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Abstract

Light field photography enables to record 4D images, containing angular informa-
tion alongside spatial information of the scene. One of the important applications of
light field imaging is post-capture refocusing. Current methods require for this purpose
a dense field of angle views; those can be acquired with a micro-lens system or with
a compressive system. Both techniques have major drawbacks to consider, including
bulky structures and angular-spatial resolution trade-off. We present a novel implemen-
tation of digital refocusing based on sparse angular information using neural networks.
This allows recording high spatial resolution in favor of the angular resolution, thus,
enabling to design compact and simple devices with improved hardware as well as bet-
ter performance of compressive systems. We use a novel convolutional neural network
whose relatively small structure enables fast reconstruction with low memory consump-
tion. Moreover, it allows handling without re-training various refocusing ranges and
noise levels. Results show major improvement compared to existing methods.

1 Introduction
Light field photography has attracted significant attention in recent years due to its unique
capability to extract depth without active components [10, 12, 13]. While 2D cameras only
capture the total amount of light at each pixel on the sensor, namely, the projection of the light
in the scene, light field cameras also record the direction of each ray intersecting with the
sensor in a single capture. Thus, light field images contain spatial and angular information of
a given scene. A light field image can be represented as a 4D tensor, carrying the dimensions
of the RGB color channels and the multiple angle views alongside the spatial dimensions.

Early methods for light field capturing include multi 2D-cameras array [41], where each
camera captures the scene from a different angle; and sequential imaging [19], where a single
camera is shifted and takes multiple images. Both strategies are bulky and not suitable for
capturing dynamic scenes. Lytro, a plenoptic camera [28] captures a light field image in a
single exposure. The device is equipped with a micro-lens array located between the sensor
and the main lens. This system enables the recording of the direction of the rays arriving
at the sensor plane. However, since the sensor is meant to capture both spatial and angular
information, there is an inherent tradeoff between the captured spatial and angular resolution.
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Figure 1: Our proposed method of light field refocusing needs only 4 sub-aperture input
views to output a good refocused image at a specific depth.

Other methods such as coded masks [38] or coded aperture [21] based light field also
suffer from the above trade-off and produce images with low spatial resolution. Recent
approaches suggest using compressive systems for light field acquisition [6, 9, 23, 26], where
the camera records a coded projection of the light rays intersecting with the sensor. The light
field images are then recovered from their projections using methods such as sparse coding
and deep learning. However, the more angular information there is to compress, the more
artifacts the output images have, resulting in poor resolution and signal-to-noise ratio (SNR).

Contribution. Given the above, it is important to perform light field applications such as
refocusing, which is the focus of this work, relying only on sparse angular data. We propose a
technique for post-capture refocusing based on sparse light field data: only 2x2 sub-aperture
views. To this end, we exploit the power of convolutional neural networks (CNNs). The four
input views are fed into a CNN, which outputs a refocused image according to a given focus
plane (see Fig. 1). To the best of our knowledge, we are the first to suggest an end-to-end
light field refocusing based on deep learning. Our approach shows improved performance
in terms of PSNR, SSIM and computational time, compared to the current existing methods,
which are of two kinds: direct refocusing, and indirect synthesis methods that synthesize
from a small number of views a full light field to generate from it the refocused image. Our
trained network, RefocusNet, exhibits very good generalization performance across different
sensors. We demonstrate that after training it on a dataset from one sensor, it can be used
with another different light field system without the need of a new training.

2 Related Work
While there are many works on refocusing [4, 24, 29, 36, 39], this work focuses on light
field based refocusing. The basic light field refocusing algorithm relies on shifting the sub-
aperture views according to the desired focus plane and the disparity of each sub-aperture
view and then averaging the shifted images [20, 37]. This method has been demonstrated
on light field images captured by a Lytro camera [28] and was recently generalized to tilt-
shift photography [3]. However, this method requires a dense angular sampled light field, or
otherwise the resulted images will contain artifacts (see Section 4). Several methods locate
and fix the aliasing caused by the lack of angular information [18, 43].

Another body of works uses the Fourier Slice Theorem [5, 7, 22]. The Fourier Slice Dig-
ital Refocusing method [27] proves that spatial light field refocusing is equal to computing
the Fourier transform of a 4D light field, selecting a relevant 2D slice and then performing
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2D inverse Fourier transform. Yet, it does not perform well on sparse angular data. A recent
strategy [17] represents light fields efficiently using Fourier Disparity Layers (FDL). This
compact representation can be used for sub-aperture views rendering and direct refocusing.

