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Abstract

Spatio-temporal action localization is an important problem in computer vision that
involves detecting where and when activities occur, and therefore requires modeling of
both spatial and temporal features. This problem is typically formulated in the context
of supervised learning, where the learned classifiers operate on the premise that both
training and test data are sampled from the same underlying distribution. However, this
assumption does not hold when there is a significant domain shift, leading to poor gen-
eralization performance on the test data. To address this, we focus on the hard and novel
task of generalizing training models to test samples without access to any labels from the
latter for spatio-temporal action localization by proposing an end-to-end unsupervised
domain adaptation algorithm. We extend the state-of-the-art object detection framework
to localize and classify actions. In order to minimize the domain shift, three domain
adaptation modules at image level (temporal and spatial) and instance level (temporal)
are designed and integrated. We design a new experimental setup and evaluate the pro-
posed method and different adaptation modules on the UCF-Sports, UCF-101 and JH-
MDB benchmark datasets. We show that significant performance gain can be achieved
when spatial and temporal features are adapted separately, or jointly for the most effec-
tive results.

1 Introduction

Recently, there has been a significant interest in tackling the spatio-temporal human action
localization problem due to its importance in many applications. Based on the recent bench-
mark datasets [14, 39, 47] and temporal neural networks [2, 41], numerous algorithms for
spatio-temporal action localization have been proposed. Although significant advances have
been made, existing algorithms generally require a large-scale labeled dataset for supervised
learning which i) is non-trivial and not scalable because annotating bounding boxes is ex-
pensive and time consuming and ii) do not generalize well when there is a significant domain
shift between the underlying distributions in the training and test datasets. This domain shift
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can be caused by difference in scenarios, lighting conditions or image appearance. In case
of videos, the variation in the progression of activity over time can also cause domain shift.
Such domain discrepancy causes unfavorable model generalization.

To address problems associated with domain shift, various domain adaptation algorithms
have been proposed. Nevertheless, the majority of existing methods focus on images rather
than video, catering to problems associated with image classification [10, 25, 32, 43], se-
mantic segmentation [35, 42, 50] and object detection [6, 34]. The ones that do focus on
video action understanding can be divided into three categories: whole-clip action recogni-
tion, action segmentation, and spatio-temporal action localization. Some progress has been
made in this field but only for the former two categories [3, 4, 5, 19, 28], while the latter cate-
gory remains unattended. Therefore, it is of great interest to develop algorithms for adapting
spatio-temporal action localization models to a new domain.

In this work, we focus on the hard problem of generalizing training models to target
samples without access to any form of target labels for spatio-temporal action localization
by proposing an end-to-end trainable unsupervised domain adaptation framework based on
the Faster R-CNN [30] algorithm. To reduce the impact of domain shift, we design and
integrate adaptation modules to jointly align both spatial and temporal features. Specifically,
three adaptation modules are proposed: i) for aligning temporal features at the image level,
ii) for aligning temporal features at the instance level and iii) for aligning spatial features at
the image level. In each module, we train a domain classifier and employ adversarial training
to learn domain-invariant features. For aligning the temporal features, both instance-level as
well as image-level adaptation are considered. While the former focuses on the actor/action
dynamics, the latter incorporates global scene features as context for action classification,
which has shown to be effective [40].

Existing video action understanding datasets are not designed for developing and eval-
uating domain adaptation algorithms in the context of spatio-temporal action localization.
To validate the proposed algorithm, we design new experimental settings. We first focus
on the scenario of adapting to large scale data using a smaller annotated domain to show
that we can harvest more from existing resources. We then provide additional experiments
and analysis to study the effect of individual adaptation modules. Extensive experiments
and ablation studies are conducted using multiple datasets, i.e., UCF-Sports, UCF-101 and
JHMDB. Experimental results demonstrate the effectiveness of the proposed approach for
addressing the domain shift of spatio-temporal action localization in multiple scenarios with
domain discrepancies.

