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Abstract

Real-world application of video object segmentation (VOS) is a very challenging
problem, especially for multiple video object segmentation. The deep-learning-based
approaches have recently dominated VOS by fine-tuning the networks at the first frame
to seize the object dynamics, but they may result in impractical frame-rates and risk of
over-fitting. To overcome this limitation, we develop an efficient and fully end-to-end
model to achieve fast and accurate VOS, named Long-Short Term Network (LSTNet). It
contains a long term network to encode absolute object variations and a short term net-
work to capture relative object dynamics. The segmentation results of video objects can
be directly acquired by an attentional gate operation based on these two networks. Our
proposed model runs at a very high speed and can conveniently tackle multi-object seg-
mentation without post-processing. Extensive experiments on widely used benchmarks
including YouTube-VOS and DAVIS 2017 have demonstrated that our proposed model
can achieve a competitive accuracy and speed in comparison to a number of state-of-the-
art methods.

1 Introduction
Video object segmentation - segmenting target objects within the entire video sequence - is an
important task in computer vision with various applications including autonomous driving,
video editing, robotics et al. In this work, we focus on the task of Video Object Segmenta-
tion (VOS), where the ground-truth masks of target objects on the first frame are provided.
In order to segment the target objects in the subsequent video frames, utilizing the features
of target objects in the first frame can memorize the appearances of target objects and dis-
tinguish them from the background. Consequently, a number of methods rely on fine-tuning
the CNNs [1, 13, 19, 20, 24, 30, 33] online to exploit the first-frame segmentation and learn
the appearances of the target objects. Unfortunately, such VOS methods usually require a
very long executing time, which is not suitable for most practical applications.
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To alleviate the dependence on the online fine-tuning process, some template [3, 14, 34,
35, 38, 44, 46] and propagation-based methods [17, 21, 32, 35, 36, 38, 41] have emerged.
Since the ground-truth mask of the first frame is given, the first frame can be used as a
template to extract the object features. Subsequent frames can be judged by matching with
the first frame [3, 14, 34, 35, 38, 44], and then set each pixel by a score. Finally, a score
threshold is employed to determine whether the pixel belongs to the target objects or not.
Although CNNs can extract target features to match the pixels, constant appearance change
cannot be captured due to the limited adaptation. The intuition behind the propagation-based
methods is that the changes between adjacent two frames are usually very tiny. Thus, in the
propagation-based methods, the result of the previous frame is employed as an estimated or
guided mask of the next frame [13, 38]. But when occlusions or fast motions occur, drifting
problems might arise and errors from previous frames are easily accumulated thereafter.

Both the segmentation information on the first frame and the information from historical
frames are important to conduct video object segmentation. How to achieve better utiliza-
tion of this information is the key to reach a better speed-accuracy trade-off for the VOS
task. In this paper, we develop a fast network to achieve a fine-grained VOS performance,
named Long-Short Term Network (LSTNet). Our framework is formed by three branches,
the Long-Term Network (LTN), the Short-Term Network (STN) and the Attentional Gate Net-
work (AGN) as presented in Fig. 1.

The LTN describes the absolute change of the target objects by capturing the target rela-
tionship of targets in the current frame with respect to those in the first frame. As the target
objects in the first frame are segmented accurately, the absolute deformation of the target
objects can be achieved. The STN leverages the temporal correlations between the adjacent
frames to obtain the relative variations of target objects. The AGN effectively suppresses the
unrelated features and enhances the target features for high-resolution segmentation. It is fed
by the long and short term maps, and refines the features to estimate an accurate segmenta-
tion. In summary, the contributions of this work are three-fold:

• A fast end-to-end deep network is designed for video object segmentation. Both the
absolute object changes and the relative object variations are captured to facilitate the
model to segment multiple video objects accurately.

• A novel Long-Short Term Network (LSTNet) is designed to encode the evolution-
ary process for the objects. The long-term network exploits the object relationship
between the current frame and the first frame, and the short-term network explores
the immediate object variation. An attentional gate network is finally constructed to
predict the object masks in the current frame.

