finer binning resolution for lower intensities and a coarser binning resolution for
higher intensities. The histogram is used by a multilayer perceptron, having just one hidden
layer, to estimate the amplification factor.

Fast and light-weight enhancement: As discussed in Sec 1, we want to perform most of
the processing in LR space. Hence, our first step is to downsample the input image, without
losing any information. For this purpose, we propose Pack α× operation, that downsamples
the image by a factor of α along the spatial dimensions while increasing the number of
channels by a factor of α2. This is shown in Fig. 2 (b) for α = 2. A pseudo code is
also provided in Algorithm 1. Our goal is to perform 16× downsampling, which we do in
two stages. In the first stage, the Pack 2× operation separates out the red, green and blue
color components lying in the 2×2 Bayer pattern [13] of the amplified image IHR

i/p . This
reduces the spatial dimension by half and increases the channels from 1 to 4 (22). Once
the colors are separated into these channels, a subsequent Pack 8× operation is applied
individually on each color channel, further reducing the spatial dimension from 2× to 16×
lower resolution but increasing the number of channels from 1 to 64 (82). Now, using a 3×3
convolution kernel, the channel dimension of each color component is reduced such that on
concatenation, the resulting feature map has only 60 channels. The channel reduction at this
stage is essential to prevent parameter and memory explosion in the downstream operations.
This downsampled representation is then processed by a series of convolution operations.
For this purpose, we use the Residual Dense Network [49] (RDN) — which consists of 3
residual dense blocks each with 6 convolutional layers and a growth rate of 32. RDN does
not perform any down/up sampling operation or cause any change in channel dimension
in its output. The output of the RDN now needs to be upsampled and for this we use the
proposed UnPack 2× operation, which is the inverse of Pack 2×. UnPack 2×, however,
reduces the number of channels from 60 to 15 (60/22) and this needs to be increased to 192
(82×3) to allow the final 8× upsampling using UnPack 8×. For this we use another set of
3×3 convolutions. Except for this operation, all the computations are done in the 16× lower
resolution. We finally perform UnPack 8× operation to get the restored image, IHR

o/p.
Loss function: Similar to Ignatov et al. [14], we compute the color loss, content loss

and total variation (TV) loss on the restored image to train the network. Specifically, we use,

Loss = λ1 · ||GT − IHR
o/p||1 +λ2 · ||Ψ(GT )−Ψ(IHR

o/p)||1 +λ3 · ||δ (GT )−δ (IHR
o/p)||1

+λ4 ·TV (IHR
o/p)+λ5 · ||w||1 (1)
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where Ψ is a feature map of VGG-19, δ performs Gaussian smoothing and w denotes the
network weights. VGG-19 features are obtained right after the final 3 max-pool layers.

3.2 Pack/UnPack operation for better color restoration
The last section discussed LLPackNet from the vantage point of network complexity. In this
section we analyze the network from the standpoint of reconstruction quality.

Algorithm 1: Python code for performing Pack α× and UnPack α× operation.
Pack α× operation

Input: An RGB image IHR of dimensions H×W ×3.
Output: ILR of dimension H

α
× W

α
×3α2.

count = 0
for row in range(α) :

for col in range(α) :
ILR[:, :, count : count +3] = IHR[row : H : α, col : W : α, :]
count = count +3

UnPack α× operation
Input: ILR of dimension H

α
× W

α
×3α2.

Output: An RGB image IHR of dimensions H×W ×3.
count = 0
for row in range(α) :

for col in range(α) :
IHR[row : H : α, col : W : α, :] = ILR[:, :, count : count +3]
count = count +3

Improving color correlation with UnPack α×: Making abrupt transitions between
LR and HR spaces introduces several distortions in the restored image. To minimize these,
we propose the novel Pack α× and UnPack α× operations. To understand these operations,
it is crucial to analyze PixelShuffle [33] - a fast and effective upsampling method, based
on which they are formulated. Using an analysis similar to [2, 33, 34], we will show that
Pack/UnPack operations lead to better color correlation than PixelShuffle.

