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Abstract

The ability to capture good quality images in the dark and near-zero lux conditions
has been a long-standing pursuit of the computer vision community. The seminal work
by Chen et al. [5] has especially caused renewed interest in this area, resulting in methods
that build on top of their work in a bid to improve the reconstruction. However, for prac-
tical utility and deployment of low-light enhancement algorithms on edge devices such
as embedded systems, surveillance cameras, autonomous robots and smartphones, the
solution must respect additional constraints such as limited GPU memory and process-
ing power. With this in mind, we propose a deep neural network architecture that aims to
strike a balance between the network latency, memory utilization, model parameters, and
reconstruction quality. The key idea is to forbid computations in the High-Resolution
(HR) space and limit them to a Low-Resolution (LR) space. However, doing the bulk
of computations in the LR space causes artifacts in the restored image. We thus propose
Pack and UnPack operations, which allow us to effectively transit between the HR and
LR spaces without incurring much artifacts in the restored image. State-of-the-art al-
gorithms on dark image enhancement need to pre-amplify the image before processing
it. However, they generally use ground truth information to find the amplification factor
even during inference, restricting their applicability for unknown scenes. In contrast, we
propose a simple yet effective light-weight mechanism for automatically determining the
amplification factor from the input image. We show that we can enhance a full resolution,
2848 x 4256, extremely dark single-image in the ballpark of 3 seconds even on a CPU.
We achieve this with 2 — 7x fewer model parameters, 2 — 3 x lower memory utilization,
5—20x speed up and yet maintain a competitive image reconstruction quality compared
to the state-of-the-art algorithms.

1 Introduction

The ability to swiftly capture high quality images with modest computations has led to the
widespread proliferation of digital images. These advantages are, however, limited to good
lighting conditions. Achieving similar results under low light is still a significant challenge.
While much of the work in this direction has focused on enhancing weakly illuminated
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Figure 1: Performance comparison of the proposed method with state-of-the-art methods
Chen et al. [5], Gu et al. [10], Maharjan et al. [23] and traditional methods LIME [11], and
Li et al. [20] for extreme low-light single-image enhancement. Refer to Table 1 for more
details.

images [11, 16, 18, 20, 27, 28, 40], enhancement of extremely dark images has received
comparatively lesser attention.

Recently, however, a landmark paper by Chen et al. [5] has shown that it is possible to
restore extremely dark images captured under near-zero lux conditions. Following this work,
several modifications have been proposed in a bid to improve the reconstruction quality. This
includes the incorporation of attention units [1], recurrent units [3], the adoption of a multi-
scale approach [10, 24] and the usage of deeper networks [23]. With these added complex-
ities, these methods are constrained to run on desktop GPUs such as NVIDIA RTX 2080Ti
with 12GB storage. But, real-world applications require image enhancement algorithms to
run on embedded systems and edge devices with limited CPU RAM or minimal GPU capac-
ity. One possible solution is to process the images in VGA resolution [11, 20, 22, 38, 40, 48].
But, this is in contrast to the current trend of capturing and processing high-definition im-
ages. Consequently, we aim to design a deep network that can restore an extreme low-light
high-definition single-image with minimal CPU latency and low memory footprint, but at
the same time has a competitive image restoration quality.