The contributions of this work are summarized as follows. First, we propose an end-to-
end learning framework for solving the novel task of unsupervised domain adaptation in the
context of spatio-temporal action localization. Second, we design and integrate three domain
adaptation modules at the image-level (temporal and spatial) and instance-level (temporal) to
alleviate the spatial and temporal domain discrepancy. Third, we propose a new experimental
setup along with benchmark protocol and perform extensive adaptation experiments and
ablation studies to analyze the effect of different adaptation modules and achieve state-of-
the-art performance. Fourth, we demonstrate that not only does the individual adaptation
of spatial and temporal features improve performance, but the adaptation is most effective
when both spatial and temporal features are adapted.
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Figure 1: Proposed Network Architecture. The proposed algorithm aligns the distribution
of both the spatial and temporal features of source and target domains for adapting actor
proposals and action classification respectively. We use a spatial domain classifier network
D; to align the spatial features generated by SF. The temporal features are adapted at the
image and instance level using their respective temporal domain classifier networks, i.e.,
Drimg and Drjys. Image level features are extracted by TF; and instance level features are
obtained from TF,.

2 Related Work

2.1 Spatio-temporal Action Localization

Spatio-temporal action localization is an active research topic in computer vision. The goal
is to localize and classify actions in both space and time. Majority of the existing approaches
are supervised and can be categorized as either single frame or multi-frame. Most of the
recent methods [13, 14, 29, 33, 37, 45] fall in the former category. These schemes extend
object detection frameworks [12, 30] to first generate region proposals and then classify
them into actions at the frame level using a two-stream variant which processes both RGB
and flow data separately. The backbone of these networks is generally a 3D CNN (e.g.,
C3D [41] or I3D [2]). The resulting per-frame detections are then linked using dynamic
programming [13, 37] or tracking [45]. Some recent approaches, however, aim to jointly
estimate localization and classification over several frames [21] or use 3D convolutions to
predict short tubes [18]. There has been recent attempts to learn without labels as well [38],
where unlabeled data is used to automatically generate labels and train the classifiers.

2.2 Domain Adaptation

Domain adaptation aims to bridge the gap between the source and target data collected from
different domains. Recent domain adaptation techniques under both semi-supervised and
unsupervised settings have been introduced for image applications [7]. The majority of
these methods have been dedicated to applications involving image classification [10, 15,
25,27, 32, 36, 43], object detection [6, 34], and semantic segmentation [35, 42, 50]. Several
unsupervised domain adaptation approaches use adversarial learning on the intermediate
feature representations to align the feature distribution between the two domains [1, 6, 10,
44].
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In contrast, much less attention has been paid to adapt models for video analysis between
domains, and especially for activity understanding. While some progress has been made in
this field recently, it is limited to whole-clip action recognition [3, 19, 28] and action segmen-
tation [4, 5]. One reason can be attributed to the fact that a well-organized setting to develop
and benchmark the performance of domain adaptation algorithms for spatio-temporal ac-
tion localization does not exist. Existing datasets, e.g., CMU [22], MSR Actions [49], UCF
Sports [31], and JHMDB [20] provide spatio-temporal annotations but only for a small num-
ber of short video clips. The DALY [46], UCF-101 [39] and AVA [14] datasets address some
of the aforementioned limitations by providing large-scale annotatios for spatio-temporal
action localization. However, these datasets have very few overlapping categories amongst
them. Additionally, the annotation setting of AVA is different from the other datasets, making
it difficult to evaluate domain adaptation algorithms.

To the best of our knowledge, this work is one of the first to adapt spatio-temporal action
localization under the unsupervised setting. To evaluate the new task, we propose a new
experimental setup and evaluation protocol for future development.

3 Proposed Algorithm

Our framework consists of an action localization model and three different adaptation mod-
ules for aligning both spatial and temporal feature distribution. The architecture of the pro-
posed framework is shown in Figure 1.

3.1 Action Localization Model

Our model is based on the Faster R-CNN [30] for end-to-end localization and classification
of actions [29]. To model the temporal context, the I3D model [2] is incorporated. The 13D
model takes a video V of length 7" frames and generates the corresponding temporal feature
representation using feature extractors TF; and TF, (see Fig. 1). Here, TF; extracts and
temporally flattens the image level features from the fused mixed_4f layer of 13D, which
has a spatial and temporal stride of 16 pixels and 4 frames, respectively. This results in a
compact representation of the entire input sequence.