• Extensive experiments are executed on two widely used segmentation benchmarks
including YouTube-VOS and DAVIS 2017, and our results have demonstrated that our
approach can exhibit high efficiency and accuracy against the state-of-the-arts.

2 Related Work
Fine-tuning based on the first frame methods: Many state-of-the-art approaches train a
segmentation network offline and execute online learning by fine-tuning the segmentation
networks [1, 13, 19, 20, 24, 30, 33] at the test time in order to memorize the appearance
of the target object on the given object mask. For example, OSVOS [1] handles the online
learning without temporal modeling but uses the first annotated frame to fine-tune a trained
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network and segments the objects in other frames individually. LucidTracker [19] employs
data augmentations on the first frame so that more target features can be learned during the
online fine-tuning stage. OnAVOS [33] adjusts the fixed parameters online and utilizes on-
line updates to adapt to changes in appearance. Other approaches further incorporate optical
flow [15, 16] as an additional cue. For instance, PReMVOS [24, 25] integrates techniques
from instance segmentation, optical flow, refinement, and re-identification together with ex-
tensive fine-tuning, and achieves a satisfactory performance. Although these algorithms
achieve an impressive segmentation result, there is still a big gap for the processing speed
to satisfy the requirements for practical applications due to the heavy computation burden of
fine-tuning on the first frame.

Propagation-based methods: To leverage the temporal consistency between two ad-
jacent frames and segment all the frames independently, many propagation-based meth-
ods [17, 21, 32, 35, 36, 38, 41] often transfer the mask of the previous frame to the current
frame to adapt the changes of object appearances. A typical method MaskTrack [30] uses
the output of the last frame as a guide for the interesting region of the next frame. Optical
flow [15, 16] is also used to guide the propagation process in many methods [5, 13, 17]. Oth-
ers utilize GANs [10] to capture propagation coherence effectively. For instance, GANs [2] is
designed to learn spatio-temporal object models on a limited space-time window. And an ad-
versarial fashion like GANs [40] is utilized to capture dynamic appearance and motion cues
of video sequences to guide object segmentation. Recently, many approaches [32, 41] also
adopt RNN [45] to focus on propagation information in videos. RVOS [32] proposes a re-
current network for multiple object video object segmentation to learn temporality. S2S [41]
relies on Conv-LSTM [39] to build a memory module for recursively long-term prediction.
However, these methods are vulnerable to temporal discontinuities like occlusions and rapid
motion, and can suffer from drifting once the propagation becomes unreliable.

Template-based methods: The template-based methods [3, 14, 34, 35, 38, 44, 46] ad-
dress the VOS task as a pixel-level object matching problem with the annotation of the ob-
ject mask on the first frame. For example, VideoMatch [14] performs a soft segmentation
upon the averaged similarity score maps of matching features to generate smooth predic-
tions. RGMP [38] proposes a deep Siamese [7] encoder-decoder network that is designed
to take advantage of the template. Other approaches propose a way of ranking to match the
similarity with the template. Take RANet [36] as an example. It adopts a novel ranking
attention module, which automatically ranks and selects these maps for fine-grained VOS
performance. Furthermore, a pixel-wise embedding metric learning based approach predicts
each pixel by nearest neighbor matching in pixel space to the template frame. FEELVOS [34]
uses a semantic pixel-wise embedding together with a global and a local matching mecha-
nism for more stable pixel-level matching. DDEAL [44] proposes a directional deep embed-
ding and appearance learning method for fine-tuning-free fast VOS. These methods obtain
good performance. However, due to the lack of temporal information, they still suffer from
the mismatching problem. In this work, we explore both the strategies of matching for pixel-
level object segmentation and temporal propagation, to handle the mismatching and drifting
problem.