We propose a deep neural network, called Low-Light Packing Network (LLPackNet),
which is faster and computationally cheaper than the existing solutions. Recognizing the
fact that a neural network’s complexity increases quadratically with spatial dimensions [36],
we perform the bulk of computations in a much lower resolution by performing aggressive
down/up sampling operation. This is in contrast with much of the existing literature that
down/up sample the feature maps in gradations [5, 21, 35, 47, 49], which increases network
latency and memory utilization. For performing large downsampling operations, popular
choices such as max-pooling and strided convolution [7] cannot be used as they would cause
much loss in information. We therefore, propose Pack a x downsampling operation, which
rearranges the pixels in such a manner that it reduces the spatial dimension by a factor of
a, while increasing the number of channels by a factor of a2, see Fig. 2. We show that the
Pack operation bestows LLPackNet with an enormous receptive field which is not trivially
possible by directly operating in the HR space. We also propose UnPack ax operation,
which complements the Pack a x operation to do large upsampling. This operation is much
faster than the usual transposed convolution layer [7] and has no learnable parameters. For
upsampling, PixelShuffle [33] is another viable option but it lacks proper correlation between
the color channels and hence results in heavy color cast in the restored image as shown in Fig.
5. Altogether, the proposed Pack and UnPack operations allow us to operate in a much lower
resolution space for computational advantages, without significantly affecting the restoration
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quality. See Fig. 1 for a qualitative comparison with state-of-the-art algorithms.

State-of-the-art deep learning solutions on extreme low-light image enhancement r
to pre-amplify dark images before processing them [1, 5, 10, 23]. However, these meth
use ground-truth knowledge for predicting the ampli cation factor. In a real-world settin
because of lack of ground-truth (GT) knowledge, the ampli cation factor cannot be estima
properly and hence this would lead to degradation in performance. We therefore, equip
proposed LLPackNet with an ampli er module, which will estimate the ampli cation facto
directly from the input image histogram.

To summarize, the main contributions of this paper are as follows — 1) We propos
deep neural network architecture, callddPackNetthat enhances an extremely dark single-
image at high resolution even on a CPU with very low latency and computational resourt
2) We proposéPackandUnPackoperations for better color restoration. 3) LLPackNet car
estimate the ampli cation factor directly from the input image, without relying on grounc
truth information, making it practical for real world applications. 4) Our experiments sho
that compared to existing solutions, we are able to restore high de nition, extreme low-lic
RAW images with 2—7 fewer model parameters, 2—3ower memory and 5-20 speed
up, with a competitive restoration quality. Our code is availablbtggs://github.
com/MohitLamba94/LLPackNet

2 Related Work

Low-light enhancement methods are chie y comprised of histogram equalization [16, -
28], Retinex based decomposition [9, 11, 18, 20, 25, 45] and Deep learning based met
[6, 17,19, 22, 30, 32, 37, 39, 40, 46]. Most of them however, do not target extreme low-li¢
conditions or high resolution images. More recently, Céeal. [5] proposed an end-to-end
pipeline to restore extreme low-light high-de nition RAW images, which has spurred se
eral other works in this direction [1, 3, 10, 15, 23, 24]. Most of these methods, howev
have signi cantly large processing time and memory utilization. As noted in Sec. 1 many
them also require GT information for image pre-ampli cation. However, other image amp
cation techniques that involve the use of CRF [31, 44], image histogram [16, 28] or oth
assumptions [11, 43] have been used in traditional image enhancement methods to est
ampli cation, using only the input image. Borrowing from these ideas, we develop an al
pli er module that uses the histogram of the input dark image to predict the ampli catic
factor automatically, without relying on GT information. To the best of our knowledge, th
has not been attempted before for deep learning based dark image enhancement.

Fast and ef cient CNN models have been explored in other areas, especially image c
si cation, but is mostly achieved by either approximating [29, 42] or pruning the learne
weights [8]. In contrast, we propose a network that is inherently fast and ef cient witho
using such weight-approximation or pruning approaches.

3 Low-Light Packing Network (LLPackNet)

We propose Low-Light Packing Network (LLPackNet) for enhancing extremely dark hig
resolution single-images with low time—memory complexity. We rst describe the netwol
architecture, shown Fig. 2, in Sec. 3.1 and then analyze the important components of
network, the Pack and UnPack operations, in Sec. 3.2.
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(a) LLPackNet Architecture (b) Pack/UnPack Operations
Figure 2: Our proposed network, LLPackNet, learns the required ampli cation factor di-

rectly from the dark input image and uses the ndRadkandUnPackoperations to perform
aggressive down/up sampling with minimal color distortions. The network has low latency
and low memory footprint.