Other methods suggest increasing the angular resolution of a light field by reconstructing
additional sub-aperture views and produce the refocused images by shifting and averaging
the sub-aperture images [25]. With the grown popularity of deep learning methods in com-
puter vision tasks, a CNN has been trained to reconstruct a 7x7 light field from 3x3 given
angles, while using EPIs (epipolar plane images) [42]. While this method outperforms state-
of-the-art methods, they indicate that the algorithm will not perform well on inputs with less
than 3x3 angle views. The work of Kalantari et al. [14] uses two sequential CNNs to syn-
thesize an 8X8 light field from 4 (2x2) corner sub-aperture images. Although this method
performs well on sparse angular data, the fact that each view needs to be created separately is
time-consuming, which makes the algorithm not suitable for real-time applications. This is
a major drawback when relying on light field synthesis methods [11, 30, 34, 40] for refocus-
ing; instead, direct refocusing can be performed using the given sub-aperture views, similar
to image fusion networks [16, 35].

3 Mathematical Background

Light Field Photography. Levoy et al. [19] introduced the modeling of a 4D light field as a
two-plane parameterization, which simplifies the problem formulation. We briefly describe
it here. The common light field device is usually equipped with a micro-lens array located
between the sensor and the main lens, which is placed at the aperture plane. Given the
sensor plane (x,y), the aperture plane (u,v), and the distance between them F (focal length),
we may say that the intensity of each point (x,y) on the sensor plane equals to the integration
of all the light rays moving through the whole aperture reaching this point:

EF(x,y) =
1

F2

∫∫
LF(x,y,u,v)A(u,v)cos4

φdudv. (1)

EF(x,y) is the intensity at point (x,y) on the sensor plane (known as image plane), LF is the
radiance along the ray from (u,v) to (x,y), A is the aperture function (1 inside the aperture
and 0 outside), and φ is the angle between the image plane normal and the light ray. Let

LF(x,y,u,v) = LF(x,y,u,v)cos4
φ , (2)

then if we assume that EF is zero outside the aperture boundaries, we get the simplified form:

EF(x,y) =
1

F2

∫∫
LF(x,y,u,v)dudv. (3)

Digital Refocusing. An important light field application is post-capture refocusing. As 2D
images only contain spatial information, we have to choose the focus plane before captur-
ing the image and adjust the aperture accordingly. In light field photography, the angular
information is also available, which allows us to change the focus plane also after capturing.

To produce a refocused light field image, one has to artificially change the current sensor
plane. As all possible focus planes are parallel, we need to multiply the current plane, located
at distance F from the aperture, by a factor α to get the new focus plane, F ′. Fig. 2 shows
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Figure 2: Changing the sensor plane artificially to get a refocused image. The new plane is
located at a distance of F ′=αF from the aperture plane.

that using triangles similarity, we can compute the new intersection point of the ray with the
sensor plane. Substituting (x,y) with the new coordinates and F ′ = αF in (3), we get:

E(αF)(x,y) =
1

α2F2

∫∫
LF(u+

x−u
α

,v+
y− v

α
,u,v)dudv. (4)

From (4) we may conclude that practically, creating a refocused image is done by shift-
ing the sub-aperture images, each by a different factor determined by the focus factor and
view location on the rectangular grid, followed by averaging the shifted images (each corre-
sponding to a different sub-aperture view). This can be explained from an optical point of
view: each sub-aperture image represents a different pinhole on the aperture plane. Since
light field is the summation of rays intersecting at a specific pixel on the sensor, we sum the
sub-aperture images. In order to embody the location of each pinhole on the aperture plane
in the refocused image, we shift the sub-aperture images.

The refocused image model in Eq. (4) is continuous. However, a single light field image
is a discrete set of 2D images. In order to imitate this continuity and create a smooth image,
the light field set needs to be as dense as possible, i.e., be with a high angular resolution.
On the other hand, because of the spatial-angular resolution trade-off mentioned above, we
would like to be able to decrease the angular resolution as much as possible and still get a
high quality refocused image. Our proposed method, described next, targets this challenge.

4 Proposed Method
Our goal is to address the spatial-angular resolution trade-off and create a light field refocus-
ing program that operates in real-time with low computational complexity. Thus, we propose
a convolutional neural network (CNN) based approach for refocusing from sparse light field.
Sparse Angular Data Refocusing. Based on the assumption that we only have 4 input views
arranged on a 2x2 grid, we first check what happens when we refocus an image only from
these views, without any priors. We shift each view according to its location on the grid and
the target focus factor, and then sum the shifted views and divide them by 4. We use the code
in [2]. As expected, the resulted image has noticeable ghosting artifacts around objects that
are not on the selected focus plane (see Fig.3 (left)).