First we analyze the PixelShuffle operation. In Fig. 3 a), T LR refers to the penultimate
feature map, which is upsampled with zero padding and then convolved with wHR to obtain
the restored image OHR. We now explain the color coding used in the figure. When wHR

convolves with T HR, for each shifted position of wHR, only the weights in one set of colors
in wHR contribute to an output pixel in T HR. We label the output pixel with the same color.
Doing convolution in HR is computationally expensive. However, an equivalent operation
in the LR space can be performed as shown in Fig. 3 b). This involves decomposing wHR

into smaller kernels of wLR which are then convolved with T LR to produce OLR. Using
PixelShuffle, OHR can then be obtained from OLR . However, in this scheme, each kernel in
wHR maintains a monopoly on one of the red, green or blue color channels in the restored
image OHR, see Fig. 3 c). Thus, restoring images using PixelShuffle causes weak correlation
among the color channels of OHR, leading to color artifacts as shown in Fig. 5.

The goal of UnPack operation is to enhance the correlation among the color channels of
OHR. For this purpose, along with the upsampling, zero-padding and convolution operations,
we introduce a re-grouping step as shown in Fig. 3 d). This may appear to be a complicated
two-stage operation, but using our UnPack operation we can easily perform an equivalent
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d) Upsampling in HR followed by regrouping for better color correlation. e) Implementing (d) in LR using UnPack. f) Better color correlation
with UnPack.

Figure 3: Performing aggressive down/up-sampling causes several color distortions in the
restored image. The proposed UnPack operation limits this by improving the color correla-
tion in the restored image and simultaneously performing quick upsampling from LR to HR
space. The effectiveness of the proposed solution is demonstrated in Fig. 5.

operation in the LR space, as shown in Fig. 3 e). Note that this operation has the same time
complexity as the operation shown in Fig. 3 b). For this operation, we decompose ŵHR into
ŵLR and then apply UnPack α×. From Fig. 3 f), we see that all the kernels of ŵHR are
collectively responsible for all the colors in OHR. Thus, UnPack operation leads to better
color correlation than PixelShuffle.

The effectiveness of the proposed UnPack operation can also be intuitively understood in
the LR space by comparing Fig. 3 b) and Fig. 3 e). UnPack preserves the RGB ordering in
the LR, whereas, PixelShuffle breaks this ordering, especially for large upsampling factors.
For example, for a given spatial location in HR, PixelShuffle separates the Red and Blue
pixels by 2x82 = 128 channels in LR for 8× upsampling. UnPack, however, always separates
them by only 1 Green pixel for any upsampling factor. This is crucial because for CNNs it
is well known that nearby features correlate more than spaced out ones [35]. Thus even
though, UnPack does not introduce any new parametrization, its arrangement favors better
color restoration. Therefore, in Fig. 5, PixelShuffle’s restored image is heavily affected by
color cast, but no such distortion is observed in the case of UnPack.

Increasing receptive field with Pack α×: Having a large receptive field is essential for
capturing the contextual information in an image. Downsampling the incoming feature map
using the novel Pack operation equips LLPackNet with a large receptive field. To illustrate
this fact, let us consider a large feature map IHR which is downsampled to ILR using Pack
10× operation. Note that the neighboring pixels in ILR are actually 10 pixels apart in IHR.
Also, the pixels along the channel dimension of ILR are in a 10× 10 neighborhood in IHR.
Thus, even using a 3×3 convolution kernel on ILR with a stride of 1 leads to a receptive field
of 900 pixels in IHR. In contrast, to do a similar operation directly on IHR, requires a 30×30
kernel with a stride of 10, which is impractical.