3.1 Network architecture

Image ampli cation: In general, dark images need to be pre-ampli ed before enhancing
them. We estimate the ampli cation factor using the incoming RAW imﬁmy construct-
ing a 64 bin histogram, with the histogram bins being equidistant in the log domain. Thi:
provides a ner binning resolution for lower intensities and a coarser binning resolution for
higher intensities. The histogram is used by a multilayer perceptron, having just one hidde
layer, to estimate the ampli cation factor.

Fast and light-weight enhancementAs discussed in Sec 1, we want to perform most of
the processing in LR space. Hence, our rst step is to downsample the input image, withot
losing any information. For this purpose, we propBseka operation, that downsamples
the image by a factor od along the spatial dimensions while increasing the number of
channels by a factor ai?. This is shown in Fig. 2 (b) fon = 2. A pseudo code is
also provided in Algorithm 1. Our goal is to perform 1&lownsampling, which we do in
two stages. In the rst stage, the Pack @peration separates out the red, green and blue
color components lying in the 2 Bayer pattern [13] of the ampli ed imaglé;"?. This

reduces the spatial dimension by half and increases the channels from 14p Dfke
the colors are separated into these channels, a subsequent Pagiegation is applied
individually on each color channel, further reducing the spatial dimension frorro 2.6
lower resolution but increasing the number of channels from 1 to 94 K&w, using a 3 3
convolution kernel, the channel dimension of each color component is reduced such that
concatenation, the resulting feature map has only 60 channels. The channel reduction at t
stage is essential to prevent parameter and memory explosion in the downstream operatic
This downsampled representation is then processed by a series of convolution operatiol
For this purpose, we use the Residual Dense Network [49] (RDN) — which consists of .
residual dense blocks each with 6 convolutional layers and a growth rate of 32. RDN doe
not perform any down/up sampling operation or cause any change in channel dimensic
in its output. The output of the RDN now needs to be upsampled and for this we use th
proposedUnPack?2 operation, which is the inverse #ack2 . UnPack2 , however,
reduces the number of channels from 60 to 158Pand this needs to be increased to 192
(8% 3)toallowthe nal 8 upsampling using UnPack 8 For this we use another set of
3 3convolutions. Except for this operation, all the computations are done in théot&r
resolution. We nally perform UnPack 8 operation to get the restored imaggg.

Loss function: Similar to Ignatovet al. [14], we compute the color loss, content loss
and total variation (TV) loss on the restored image to train the network. Speci cally, we use

Loss = 11 jiGT Igji1+12 jY(GT) Y(gR)iii+ 13 jjd(GT) d(IgR)iis

+1a TVIERY+ 15 jjwjja @
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whereY is a feature map of VGG-19 performs Gaussian smoothing awdlenotes the
network weights. VGG-19 features are obtained right after the nal 3 max-pool layers.

3.2 Pack/UnPack operation for better color restoration

The last section discussed LLPackNet from the vantage point of network complexity. In t
section we analyze the network from the standpoint of reconstruction quality.

Algorithm 1: Python code for performing Pagk and UnPacla operation.

Packa operation
Input: An RGB imagelygr of dimensiondd W 3.
Output: I g of dimension! ¥ 3a2
count= 0
for row in range(a) :
for colin range(a) :
ILr[:; :; count: count+ 3] = Iyg[row:H :a; col:W:a; 1]
count = count+ 3

UnPacka operation
Input: I g of dimension ¥ 332,
Output: An RGB imagelyr of dimensiond W 3.
count= 0
for rowin range(a) :
for colinrange(a) :
Iyr[row: H :a; col:W:a; :] = I r[:; :; count: count+ 3]
count = count+ 3

Improving color correlation with UnPack a : Making abrupt transitions between
LR and HR spaces introduces several distortions in the restored image. To minimize th
we propose the novel Paek and UnPacla operations. To understand these operations
it is crucial to analyze PixelShuf e [33] - a fast and effective upsampling method, bas
on which they are formulated. Using an analysis similar to [2, 33, 34], we will show th
Pack/UnPack operations lead to better color correlation than PixelShuf e.