For the actor proposal generation, we use a 2D ResNet-50 model as the spatial encoder
SF (see Fig. 1) on the keyframe K as the input for the region proposal network (RPN). We
note K is also the middle frame of an input clip to I3D. The proposals are generated using
the conv4 block of ResNet [16]. As the spatial stride of the conv4 block is also 16 pixels, we
directly use the actor RPN proposals on TF; (V) and perform ROI pooling to obtain a fixed
size representation of 7x7x832. This feature representation is then passed through TF,
which uses the remaining I3D layers up to mixed_5c and an average pooling layer to output
an instance level feature vector of size 1x1x1024. This feature is used to learn an action
classifier and a bounding box regressor. The loss function of the action localization model is
formulated:

Eacl = Lrpn + ['cls + Crega (D
where L, pn, Leis, Lreg are the loss functions for the RPN, final classifier and box regressor

respectively. The details regarding these individual loss functions can be found in the original
paper [30].
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3.2 Adaption in Space and Time

The adaptation process is comprised of two components: i) actor proposal adaptation and ii)
action classification adaptation.

Actor Proposal Adaptation. We present a method based on adversarial learning to align
the distribution of source and target features for the actor proposal network. Specifically, the
spatial domain discriminator Dy is designed to discriminate whether the feature SF(K) is
from the source or the target domain. Motivated by [34], the domain classifier is trained to
ignore easy-to-classify examples and focus on hard-to-classify examples with respect to the
classification of the domain by using the Focal Loss [24]. This prevents strong alignment
between global features, which is both difficult and not desirable when there is a considerable
domain shift. The loss is based on domain label d of the input image, where d = 0 refers
to K from the source domain and d = 1 refers to K from the target domain. The estimated
probability by Dy for the class with label d = 1 is denoted by P € [0, 1], where P is defined
as:

_ | Ds(SF(K)), ifd=1, @
~ | 1=Ds(SF(K)), otherwise.
We formulate the spatial discriminator loss function as:
1 & n
CDS:—< Z(l— ) og(P; + Z Y Tog( 1—P’)) 3)
ns 21

where ny and 1, denote the number of source and target samples in a minibatch respectively,
and Y controls the weight on hard to classify examples.

The gradient reversal layer (GRL) [11] is placed between the spatial domain discrimi-
nator Dg and spatial feature extractor SF. It helps SF generate domain invariant features
SF(K) that fool the discriminator while Dy tries to distinguish the domain.

Action Classification Adaptation. We extend adaptation in the case of images, specifically
object detection [6], to videos by proposing to adapt the temporal features at both the image
and instance level. While the former focuses on aligning global scene features that serve
as context for actions, the latter reduces domain shift between the actor/action dynamics.
Specifically, we use TFj as a feature extractor for adaptation at the image level and TF, for
adaptation at the instance level. The TF; takes a video clip V of T frames and generates
a compact feature representation T F; (V) using temporal pooling. We find that adaptation
after temporal pooling of features performs well as although the actions in our experiments
vary in terms of temporal dynamics across datasets, the datasets are not explicitly designed to
capture that notion. This characteristic is also shown in [3] for certain cases where adaptation
after temporal pooling performs on par with explicit temporal adaptation modeling. The
temporal domain discriminator Dr;p, then takes TF; (V) as input and outputs a 2D domain
classification map Q = Driug(TF(V)) € R¥*W . The parameters H and W are determined
based on the resolution of V' as the spatial strides of T F| and Dryy,g are fixed. We then apply
binary cross-entropy (BCE) loss on Q based on the domain label d of the input video V,
where d = 0 if V belongs to the source domain, and d = 1 if V belongs to the target domain.
The loss function for Dr;p, is formulated as:

S W W
EDTl-mg:f(fZZ(lfd)log(lfQ(h y— ZZdloth) )

s i=lhw tj 1 hw
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where i and w correspond to the spatial indices of an activation in Q.

The instance level representation generated by T'F; refers to the ROI-based feature vec-
tors before they are fed to the final category classifiers (i.e., the FC layer in Figure 1). The
instance level temporal domain classifier Dy, takes the feature vector TF»(TFy(V)) as in-
put and outputs a domain classification output for the k-th region proposal in the i-th image
as R; ;. The BCE loss is used to generate the final output. The corresponding loss function
is formulated as:

‘C’DTinst:_< 221— ) log (1= Rix)+ — szlogR,k> Q)

where d = 0 if V belongs to the source distribution and d = 1 if V belongs to the target
distribution.

3.3 Overall Objective

The overall objective combines losses from the action localization model and the domain
adaptation modules. We denote the overall adversarial loss from domain adaptation modules
as:

EadV(SFa TF7D) = ‘CDS + ‘CDTimg + L"DTirur N (6)

For the adaptation task s — ¢, given the source video V* and target video V’, and by
extension their corresponding key frames K* and K' respectively, the overall min-max loss
function of the proposed framework is defined as the following:

LVS,K V' K') = Lact + ALaav, (N

where A is a weight applied to the adversarial loss that balances the action localization loss.