Note that the differences around the region in focus (the central flower) in Fig. 3, between
the refocusing based on 2x2 views and the refocusing based on a higher number of views
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Figure 3: Demonstration of conventional light field refocusing based on a varying number
of sub-aperture views. The ghosting artifacts are clearly seen in the 2x2 grid result. Also,
minor artifacts are still seen in the 9x9 grid result (note the tree and the edge of the car).
However, we can barely see any artifacts in the 17x17 grid.

Figure 4: Flow chart of the proposed algorithm. Given 4 sub-aperture images, we shift the
views according to their locations on the rectangular light field grid and the randomly chosen
focus factor. Then we feed them into a CNN that outputs a refocused RGB image.

are negligible; the reason is that when we refer to an object at the focus plane, the shift of
the sub-aperture images equals to zero, and all the shifted sub-aperture images are the same
and averaging them results in the same image, making the object appear sharp and clear. On
the contrary, when looking at objects outside of the focus plane, we expect them to appear
blurred. Theoretically, if we would have used an infinite number of sub-aperture views, we
would get an average of infinitesimal shifts, which looks like a blur to the human eye; yet,
sparse light field grid is not enough to produce a smooth, continuous refocused image and
therefore the objects outside of the focus plane contain artifacts.

Therefore, in order to produce a continuous refocused image when given a sparse light
field data, we had to find a way to add more angular information to the process without
actually creating these angles. For this purpose, we employ convolutional neural networks,
which have both a strong expressive power on images and generalization abilities. The input
to our CNN is a tensor of 2X2 angle views, shifted in advance according to the views’
location on the grid and the randomly chosen focus factor. The ground truth is a refocused
RGB image generated from a 17X17 light field grid using shifting and averaging. The output
of the network is a refocused RGB image (see Fig. 4).
Ground Truth and Input Generation. The ground truth images that are used for our net-
work training are created by shifting and averaging the sub-aperture views. We use the Lytro
Illum camera datasets in [1, 14], given in the form of lenslet images that can be separated to
14x14 2D angle views. However, we only use 9x9 out of 14x14 given views, to avoid the
corruption appearing near the borders of the sub-aperture views located at the edges of the
grid, due to vignetting effect. In general, vignetting effects can be removed in pre-processing
(as was done with our prototype camera images) and are not the focus of this work.

Still, we notice minor artifacts and bold edges in the resulting image, because the light
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Figure 5: A light field camera prototype built in our lab. Left: the entire setup. Middle: close-
up, where the 4 pin-holes are marked in red. Right: our prototype has compact dimensions
in comparison to Lytro camera.

field is not dense enough. Therefore, we decide to up-sample the light field grid by adding
more samples in-between the given views, while maintaining the original disparity range of
the 9x9 light field. We generate the in-between views using the algorithm in [14]. We train
their network to get an input of 2X2 and output a 3X3 grid. Then we run the algorithm on
2X2 segments of the whole 9X9 field, creating a 17x17 field (Fig. 1 in sup. material).

In addition, in order to make the artificial refocused ground truth appear as similar as
possible to an optically generated refocused image, we only use part of the 17X17 input
views, which are arranged in a circular shape. Thus, appearing as close as can be to the
shape of the camera aperture. This assumption turns out to be correct because the views
on the edges of the rectangular grid are often corrupted with black pixels that appear in the
process of creating them from the raw light field data. In total, we used 241 views out of the
289 views (see Fig. 2 in sup. material).

The four (2× 2) sub-aperture images, used as the network’s input, are in the form of a
rhombus. We choose this shape, and not a rectangle [14], as it matches a prototype of a light
field camera developed in our lab, described next. The chosen views are close enough to the
center of the grid but still far enough to take advantage of the disparity between them (see
Fig. 2 in sup. material).