First we analyze the PixelShuf e operation. In Fig. 3 &}R refers to the penultimate
feature map, which is upsampled with zero padding and then convolveaviftiio obtain
the restored imag®"R. We now explain the color coding used in the gure. WhenR
convolves withTHR, for each shifted position of 'R, only the weights in one set of colors
in wHR contribute to an output pixel ilf"R. We label the output pixel with the same color.
Doing convolution in HR is computationally expensive. However, an equivalent operati
in the LR space can be performed as shown in Fig. 3 b). This involves decompd$ing
into smaller kernels of-R which are then convolved witii-R to produceO-R. Using
PixelShuf e, O"R can then be obtained fro@-R . However, in this scheme, each kernel in
wHR maintains a monopoly on one of the red, green or blue color channels in the restc
imageO"R, see Fig. 3 ¢). Thus, restoring images using PixelShuf e causes weak correlat
among the color channels 6HR, leading to color artifacts as shown in Fig. 5.

The goal of UnPack operation is to enhance the correlation among the color channel
OMR. For this purpose, along with the upsampling, zero-padding and convolution operatic
we introduce a re-grouping step as shown in Fig. 3 d). This may appear to be a complic:
two-stage operation, but using our UnPack operation we can easily perform an equiva
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a) The usual upsampling operation in HR. b) Implementing (a) in LR using PixelShufe. c) Less color correlation.
with PixelShuf e

d) Upsampling in HR followed by regrouping for better color correlation. ) Implementing (d) in LR using UnPack. f) Better color correlation
with UnPack.

Figure 3: Performing aggressive down/up-sampling causes several color distortions in tf
restored image. The proposed UnPack operation limits this by improving the color correle
tion in the restored image and simultaneously performing quick upsampling from LR to HF
space. The effectiveness of the proposed solution is demonstrated in Fig. 5.

operation in the LR space, as shown in Fig. 3 e). Note that this operation has the same tir
complexity as the operation shown in Fig. 3 b). For this operation, we deconp&sato

Ww-R and then apply UnPack . From Fig. 3 f), we see that all the kernels\fR are
collectively responsible for all the colors @"R. Thus, UnPack operation leads to better
color correlation than PixelShuf e.

The effectiveness of the proposed UnPack operation can also be intuitively understood
the LR space by comparing Fig. 3 b) and Fig. 3 e). UnPack preserves the RGB ordering
the LR, whereas, PixelShuf e breaks this ordering, especially for large upsampling factors
For example, for a given spatial location in HR, PixelShuf e separates the Red and Blu
pixels by 2x& = 128 channels in LR for 8 upsampling. UnPack, however, always separates
them by only 1 Green pixel for any upsampling factor. This is crucial because for CNNs i
is well known that nearby features correlate more than spaced out ones [35]. Thus ev
though, UnPack does not introduce any new parametrization, its arrangement favors bet
color restoration. Therefore, in Fig. 5, PixelShuf e's restored image is heavily affected by
color cast, but no such distortion is observed in the case of UnPack.

Increasing receptive eld with Packa : Having a large receptive eld is essential for
capturing the contextual information in an image. Downsampling the incoming feature ma
using the novel Pack operation equips LLPackNet with a large receptive eld. To illustrate
this fact, let us consider a large feature m&8f which is downsampled tt-R using Pack
10 operation. Note that the neighboring pixels! it are actually 10 pixels apart if'R.

Also, the pixels along the channel dimensionl gt are in a 10 10 neighborhood in"R.
Thus, even using a 33 convolution kernel ohR with a stride of 1 leads to a receptive eld
of 900 pixels inl "R, In contrast, to do a similar operation directly Bt?, requires a 30 30
kernel with a stride of 10, which is impractical.