3 Long-Short Term Network
We design a model to learn the absolute variations and relative dynamics of targets with re-
spect to the first frame and previous frames, respectively. An attentional gate network is com-
posed to decode this information into the segmentation mask. Our elaborately designed net-
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Figure 1: The architecture of LSTNet. In order to segment the target object from the current
frame, the extracted long-term features and the short-term features are fed into the attentional
gate model to produce the final segmentation.

work tackles multi-object segmentation in one forward pass without post-processing, which
avoids repeating multiple times for multi-object. In the following, the pipeline of our pro-
posed framework is first presented and then we describe three components and their network
architectures in detail.

3.1 Pipeline
The pipeline of the proposed method is illustrated in Figure 1 where three seamless branches
compose the segmentation model including a long-term network, a short-term network, and
an attentional gate network. In the long-term network, the relationship information between
the target of the current frame and the annotated first frame is extracted to get the absolute
variations of the targets, which reasons the global information of specific positions and de-
formations of these targets. In the short-term network, the relative changes of targets against
the previous frame are exploited, which facilitates to estimate the local and subtle informa-
tion of the target. The attentional gate network focuses on the overall structures and refines
the feature maps to decode the final result. With the above efforts, a single forward pass
can adapt the proposed segmentation model to the appearances of specific objects fast and
accurately by exploiting long-term and short-term information without online fine-tuning.

To give a more precise definition, assume there are K objects in total, let G1 be the pro-
vided ground-truth mask of the first frame, and denote the coarse mask of frame t as M̂t . We
introduce I = {I1, · · · , It , · · ·} to denote an input video with N frames, and our LSTNet is for-
warded to generate the segmentation results that are represented byM= {M0, · · · ,Mt , · · ·}.

3.2 Long-Term Network

The task of long-term Network is to exploit long-term information of objects in a deep fea-
ture space. As the segmented objects are indicated on the first frame, it possesses the most
accurate and richest information throughout the video sequence. In this part, the background
and foreground features on the first frame are extracted, and features from the first frame
and the current frame are concatenated on the channel dimension to extract the relation fea-
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tures of intended objects. The absolute variations of the objects are perceived to predict the
deformation of these objects.

A Siamese structure is employed to capture the differences of objects on the current
frame and the first frame. Specifically, Resnet-50 [11] is employed as the shared feature
extractor due to its well-balanced capacity and efficiency. In order to better distinguish
the foreground from the background, the input of our Siamese structure is expanded from
RGB to RGB+mask channel (4 channels). The extra mask channel is targeted to provide
an estimate of the visible area, approximate location and shape of the objects in the current
frame. In the first frame, the input image I1 and the provided mask G1 are fed into one branch
of our Siamese structure (as shown in Figure 1). The current frame It and an estimated coarse
mask M̂t which contains multiple targets that are generated by the short term network (see
more details in Sec. 3.3) are delivered into the other branch of our Siamese structure. The
Siamese structure outputs a hierarchical of features Ft = {Ft,1,Ft,2, ...,Ft,5} with different
spatial information, where Ft,i suggests the feature obtained from the ith extractor level on
the tth frame of the video sequence.

After extracting the features from the first frame and the current frame, we concatenate
F1,5 and Ft,5, and feed them into the global relation module(GRM). GRM globally aggregates
the concatenated feature over the coordinate space and then projects it into the interaction
space where the relation is inferred. The feature is back-projected into the original coordinate
space to calculate similar regions and judge the relation among them (see more details in
Sec. 4.1). This module not only allows us to extract global features but also to collect the
relationship information between the current and the first frame. It examines similar areas
and determines the relationship between different areas. In order to match with the short term
network, the feature maps are further upsampled. We additionally design skip connections
with the upsampling map that are built by residual blocks on the hierarchical features Ft,3
and Ft,4 of the current frame to obtain more accurate target information.