Demo light field camera. As mentioned earlier, in Lytro camera [28] a single sensor
captures both the spatial and angular information. As a result of the inherent tradeoff between
them, the sub-aperture views have a low spatial resolution - 376 x 541. In order to improve
the spatial resolution, a light field camera prototype was built in our lab using off-the-shelf
components. This prototype favors the spatial resolution (1024 x 1280) over the angular
resolution (2 x 2), and a research effort is invested in solving the challenges that arise from
the low angular resolution. The camera pin-holes are designed in the shape of a rhombus
and a rotating cover exposes a single pin-hole each time. The final setup, which captures 4
sub-aperture images at once, is based on deep reconstruction of compressed light fields [26].
To show the generalization ability of our algorithm across optical devices, we tested it both
on images captured by a Lytro camera as well as images captured by our device.
Network Architecture. Our proposed refocusing network, RefocusNet, is presented in
Fig 6. It is a fully convolutional architecture with residual connections, and has two parallel
trajectories. Each layer’s output from the first trajectory is the input to the matching layer
in the second trajectory. The summation of the seven residuals goes under two operations:
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Figure 6: Illustration of the RefocusNet architecture. The input consists of 4 sub-aperture
views concatenated as a tensor. The network has 2 parallel trajectories; the output of each
layer in the first trajectory is used as an input to a matching layer in the second trajectory.

averaging of the 12 channels; and a 3x3 convolution. These two outputs are then summed
to get the network output. We train it using the `1 loss as it is more robust to outliers in the
training data compared to `2. The contribution of this specific architecture to our problem is
that it preserves the parts in the refocused image that we wish to preserve and repairs the parts
that need smoothing e.g. the parts with the ghosting artifacts. While this network is based
on an existing architecture named DenoiseNet [31, 32], we have made several important
changes in it to improve the performance on both clean and noisy data as shown in the sup.
material in several ablation studies that we have conducted.
Computational efficiency. In the sup. material we show that an important advantage of our
method is that it has low memory usage, and thus can be used in embedded systems.

5 Experiments

We turn to compare our technique to other methods: FDL representation based refocusing
[17], and two light field synthesis methods [14, 42], which are used to generate a full field
of 17x17, followed by the basic shifting and averaging refocusing algorithm [20, 28, 37].
We show our results on the Lytro dataset [1] combined with the dataset of [14], and on our
demo camera images. Several ablation studies conducted on our method appear in the sup.
material.

5.1 Training setup

We train the network on images captured with a Lytro camera, using the Stanford Lytro
dataset [1] and the dataset provided in [14]. We divide the data into a training set of 300
images, a validation set of 20 images and a test set of 20 images. The original size of the
light field images from both datasets is 376x541x3. However, as described above, we use
a synthesizing algorithm [14] to generate a denser light field of 17x17 angle views, which
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crops the pixels on the sides of the images to prevent synthesizing artifacts. Therefore we
get smaller input images of size 332x497x3.

We train the network on randomly chosen patches of size 100x100, for∼300 epochs with
a batch-size of 32 and a total of 9,600 patches per each epoch that are randomly selected from
the images. The color channels of each of the input angles are concatenated, i.e., the input
tensor in the 4-input-views case is of size [32, 100, 100, 12]. We use the Adam optimizer
[15] and the weights are initialized with Xavier initialization [8]. We set the learning rate
to be with an exponential decay in a staircase form, where the initial learning rate is set to
0.0005. During inference, we exploit the fact that our network is fully convolutional and
therefore can be applied to the whole image at once, although it was trained on patches.

Another issue that emerged during test time is border effects. When using the traditional
method [20, 28, 37] of shifting and averaging the sub-aperture views, a linear interpolation
is involved in the process to fill in the missing pixels values. However, since at the edges
of the image there are no pixel neighbors and the information is missing, the interpolation
performed causes border effects. Empirically we have found that there are border effects
within 6 pixels from the edges and therefore we remove these parts.
Focus parameter setting. For the refocusing done based on the traditional method [20, 28,
37], we used the code in [2], that uses the parameter pixels to set the focus point. The relation
between the parameter α from Eq. (4) and pixels is:

α =
1

1−pixels
(5)

The values of the parameter pixels were chosen empirically in the range [-1.50,1.30] with
spaces of 0.05. These values were selected to match the existing range in the Lytro dataset.
Clearly, this range is not suitable for images taken with our demo camera; more details on
the latter are provided hereafter.
Refocusing Noisy Data. We extend the method described above to noisy light field data.
The goal is to generate denoised refocused images when we are given only noisy data. To
this end, we have added Gaussian noise with a standard deviation distributed uniformly at
random from the range [0, 0.08] to the training data, while the ground truth image is left
noiseless. The test is performed on data with the maximal added noise - Gaussian noise with
a standard deviation of 0.08.
Refocusing light field images captured with a demo camera. As mentioned earlier, to
show that our algorithm is independent of the input data type, we tested it also on light field
images captured with a prototype designed at our lab. We transferred the network trained
for the Lytro dataset to the dataset acquired in our lab, to show the generalization ability of
the network. However, for making the transfer possible, the images should have the same
scale and therefore we rescaled the demo images by a factor of 0.4 before feeding them to
the network; also, the focus range was changed to a new range. The focus parameter pixels
was determined empirically within the range [-6,6] with spaces of 0.05.