4 Experiments

4.1 Experimental settings

For extreme low-light single-image enhancement, we compare with Chen et al. [5] , Gu et
al. [10] and Maharjan et al. [23]. In addition, we also tried conventional techniques such
as LIME [11] and Li et al. [20] but they did not work well for dark images. The pub-
licly available training and test codes of these methods have been used for the comparisons.
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Model Processing Time Memory Parameters PSNR(dB) / SSIM
(in seconds) ( in GB) (in million) w/o GT exposure using GT exposure

Maharjan et al. [23] 120 10 2.5 20.98 / 0.49 28.41 / 0.81
Gu et al. [10] 77 8 3.5 21.90 / 0.59 28.53 / 0.81
Chen et al. [5] 17 5 7.75 22.93 / 0.70 28.30 / 0.79

Chen et al. [5] + Our Amplifier 17 5 7.76 22.98 / 0.71 28.30 / 0.79
LLPackNet (Ours) 3 3 1.1 23.27 / 0.69 27.83 / 0.75

Table 1: Results on the SID dataset [5] for extremely dark 2848×4256 RAW images. Com-
pared to existing approaches, we have 2–7× fewer model parameters, 2–3× lower memory,
5–20× speed up with competitive restoration quality.

For experiments on dark images, we use See-in-the-Dark (SID) dataset [5] captured with
high definition full-frame Sony α7S II Bayer sensor. Unlike some methods that collect their
dataset by simulating pairs of low-light and GT images [19, 22, 25, 30, 37, 40], SID provides
physically captured extreme low-light RAW images of resolution 2848×4256. We addition-
ally show comparisons on the LOL dataset [40] to evaluate the performance of LLPackNet
on a notably distinct test set-up. In contrast to SID, LOL has weakly illuminated VGA res-
olution PNG compressed images. Additionally, SID comes with GT and low-light exposure
information, which can be used for estimating the pre-amplification factor, but LOL has no
such information.

We use the train/test split as given in the datasets. For LLPackNet, patches of size 512×
512 are used for training and full resolution for testing. For benchmarking, we use the
PyTorch [26] framework on Intel Xeon E5-1620V4 @ 3.50 GHz CPU with 64 GB RAM. We
use the default Adam optimizer of PyTorch with fixed learning rate of 10−4. All convolutions
use kernels of size 3× 3 with He initialization [12]. Our network was allowed to train for
400,000 iterations. We use, λ1 = 1, λ2 = 3, λ3 = 1, λ4 = 400 and λ5 = 10−6.

4.2 Restoration results for extreme low-light images
We compare our network with Chen et al. [5], Gu et al. [10] and Maharjan et al. [23] on
the SID dataset, see Table 1 and Fig. 4. These methods use the ratio of GT exposure to
that of the input dark image, available in the SID dataset, to pre-amplify the images. The
corresponding results are shown under the label ‘using GT exposure’ in Table 1 and Fig.
4. But, since the GT information will not be readily available in a real-world setting, we
additionally show results in the absence of GT information. This is shown under the heading
‘w/o GT exposure’. We also show results for ‘Chen et al. + Our Amplifier’ in which our
proposed amplifier is added to their algorithm. We have chosen Chen et al. because they
have the least time and memory complexity, compared to the other existing methods. All the
methods are appropriately retrained before evaluation.

Network speed and memory utilization: As shown in Table 1, LLPackNet is 5−20×
faster with 2−3× lower memory and 2−7× lesser model parameters. We achieve this be-
cause we do the bulk of operations in 16× lower resolution. In contrast, Maharjan et al. [23]
do not perform any downsampling operation and therefore, the feature maps propagating
through their network are huge. This results in very high network latency and memory con-
sumption. Gu et al. [10] adopt a multi-scale approach that requires feature map propagation
at 2× and 4× lower resolution. But this marginal downsampling is not sufficient to contain
the network latency and memory consumption. Chen et al. [5] have relatively better metrics
by performing up to 32× downsampling. But this is done only in steps of 2, requiring five
downsampling and five upsampling operations. Further, four out of five upsampling oper-
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Maharjan et al. Gu et al. Chen et al. Ours GT
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28.01/0.78 28.50/0.82 28.65/0.82 29.00/0.78