4 Experiments and Analysis

We propose new experimental settings for developing and evaluating domain adaptation al-
gorithms for spatio-temporal action localization as there is no existing benchmarks. We first
focus on the scenario of adapting from a smaller annotated domain to a much larger and di-
verse dataset. and then provide some additional experiments and ablation studies to highlight
the effect of the different adaptation modules used in the proposed approach.

The proposed approach is evaluated on three widely used benchmark datasets for action
localization, namely UCF-101 [39], JHMDB [20], and UCF-Sports [31]. These datasets
are gathered from different sources (suitable for domain adaptation evaluation) and are also
commonly used for adaptation of action recognition [3, 28]. Additionally, their suitability for
our experiments is further shown through the results where for each adaptation scenario, we
show the baseline results of action localization (I3D+RPN) trained on the source data without
applying domain adaptation, and a supervised model trained fully on the target domain data
(oracle) to illustrate the existing domain shift between the datasets.

4.1 Datasets and Metrics

UCEF Sports. UCF Sports [31] contains various trimmed sports actions collected from broad-
cast television channels. It includes 10 actions, out of which we use 4 for our experiments
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Table 1: Frame and video mAP results for adaptation from UCF-Sports to UCF-101 with
(left) and without (right) background frames.

Method 4T 4T .S l?iv GIf Hrs Skt Fr. Vid. Method .T .T 4S Div GIf Hrs Skt Fr. Vid.
img ins img ing Swg Rdg Bdg mAP mAP img ins img ing Swg Rdg Bdg mAP mAP
I3D+RPN 7.1 563 30.7 39.5 334 57.1 I3D+RPN 6.9 447 30.2 39.0 302 18.1
v 122 64.6 40.0 419 39.7 61.0 v 11.7 51.0 39.3 41.6 359 226

Ours v 122 649 40.7 423 40.0 61.6 v 11.6 51.1 40.0 42.1 362 225

’ v 139 649 515 51.8 455 689 Ours v 133 509 50.8 51.5 41.7 223

v v 149 64.1 562 549 47.5 70.6 v v 142 51.1 555 54.6 43.8 24.0

v v 130 68.8 51.3 50.6 459 67.1 v v 124 537 505 503 41.7 21.6

v v v 179 633 63.0 55.0 498 73.6 vV vV v 169 518 62.2 54.7 464 24.1

Oracle 90.4 97.6 942 91.0 933 99.0 Oracle 832 67.9 92.8 91.0 83.7 56.6

which are common with UCF-101: Diving, Golf-Swing, Horse-Riding, Skate-Boarding. We
use the train/test split as suggested in [23].

UCF-101. This action localization dataset [39] is purely collected from YouTube and con-
tains more than 13000 videos and 101 classes. We use 4 classes that are common with
UCF-Sports from a 24-class subset with spatio-temporal annotations provided by [37]. We
conduct experiments on the official split 1 as is standard.

JHMDB. JHMDB [20] is collected from sources ranging from digitized movies to YouTube,
and consists of 928 trimmed clips over 21 classes. Each action class consists of varying
number of clips (up to 40 frames). We use the official split 1 for our experiments, and only
use 3 classes which are common with UCF-101: Shoot Ball, Golf, Walk.

Metrics. We use the standard evaluation protocols and report intersection-over-union (IoU)
performance using mean average precision (mAP) on both frame-level and video-level using
an IOU threshold of 0.5. For frame-level IoU, the PASCAL VOC challenge protocol [9]
is used. For video-level IoU, we follow [29] to form action tubes by linking frame-level
detections using dynamic programming and calculate 3D IoUs.

Implementation Details. We implement the proposed algorithm in Pytorch. ResNet-50
and I3D networks are initialized with pre-trained models based on ImageNet [8] and Ki-
netics [48] datasets, respectively. For the proposed adaptation method, we first pre-train the
action localization network using the source domain clips, and then fine-tune the network for
adaptation. We use different adaptation networks for each of the adaptation modules. More
experimental details and results can be found in the supplementary material. The source
code and trained models will be made available to the public.