3.3 Short-Term Network
The short-term Network is to capture the relative dynamics of objects and is guided by a
coarse mask M̂t which contains multiple targets estimated based on optical flow and the
segmentation result of the immediately previous frame Mt−1 . Motion estimations based on
optical flow reveal the pixel correspondence between frames and enable the propagation of
foreground/background labels from one frame to the next. Since the guidance map provides
the coarse information on the location and shape of target objects, the network concentrates
full attention on the estimation of dominant objects in the given region with the provided
coarse shape. In the case of multiple objects, the overall mask Mt−1 can be separated into a
series of masks of objects {Mt−1,1,Mt−1,2, .....,Mt−1,k}.

Given a pair of two consecutive frames (It−1, It ), optical flow is acquired through a light-
weight network, which incorporates building blocks from LiteFlowNet [15]. Both this opti-
cal flow and the object masks {Mt−1,1,Mt−1,2, .....,Mt−1,k} from the previous segmentation
result (as described in Figure 1) are conveyed to the warping module to predict the masks
{M̂t,1,M̂t,2, .....,M̂t,k} on the current frame according to flow map with the bi-linear opera-
tion. The estimated coarse mask M̂t is estimated by Eq.(1) and Eq.(2), where O is the optical
flow operation and W denotes the warp operation.

M̂t,i =W (O(It−1, It),Mt−1,i) (1)

M̂t = max
1≤i≤k

M̂t,i (2)
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The predicted mask reflects the specific location and detailed information of the target,
and is not only an input for the next module of the short-term network, but also provides as
the estimated mask of the current frame in the long-term network.

We expand the estimated mask M̂t into masks of multiple objects {M̂t,1,M̂t,2......M̂t,k},
and feed them together with the current frame It into the layers that are consisted by Conv1
and Conv2 of Resnet-50. The output feature is denoted by ft = { ft,1, ft,2, ..., ft,k}, where ft,k
indicates the visual-feature of the kth object. We further construct a light-weight channel &
spatial encoding module to enhance the information of objects, and the results of this short
term network are represented by At = {At,1,At,2, ...,At,k}. The short-term network described
above captures the relative dynamics of objects, which provides us the specific local and
detailed information of objects.

3.4 Attentional Gate Network
In order to get the final segmentation result, the long-term and the short-term features should
be further decoded, refined and upsampled to the shape aligned with the input. To facil-
itate this, an attentional gate module is established where the similarity and difference of
long-term and short-term feature maps are perceived. It automatically captures the semantic
information, globally organizes the location and relationship on a series of spatial levels, sup-
presses the background regions on the current frame, and highlights the prominent features
of the foreground. The network starts with the gate operation [28] on the long-term features
Lt with 3 dimensions and the short-term features At = {At,1,At,2, ...,At,k} to generate the gate
features Ut = {Ut,1,Ut,2, ...,Ut,k}. The gate operation is formulated in Eq. (3)-Eq. (5), where
∗ is a 1 × 1 convolution, bAi and bψi are bias terms, and

⊗
denotes for an element-wise

multiplication.

Xt,i = Relu
(
W T

L ∗Lt +W T
Ai
∗At,i +bAi

)
(3)

Gt,i = Sigmoid(W T
ψi
∗Xt,i +bψi) (4)

Ut,i = At,i
⊗

Gt, i (5)

A refined prediction module is further constructed by skip-connections to reconstruct
accurate masks. These masks are upsampled to the same size as those in the current frame,
which are denoted by Rt = {Rt,1,Rt,2, ...,Rt,k}.

So far, the segmentation result for multiple objects is obtained. Based on this, the back-
ground pixels can be extracted as

Rt,0 = 1− max
1≤i≤k

Rt,i (6)

In order to obtain a more accurate object boundary, we normalize the segmentation prob-
ability map of K objects to predict the result of each pixel. The segmented results of K object
Rt = {Rt,1,Rt,2, ...,Rt,K} can be further refined and normalized by Eq. (7) where R̂t,c is the
refined result.