22.15/0.89 21.01/0.88 21.09/0.89 22.23/0.90

25.60/0.59 27.88/0.70 25.66/0.60 27.87/0.62

31.50/0.85 31.85/0.81 31.20/0.79 29.77/0.68

Maharjan et al. Gu et al. Chen et al. Chen et al. + Our Amplifier Ours GT
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20.58/0.54 23.86/0.78 18.84/0.56 18.60/0.64 24.69/0.78

14.89/0.31 16.12/0.53 18.74/0.88 14.94/0.71 21.01/0.88

25.39/0.45 22.77/0.26 13.96/0.34 23.22/0.59 27.87/0.58

25.13/0.46 24.11/0.41 18.36/0.71 30.55/0.78 29.37/0.66
Figure 4: [View with good screen brightness] Performance comparison of the proposed LL-
PackNet with state-of-the-art algorithms corresponding to Table 1. (A): All the methods
work well with GT exposure. (B): But in a realistic scenario, where exact GT exposure may
not be available during inference, only the proposed LLPackNet gives proper restoration.

ations are done using transposed convolution [7], which is much slower than the proposed
UnPack operation. Thus, Chen et al. have a moderately high processing time and memory
utilization. Check the supplementary for more details.

Restoration quality: All methods perform notably well when the GT exposure is avail-
able. But in a practical setting when GT exposure is not readily available, except for our
LLPackNet, the other methods struggle to restore proper colors. The results for this practical
setting are also shown in Fig 1. Adding our amplifier module to Chen et al. improves their
performance to some extent, but the restored images still exhibit noisy patches and color cast.
This is because amplification is not the only deciding factor in improving the performance
of a network. Rather, having a large receptive field, which provides more contextual infor-
mation, and better correlation among the color channels is more important than the correct
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PixelShuffle Our UnPacking GT PixelShuffle Our UnPacking GT

21.13/0.77 24.56/0.80 15.85/0.79 21.01/0.88

23.82/0.80 25.14/0.79 19.07/0.84 21.82/0.83
Figure 5: [View with good screen brightness] LLPackNet restoration using PixelShuffle and
our proposed UnPack operation. The UnPack operation helps achieve better color restoration
by containing color distortions such as color cast.

No Amplifier With Amplifier GT No Amplifier With Amplifier GT

27.17/0.57 29.37/0.66 23.78/0.60 27.30/0.64

23.21/0.34 27.87/0.58 17.86/0.85 21.01/0.88
Figure 6: [View with good screen brightness] Results using the proposed LLPackNet with
and without amplification estimation. Without amplification, the colors are pale and tend to
be monochromatic.

amplification factor. To further assess these claims, refer to the ablation studies in section
4.3, which show that LLPackNet continues to give structurally consistent results even when
the amplifier is removed.

4.3 Ablation studies on LLPackNet
We now show ablation studies on LLPackNet to better understand the contribution of indi-
vidual components. For each ablation study the network is appropriately retrained.

UnPack vs. PixelShuffle: As a first ablation study, we replace the UnPack operation in
the proposed LLPackNet with the PixelShuffle operation [33] and the results are shown in
Fig. 5. We notice that the images restored using PixelShuffle are affected by heavy color
cast. Using the UnPack operation in place of PixelShuffle improves the PSNR/SSIM from
22.72 dB/0.68 to 23.27 dB/0.69. Thus, the UnPack operation favors better color restoration.