5.2 Results
Lytro data. Table 1 presents the numerical evaluation of our averaged results on the test
set. Our suggested RefocusNet has the best results both in PSNR and SSIM compared to
FDL representation based refocusing [17] and the synthesis methods [14] and [42]. The
computation time is about 2 orders of magnitude faster than FDL refocusing [17] and 5
orders of magnitude faster than the synthesis methods. Since Wu et al. [42] claim that their
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Figure 7: Comparison of refocusing and denoising results (PSNR/SSIM) between the tra-
ditional method of shifting and averaging with 4 given sub-aperture views ([20, 28, 37]),
Kalantari et al. [14] and our RefocusNet. Our algorithm cleans the noise in addition to refo-
cusing on the different focus planes, while the traditional method fails in denoising, and the
results of Kalantari et al. contain some noise (see the car in the blue patch of focus 2.22).

Input views: 2x2 Input views: 3x3
Methods PSNR SSIM Time (sec) PSNR SSIM Time (sec)

RefocusNet 46.15 0.997 0.023 48.60 0.998 0.028
FDL [17] 34.10 0.938 ∼4 34.57 0.939 ∼4

Kalantari et al. [14] 43.50 0.990 3,198 44.46 0.993 2,670
Wu et al. [42] 34.49 0.939 1,556 36.35 0.946 1,536

Table 1: Results of light field refocusing with 2x2 and 3x3 given input views using suggested
RefocusNet, compared to FDL refocusing [17] and two synthesis methods: Kalantari et
al. [14] and Wu et al. [42]. Since we run FDL refocusing [17] on a CPU, we used the
computational times reported in their paper for time estimation on a GPU.

Noisy Data
PSNR SSIM Time (Sec)

RefocusNet 40.95 0.990 0.022
FDL [17] 29.66 0.777 ∼4

Kalantari et al. [14] 39.45 0.974 3,763
Table 2: Results of light field refocusing on noisy data with 2x2 input views using suggested
RefocusNet, compared to FDL refocusing [17] and a synthesis method: Kalantari et al. [14].
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Figure 8: Refocusing results on an image taken with a camera demo built in our lab, compar-
ing our method with FDL refocusing [17]. Note the noticeable artifacts in the background
and near the giraffe’s head in their result, while our method successfully smooths these areas.

synthesis algorithm does not perform well when given an angular resolution lower than 3x3,
we also trained RefocusNet on an input of 3x3 views and compared the results to the other
methods. The results show that the performance of all methods improves when increasing
the angular resolution, as expected, and our method still has the best performance.

Next, we test our RefocusNet on the noisy test set (described above). Table 2 summa-
rizes the results and demonstrates that RefocusNet has the best results, both in PSNR and
SSIM also in this case. Since the traditional refocusing method is based on data averaging,
which also has a denoising effect [33], we had to check whether just averaging the 4 given
input views achieves satisfying results in the denoising and refocusing tasks. Fig. 7 shows
the performance of RefocusNet on a noisy test image, compared to the result of 4 views
averaging, Kalantari et al. [14] and the clean ground truth. Observe that the shifting and
averaging alone leaves noticeable noise, while Kalantari et al. removes most of the noise but
not all of it, and its computational time is not applicable for real-time applications. However,
our algorithm performs better denoising while also refocusing the image, in real-time.

Real system setup. Finally, we test our refocusing network on light field images that
were taken with a camera demo built in our lab. Notice that no re-training is required and
we use the pre-trained network of the Lytro dataset. This demonstrates the generalization
ability of our proposed approach. Fig. 8 exhibits our refocusing results compared to FDL
refocusing [17], which contain noticeable artifacts. The successful refocusing demonstrated
in this example (and others in the sup. material) shows the generalization ability of our
technique to different capturing devices.

6 Conclusion

In this work, we have proposed an algorithm for digital light field refocusing based on sparse
angular information with convolutional networks. To the best of our knowledge, this is the
first suggested method for end-to-end light field refocusing based on deep learning. The
CNN gets four sub-aperture views and creates a refocused image according to a given focus.
We have proposed a novel refocusing network that exhibits very good results in real-time.
Experiments show that our method significantly improves the quality of refocusing compared
to the previous approaches, with a fast implementation and low memory. Moreover, our
approach generalizes well across different sensors without the need to fine-tune it.
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