R̂t,c =

Rt,c
1−Rt,c

∑
k
i=0

Rt ,i
1−Rt ,i

(7)

The pixel in R̂t,c belongs to the target whose probability is the largest among K probabil-
ities, and if the maximum value is less than 0.5, the pixel is set as background. The above
probabilistic normalization strategy also enables us to directly derive the object segmentation
result Sc

t ∈ {0,1}.
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YouTube-VOS one-shot

Method G overall(%) J seen(%) J unseen(%) F seen(%) F unseen(%)

LSTNet 71.8 70.9 66.8 74.9 74.8
LTN_free 68.7 69.5 62.6 73.1 69.8
STN_free 67.5 68.4 60.8 72.4 68.5
AGN_free 69.7 70.0 63.6 73.8 71.4

Table 1: Ablation study on three key components on the YouTube-VOS dataset. Models are
trained on the training set and evaluated on the validation set.

4 Experiments
We evaluate our approach against numerous state-of-art VOS methods on two public datasets,
namely the Youtube-VOS [42] and DAVIS 2017 [31]. In the following, we first introduce the
implementation details of our model and then conduct ablative studies on the three key com-
ponents of our LSTNet. Afterward, the performance of the proposed method is evaluated
against state-of-the-art approaches on the two benchmarks.

Metrics: For a more comprehensive evaluation, we employ three metrics including the
mean region similarity (J Mean), mean contour accuracy (F Mean) and their average ( G
Mean) [29]. Note that F and J are separately calculated for seen and unseen classes in
YouTube-VOS [42]. Besides, the run time is also measured for efficiency evaluation.

4.1 Implementation Details
In the long-term network, we rebuild the Resnet-50 [11], which is pre-trained on the Ima-
geNet [8], by removing the last global pooling and fully-connected layers and adding atten-
tion [12] module in the block Conv3, as the feature extractor. In the global relation module,
we firstly construct a block including a conv layer with a 3 × 3 kernel and stride 1, batch
normalization layer and ReLU layer. The channels of feature maps are reduced from 4096
to 1024. Then, five convolutions [4] are employed to extract global relationships, two of
which are used for dimension reduction and expansion, one of which is employed to gen-
erate bi-projection coordinates and latent interaction spaces, and the other two convolutions
are utilized for global reasoning based on the graph in the interaction space. The relation-
ship map outputted by this module is with 1024 channels. Finally, a 3 × 3 convolution with
stride 1, followed by batch normalization and ReLU layer, is applied to aggregate global
relationship information. This convolution reduces the channels of feature maps from 1024
to 256. In the short-term network, the channel module utilizes both max-pooling outputs and
average-pooling outputs with a shared network and the spatial module employs similar two
outputs that are pooled along the channel axis and forwards them to a convolution layer [37].

The loss function we use in the proposed LSTNet is IOU (Intersection over Union) be-
tween the predicted segmentation and final segmentation [22]. The loss is summed and
minimized by Adam with a learning rate of 1e−4, and LSTNet is trained for 50 epochs using
Youtube-VOS [42]. Our method is implemented using Python with PyTorch. All experi-
ments are conducted on one NVIDIA Titan X Pascal GPU card.

4.2 Ablation Study
We perform an ablative analysis on the key components of LSTNet including LTN, STN and
AGN on the YouTube-VOS official validation set [42]. The results are reported in Table 1.
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YouTube-VOS one-shot
Method FT G overall(%) J seen(%) J unseen(%) F seen(%) F unseen(%) FPS

S2S [41] 3 64.4 71.0 55.5 70.0 61.2 0.11
MSK [30] 3 53.1 59.9 45.0 59.5 47.9 0.08
OSVOS [1] 3 58.8 59.8 54.2 60.5 60.7 0.10
OnAVOS [33] 3 55.2 60.1 46.6 62.7 51.4 0.08
PReMVOS [24, 25] 3 66.9 71.4 75.9 56.5 63.7 0.03