4.2 Adaptation to Large-Scale Data

Adapting a model learned from a small dataset to a large unlabeled domain is more challeng-
ing than typical settings in the literature, and is also more useful as annotating large amount
of data is infeasible for spatio-temporal action localization. In this work, the target domain
is UCF-101, and the sources are UCF-Sports and JHMDB sets. Note that the source datasets
are much smaller in size and less diverse than the target one, details of which can be found
in the supplementary material.

UCF-Sports — UCF-101. We conduct experiments on the common classes from both the
datasets and show the results in Table 1. Since UCF-101 is an untrimmed set, we show results
both with and without considering background frames, the latter also requiring temporal
localization. Note that we do not use background frames during training, making the latter
setting extremely challenging.

Although UCF-Sports is also a sport-oriented dataset like UCF-101, a significant perfor-
mance gap between the baseline and oracle results is observed, suggesting significant domain
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Figure 2: Example clip of Horse-Riding action from UCF-101, with baseline model (red)
and our best adapted model (cyan) shown and predicted label overlaid.

shift and difficulty for adaptation. For aligning temporal features, both image level as well
as instance level adaptation yield similar and considerable improvement over the baseline of
6.3% and 6.6% for frame-mAP, and 3.9% and 4.5% for video-mAP respectively, as shown
in Table 1 (left). However, alignment of spatial features, which is responsible for adapting
the actor proposals yields 12.1% (frame-mAP) and 11.8% (video-mAP) improvement. The
results demonstrate the importance of localizing the action in space, as it is necessary to
localize the action first before classification. Finally, we show that the combination of align-
ing both spatial and temporal features leads to the best results, with performance gains of
16.4% (frame-mAP) and 16.5% (video-mAP). Note that the improvement also generalizes
well across different categories, suggesting the effectiveness of the proposed framework in
reducing domain discrepancy. Figure 2 shows an example from the UCF-101 dataset, where
the baseline model (without adaptation) fails to detect Horse-Riding action while the adapted
model correctly localizes and classifies the action.

When the background frames are considered in Table 1 (right), we observe similar trends
after adding the adaptation modules. The absolute numbers however, are lower, indicating
the presence of false positives on the background frames. Although this does not drastically
affect the frame-mAP, the video-mAP is considerably affected. This also suggests that an
explicit mechanism should be developed to handle background frames during adaptation,
especially for temporal localization.

JHMDB — UCF-101. While UCF-101 is comprised of activities in the sports domain,
JHMDB consists of videos from everyday activities (some sport-related sequences are also
included). Note that from the set of common classes, walk action in JHMDB is visually very
different from the walking with dog action in UCF-101. However, we still incorporate the
walk action in our experiments to increase the number of common classes. We show the
results in Table 2 (left) without considering background frames, but still consider temporal

Table 2: Frame and video mAP results for adaptation from JHMDB to UCF-101 (left) and
UCF-101 to JHMDB (right).

Method T T S Golf Bskt Walk Fr.  Vid.
img ins img Swg Ball mAP mAP T T S Golf Bskt Fr.  Vid.
Method . . . Walk
I3D+RPN 62.6 382 472 493 518 img ins img Swg Ball mAP_mAP
7 643 408 506 519 564  I3D+RPN 86.6 272 384 507 607
Ours v 64.5 408 508 520 567 7 885 363 429 559 687
/745 569 553 622 69.0 Ours v 87.1 354 429 551 717
v /737 569 544 617 64.1 /949 356 554 620 710
Vv 138 586 555 (2.6 682 Vv v 964 467 519 610 754
Vv v 751 592 562 635 69.5 Oracle 96.6 705 87.0 847 934

Oracle 95.7 87.0 904 910 88.2
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Figure 3: Example clips of Walk action from JHMDB, with baseline model (red) and our
best adapted model (cyan) shown and predicted label overlaid.

localization for Walk action as it has few sequences containing multiple action instances. The
performance gap between baseline and oracle results suggests a significant domain shift. A
considerable improvement is obtained by adaptation of either spatial or temporal features for
both frame and video mAPs, and their combination leads to the best performance gain of
14.2% (frame-mAP) and 17.7% (video-mAP) over the baseline.

We also observe that differently from [6], instance level feature alignment combined in-
dividually with image level spatial feature adaptation does not yield much improvement and
performs worse in some cases. This is because [6] focuses only on spatial feature alignment
from the same backbone at image level before RPN and instance level before classification,
while we are dealing with both temporal and spatial feature alignment from two separate
backbones (i.e., I3D and Resnet-50). Consequently, as shown in the Table 2 (left) and Ta-
ble 1, temporal feature adaptation at image level is needed, which highlights the importance
of our design choice — adaptation for both spatial (image level) and temporal (image and
instance level) features. The results also suggest that both spatial context and actor/action
dynamics are equally important for action classification, as both types of temporal features
are required for best performance and yield similar improvement over the baseline.