In Section 3.2 we ascribed the better color restoration performance of Pack/UnPack over
PixelShuffle to the fact that PixelShuffle breaks the RGB ordering in LR space, especially
for large upsampling factors, whereas UnPack preserves the RGB ordering for any factor.
To further test this hypothesis, we conducted an ablation study where we changed the im-
age downsampling factor from 16× to 8×, so that the final UnPack/PixelShuffle operation
performs 4× upsampling instead of 8×. This results in increased time and computational
complexity for LLPackNet, but it reduces the separation between the Red and Blue chan-
nels in PixelShuffle. The performance of UnPack (23.29 dB) is almost the same as the
16× upsampling case, however the performance of PixelShuffle (23.28 dB) improves. In
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Model Processing Time PSNR (dB) SSIM
Chen et al. [5] 0.21 sec. 18.82 0.73

LIME [11] 0.19 sec. 16.94 0.60
Li et al. [20] 17.89 sec. 13.85 0.65
Gu et al. [10] 0.41 sec. 19.46 0.75

LLPackNet-8× (Proposed) 0.06 sec. 19.61 0.69
LLPackNet-4× (Proposed) 0.24 sec. 19.60 0.74

Table 2: Results on the LOL dataset [40] for weakly illuminated compressed images having
400× 600 VGA resolution. LLPackNet with 8× downsampling (LLPackNet-8×) is very
fast. But, since the image resolution is quite low, LLPackNet-4× opts for smaller downsam-
pling to achieve better reconstruction as reflected in the SSIM value.

the case of 8× upsampling UnPack shows a gain of about 0.6 dB over PixelShuffle but for
the case of 4× upsampling the difference reduces to 0.01dB. This confirms our hypothesis
that Pack/UnPack has better performance because it preserves the RGB ordering for any
upsampling factor.

Estimating proper amplification: Fig. 6 shows the restoration results using LLPackNet
with and without the amplifier. Similar to the scotopic vision [4, 41], without the amplifier,
the restoration has faded colors. But the removal of the amplifier does not induce the annoy-
ing artifacts seen in restoration done using Chen et al. (see Fig. 4 (B)). This can be attributed
to the large receptive field due to the Pack operation. With the amplifier the performance of
the network improves from 22.53dB/0.66 to 23.27dB/0.69.

Overall the combined effect of using the proposed Pack/UnPack operation over Pix-
elShuffle, and estimating proper amplification, increases the average PSNR/SSIM from 21.35
dB / 0.60 to 23.27 dB / 0.69.

4.4 LLPackNet for low-resolution images
The SID dataset contains high definition images, thereby, allowing us to chose a large down-
sampling factor of 16. This leads us to the question: Can LLPackNet also work for LR im-
ages? When LR images are downsampled using a large factor, the intra-channel correlation
in the downsampled image is reduced, which negatively impacts the restoration. To investi-
gate this, we conducted experiments on the LOL dataset [40] containing weakly illuminated
images at VGA resolution of 400×600. As the images in the LOL dataset are already in the
compressed PNG format, the 2× downsampling at the beginning of LLPackNet to separate
out the Bayer pattern is not required. Thus, the effective downsampling is only 8× and we
denote this network by LLPackNet-8×. The results are shown in Table 2. Once again, LL-
PackNet has the lowest processing time. We further observe that the large receptive field of
LLPackNet enhances the denoising and color restoration capabilities. But, a slight blur is
also introduced. To verify that the blur is because of large downsampling, we retrain LL-
PackNet on the LOL dataset with 4× downsampling, which we denote as LLPackNet-4×.
With LLPackNet-4×, we obtain sharper results having higher SSIM values.

5 Conclusion
In this paper, a fast and light-weight extreme low-light image enhancement network (LL-
PackNet) has been presented. LLPackNet performs aggressive down/up-sampling using the
proposed Pack/UnPack operations to obtain a large receptive field and better color restora-
tion. The network also uses a novel amplifier module that amplifies the input image without
relying on ground-truth information. Overall, LLPackNet is 5–20× faster and 2–3× lighter,
and yet maintains a competitive restoration quality compared to state-of-the-art algorithms.
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