4 Experiments

4.1 Experimental settings

For extreme low-light single-image enhancement, we compare with €hain[5] , Gu et

al. [10] and Maharjaret al. [23]. In addition, we also tried conventional techniques such
as LIME [11] and Liet al [20] but they did not work well for dark images. The pub-
licly available training and test codes of these methods have been used for the compariso
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Model Processing Time| Memory | Parameters PSNR(dB) / SSIM
(inseconds) | (inGB) | (in million) | w/o GT exposure[ using GT exposure
Maharjan et al. [23] 120 10 2:5 20:98 /049 28.41/0.81
Gu etal [10] 77 8 35 21:90/0.59 28.53/0.81
Chenet al. [5] 17 5 775 22.93/0.70 28.30/0.79
Chenet al. [5] + Our Ampli er 17 5 776 22.98/0.71 28.30/0.79
LLPackNet (Ours) 3 3 1.1 23.27/0.69 27.83/0.75

Table 1: Results on the SID dataset [5] for extremely dark 284856 RAW images. Com-
pared to existing approaches, we have 24@wer model parameters, 2—3ower memory,
5-20 speed up with competitive restoration quality.

For experiments on dark images, we use See-in-the-Dark (SID) dataset [5] captured
high de nition full-frame Sonya 7S 1l Bayer sensor. Unlike some methods that collect thei
dataset by simulating pairs of low-light and GT images [19, 22, 25, 30, 37, 40], SID provic
physically captured extreme low-light RAW images of resolution 284856. We addition-
ally show comparisons on the LOL dataset [40] to evaluate the performance of LLPack
on a notably distinct test set-up. In contrast to SID, LOL has weakly illuminated VGA re
olution PNG compressed images. Additionally, SID comes with GT and low-light expost
information, which can be used for estimating the pre-ampli cation factor, but LOL has r
such information.

We use the train/test split as given in the datasets. For LLPackNet, patches of size 5:
512 are used for training and full resolution for testing. For benchmarking, we use 1
PyTorch [26] framework on Intel Xeon E5-1620V4 @ 3.50 GHz CPU with 64 GB RAM. W
use the default Adam optimizer of PyTorch with xed learning rate of4.0All convolutions
use kernels of size 3 3 with He initialization[12]. Our network was allowed to train for
400,000 iterations. We uske; = 1,1 2= 3,1 3= 1,1 4= 400 and 5= 10 6.

4.2 Restoration results for extreme low-light images

We compare our network with Chest al. [5], Gu et al. [10] and Maharjaret al. [23] on
the SID dataset, see Table 1 and Fig. 4. These methods use the ratio of GT exposu
that of the input dark image, available in the SID dataset, to pre-amplify the images. T
corresponding results are shown under the label "using GT exposure' in Table 1 and
4. But, since the GT information will not be readily available in a real-world setting, w
additionally show results in the absence of GT information. This is shown under the heac
‘w/o GT exposure'. We also show results for "Chetral. + Our Ampli er' in which our
proposed ampli er is added to their algorithm. We have chosen @Gheh because they
have the least time and memory complexity, compared to the other existing methods. All
methods are appropriately retrained before evaluation.

Network speed and memory utilization: As shown in Table 1, LLPackNet is 520
faster with 2 3 lower memory and 2 7 lesser model parameters. We achieve this be
cause we do the bulk of operations in 1@®wer resolution. In contrast, Maharjanal. [23]
do not perform any downsampling operation and therefore, the feature maps propagze
through their network are huge. This results in very high network latency and memory c
sumption. Guet al. [10] adopt a multi-scale approach that requires feature map propagat
at2 and 4 lower resolution. But this marginal downsampling is not suf cient to contair
the network latency and memory consumption. Cétal. [5] have relatively better metrics
by performing up to 32 downsampling. But this is done only in steps of 2, requiring ve
downsampling and ve upsampling operations. Further, four out of ve upsampling ope