STM [27] 79.4 79.7 72.8 84.2 80.9 <6.25*

STM-synth [27] 68.2 - - - - <6.25*
AGSS [23] 71.3 71.3 65.5 75.2 73.1 12.5
OSMN [43] 51.2 60.0 40.6 60.1 44.0 4.16
DMM-Net [46] 51.7 58.3 41.6 60.7 46.3 12
RGMP [38] 53.8 59.5 45.2 - - -
A-GAME [18] 66.0 66.9 61.2 - - -
DDEAL [44] 70.5 72.5 75.8 63.4 70.4 -
S2S (w/o OL) [41] 51.7 66.7 48.2 65.5 50.3 6.25
CapsuleVOS [9] 62.3 67.3 68.1 53.7 59.9 13.5

LSTNet 71.8 70.9 66.8 74.9 74.8 12.8

Table 2: Quantitative results on the Youtube-VOS validation set. Models marked with FT
indicates that fine-tuning on the first frame is required. Bold font indicates the best result.
Note that the performance data are directly copied from the corresponded published papers.
The asterisk in FPS (*) indicates a speed for a single object and others are for multi-object.

Effectiveness of LTN: To demonstrate the effectiveness of LTN, we construct a model
(named LTN_free) based on the LSTNet but only remove the global relation module in the
long-term network. The extracted features of the current frame and the first frame are directly
concatenated, and then retain the conv layer before and after the global relation module
to match the channels. The segmentation results of LTN_free is reported in the second
row of Table 1. Compared with the overall LSTNet, the LTN_free model drops the overall
performance by a percentage of 3.1 evaluated by the average metric G, which demonstrates
the effectiveness of the long-term network.

Effectiveness of STN: To validate the effectiveness of STN, a model named STN_free
is composed by disabling the STN from LSTNet and directly conveying the estimated mask
of multiple objects {M̂t,1,M̂t,2......M̂t,k} and the long-term features Lt as the input of AGN.
As shown on the third row in Table 1, a decline of 4.3% is observed in average performance
by removing the STN, which demonstrates the influence of the proposed short-term network
for video object segmentation.

Effectiveness of AGN: In order to investigate the impacts of AGN, we establish a model
AGN_free by removing the gate network from LSTNet. The LTN and STN information are
directly operated by element-wise multiplication. The comparison results are presented in
the fourth row of Table 1, where it can be observed that the overall score is decreased by
2.1% due to the elimination of AGN. This demonstrates that the AGN is able to learn crucial
information for the video object segmentation.

4.3 State-of-the-Art Comparison
We compare the performance of our method with state-of-the-art approaches on Youtube-
VOS [42] and the DAVIS 2017 dataset [31].

Youtube-VOS: The validation set of YouTube-VOS [42] comprises 474 videos labeled
with one or multiple objects. We submitted our results to the official platform for a fair
evaluation. The comparison results are reported in Table 2 where all models are trained
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DAVIS17-val DAVIS17-testdev
Method FT G(%) J (%) F (%) G(%) J (%) F(%) FPS

OSVOS [1] 3 56.6 60.3 52.9 50.9 47.0 54.8 0.05
OSVOS-S [26] 3 68.0 64.7 71.3 57.5 52.9 62.1 -
OnAVOS [33] 3 63.6 61.0 66.1 56.5 53.4 59.6 0.04
PReMVOS [24, 25] 3 77.8 73.9 81.7 71.6 67.5 75.7 0.03

OSMN [43] 54.8 52.5 57.1 41.3 37.7 44.9 3.57
VideoMatch [14] 62.4 56.5 68.3 - - - 2.86
FAVOS [6] 58.2 54.6 61.8 43.6 42.9 44.3 0.83
RANet [36] 65.7 63.2 68.2 55.3 53.4 57.2 -
RGMP [38] 66.7 64.8 68.6 52.8 51.3 54.3 3.57
STCNN [40] 61.7 58.7 64.6 - - - 0.25

LSTNet 67.5 64.6 70.4 56.2 53.4 58.9 8.33

Table 3: Quantitative results on the DAVIS 2017 validation set and test-dev set [31]. FPS is
evaluated on the val set. Models marked with FT indicates that fine-tuning on the first frame
is required. Bold font indicates the best result.