4.3 Additional Experiments and Analysis

In this section, we study the effect of adapting from a larger annotated domain to a much
smaller dataset. We discuss the empirical results and analyze the effects of the individual
adaptation modules by studying the classification and localization errors of the different
models.

UCF101 — JHMDB. We use UCF-101 and JHMDB as the source and target datasets re-
spectively, with the same set of common classes as before. Even when adapting from a much
larger database to a smaller dataset, we observe similar trends in Table 2 (right) as before,
with the significant gap between the baseline and oracle results suggesting that even having
large amount of annotations does not help much in the case of domain shift. Note that the
domain gap mainly comes from two classes: Basketball and Walk. The baseline performance
for Golf-Swing is very close to the oracle results due to a significant amount of training labels
in UCF-101. However, while Walk in UCF-101 contains about 20 times more samples than
in JHMDB, the baseline performance is far from the oracle result because of the significant
visual differences of the action between the datasets. Specifically, Walk action in UCF-101
is always accompanied with a dog in outdoor environments. Due to this, the model trained
on UCF-101 (without adaptation) finds it hard to classify Walk action on JHMDB, as shown
in Figure 3. Adaptation helps alleviate visual differences and improves localization perfor-
mance. Examples of visual differences can be found in the supplementary material.

Error Analysis on Top Ranked Detections. To study the effect of the individual adapta-
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M Correct M Mislocalization Background Incorrect

209

(a) BD+RPN  (b) Ours (T. Img) (c) Ours (T. Ins) (d) Ours (Spatial) (e) Ours (all)
Figure 4: Error analysis of top ranked detections. Fraction of predictions that are correct,
mislocalized, are confused with background or incorrectly predicted are shown.

tion modules, we analyze the classification and localization errors from the most confident
detections of the model.

We use the UCF-101 — JHMDB experiment for analysis. Since the JHMDB dataset is a
small set, we select the top 1000 predictions based on the corresponding predicted confidence
score by the baseline model (i.e., [3D+RPN) and our models with various adaptation mod-
ules. Motivated by [17, 26], we categorize the detections into four error types: i) correct:
the detection has an overlap € [0.5, 1] with the ground-truth; ii) mis-localized: the detection
has an overlap € [0.3,0.5); iii) background: the detection has an overlap € [0.0,0.3), which
means it takes a background as a false positive; and iv) incorrect: the detection has a dif-
ferent class than the ground truth. The first three errors are related to the localization error
given the detected class is correct, while the last error measures the incorrect classifications.
In addition, we also analyze the errors of the bottom 1000 detections in the supplementary
material, with the goal to understand the extent of the adaptation effect.

Figure 4 shows that temporal feature alignment at both image and instance level improves
the correct detections as well as reduces the mislocalized error. It also reduces the incorrect
classifications. The spatial feature alignment, in addition to increasing the correct detections,
also considerably reduces the mislocalized error. This can be attributed to that spatial fea-
tures directly improve the RPN, which is responsible for actor proposal generation. It also
reduces the incorrect classification. In addition, we note that there is an increase in the back-
ground error, which can be considered as duplicate detections as these are not incorrectly
classified. However, as expected, our model with both spatial and temporal features aligned
increases the correct detections the most and also gives the least mislocalization error.

5 Conclusion and Future Work

In this paper, we propose a new task and an end-to-end approach for unsupervised domain
adaptation for spatio-temporal action localization. Our approach is built by extending the
Faster R-CNN algorithm. In order to reduce domain shift, we design and integrate three do-
main adaptation modules at the image level (temporal and spatial) and instance level (tem-
poral). Experimental results demonstrate that significant performance gain can be achieved
when spatial and temporal features are adapted separately, or jointly for the most effective
results.

Our experimental setup lacks in large number of overlapping classes and significant tem-
poral variations between the datasets (mentioned in Section 3.2), which is a restriction of the
problem space as there does not exist such datasets. Our work is an essential first step to
stimulate the community to collectively build large-scale benchmark datasets and algorithms
for domain adaptation of spatio-temporal action localization.
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