on YouTube-VOS [42]. Note that DMM-Net [46], A-GAME [18], STM [27], AGSS [23],
CapsuleVOS [9] and DDEAL [44] are the latest segmentation models. The proposed method
obtains a percentage of 71.8 measured by G at a speed of 0.078 seconds (12.8FPS, Frames
Per Second), which obtains the second best in the overall performance. STM [27] achieves
the best performance at a G-score of 79.4 by training the model on a simulation dataset and
YouTube-VOS dataset(VOS) [42]. But it claims a G-score of 68.2 if trained only on VOS.
In contrast, our method achieves a G-score of 71.8 training only on VOS, which boosts the
G-score by 3.6 on even ground. Furthermore, our model is several times faster than STM
as it reports a speed of 6.25FPS for a single object and ours is 12.8FPS for multi-object. In
other words, our method ranks number one considering both the overall performance and
the efficiency, and significantly outperforms state-of-the-arts without invoking any online
fine-tuning. The third best performer is AGSS [23], which reports a G-score of 71.3 and is
slightly lower than ours. In particular, for the unseen evaluation, ours leads AGSS by 1.5
(70.8 VS 69.3). The performer with the fastest running speed is CapsuleVOS [9] at about
13.5 FPS, which is only slightly faster than ours (13.5 FPS VS 12.8 FPS), but the average
performance G is dropped by 9.5% compared with the proposed method. Furthermore, in
contrast to the state-of-the-art online methods such as PReMVOS [24, 25] and S2S [41], the
proposed method still achieves a better performance.

DAVIS 2017: We also conduct the comparative experiments on DAVIS 2017 dataset [31]
to verify the effectiveness of our method on multi-object segmentation. Table 3 shows the
quantitative comparisons against a number of latest state-of-arts by two metrics on both the
validation set and test-dev set. The methods can be divided into two categories according
to the requirement of fine-tuning. It can be seen that the proposed method achieves the best
performance and the fastest speed compared to the methods that do not require fine-tuning.
When compared with the methods with online fine-tuning, our method occupies the third
position and the best performer is PReMVOS [24, 25]. However, these online fine-tuning
methods such as PReMVOS only runs at a speed of 0.03 FPS or so, which is 417x slower
than ours. In other words, the proposed method achieves the best trade-off between the
accuracy and the running speed.

Finally, parts of our segmentation results are visualized in Figure 2 where different time
steps of each video sequence are uniformly sampled, and some qualitative comparisons
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against several state-of-the-art methods are displayed in Figure 3. It is clear that our model
consistently achieves a very good segmentation quality throughout the video sequence even
under challenging situations, such as deformations, fast motions, large scale variations, and
cluttered backgrounds.

(a) 0% (b) 25% (c) 50% (d) 75% (e) 100%

Figure 2: Visualization of our results on YouTube-VOS and DAVIS 2017

Ground Truth LSTNet(Ours) RGMP [38] OnAVOS [33] SiamMask [35]

Figure 3: Qualitative comparison with three state-of-the-art approaches

5 Conclusions
A fast and end-to-end long-short term network is developed in this paper to conduct video
object segmentation. The long-term network encodes the absolute object variations by ex-
ploiting the object relationship between the current and first frames, and the short-term net-
work targets at relative object dynamics by taking advantage of optical flow and a channel
& spatial network. This information is further decoded and refined by the attentional gate
network to obtain the final segmentation results of multiple video objects. Extensive ex-
periments are executed, which have demonstrated that our proposed method can achieve a
superior performance and fast running speed (about 12.8 FPS) on both the YouTube-VOS
dataset and DAVIS 2017 against numerous state-of-the-art methods.
Acknowledgments: This work was supported by the Natural Science Foundation of China
(61972027). The Titan X Pascal used for this research was donated by the NVIDIA Corpo-
ration. The corresponding author is Baopeng Zhang.
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