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Abstract

Reducing compression artifacts is essential for streaming videos with a better quality
under a limited bandwidth. To tackle this problem, existing methods aim to directly
recover details from the compressed video but do not consider learning rich information in
uncompressed videos to aid this process. In this paper, we focus on utilizing the residual
information, which is the difference between a compressed video and its corresponding
original/uncompressed one, and propose a fairly efficient way to transmit the residual with
the compressed video in order to boost the quality of video compression. Our proposed
method is realized by learning to discover the patterns in the residual and storing them
offline as dictionary-like patterns. During the testing stage, e.g., for video streaming, the
residual is transmitted in the form of pattern indexes to reduce the cost of communication,
and thus the original residual information can be easily retrieved back from the dictionary
of learned residual patterns. We show the effectiveness of our framework on numerous
datasets under various video compression coding methods. In addition, the proposed
pipeline can be widely applied to the image compression task and reduce artifacts produced
from conventional and CNN-based compression algorithms.

1 Introduction
Video and image have become two of the most popular media for people to communicate, share
knowledge, record events, and have entertainment in our daily life. Along the development
of recording technology and expectation of better visual experience, video and image data
become higher resolution which naturally leads to larger size. However, as the network or
communication channel is usually with limited bandwidth, video and image compression
is essential to maintain the efficiency of transmission. Various coding standards have been
proposed to perform compression, such as HEVC [23], MPEG-4 [15], and H.264 [28] for
video compression, and JPEG [26], JPEG-2000 [1], and BPG [3] for image compression.
Generally, most of the coding methods nowadays belong to lossy compression scheme, in
which the file size is reduced by eliminating redundant information or some details. Ideally,
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Figure 1: Overview of the proposed pipeline of frame-by-frame video compression enhance-
ment. Our method first takes the residual frame as input, which is the difference between the
original and compressed frame. Second, we extract features from the residual information
and perform residual pattern discovery on the patch level, where the residual features are
stored as a form of pattern indexes for reducing the required bandwidth during transmission
through the channel, e.g., video streaming. On the client side, we first retrieve corresponding
residual patterns from the received indexes, and then further use them to reconstruct the
residual information and improve the quality of compressed frames.

the loss caused by compression should be undetectable by end-users, but with the demand
of transmitting more data grows (e.g., video streaming), it is inevitable to generate obvious
artifacts on data received by the user, e.g., block boundary, mosquito noise, and blur.

In order to reduce the influence of compression artifacts for a better viewing quality, several
general strategies are investigated to reduce the visual difference between a compressed image
(or video frame) and its corresponding original/uncompressed one, which is known as residual.
These methods include: 1) developing a new compression procedure to minimize the residual,
2) estimating the residual from the compressed image and performing reconstruction, and 3)
transmitting the residual together with the compressed image. In this paper, we particularly
focus on the third one since it directly extracts useful residual information from the original
image (i.e., server side). A representative work [25] of this strategy utilizes an autoencoder
framework to encode the residual of a video sequence frame-by-frame into binary streams
for transmission from the server side to the client one. Although this method provides better
video quality than H.264 by employing binary residual representations, the bandwidth it needs
to transmit the residual is still high and thus the bitrate can be significantly increased.

In this paper, to reduce such issue, we propose a holistic framework which is able to
simultaneously eliminate the overall cost of transmitting the residual and achieve comparable
visual quality. The main advance in our proposed method is based on a hypothesis that the
variety of patch-wise residual can be quantized into certain groups that are stored offline
like a dictionary, in which the mean feature representation of each group is named as one
residual pattern. As a result, given each patch in an image (or a video frame), its residual
information can thus be retrieved by finding “which” pattern for reconstruction. Given an
image (or a video frame), its residual information can thus be easily encoded by using the
indexes of the residual pattern, combined from all the patches within this image. Based on
this operation, we no longer need to transmit the original residual through the channel but
only require to remember the indexes of residual pattern, which leads to a more efficient
way for residual transmission (see Figure 1 as an illustration). Specifically, since the residual
pattern can be learned and sent to the client beforehand, during running the application (e.g.,
video streaming), we simply need to feed our image or video frames to the pre-trained model
to generate the indexes, in which each index corresponds to one residual pattern. Then,
based on another reconstruction network, once the client receives the indexes, the image
can be reconstructed immediately using the corresponding residual pattern. To achieve this,
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we design a framework consisting of three components: feature extraction on the residual,
residual pattern discovery, and residual reconstruction.

In order to show the flexibility and generalizability of our proposed approach, we utilize
different compression methods for both video and image data, including H.264, HEVC, VP9,
JPEG, BPG, and [19], where the last one is a deep learning-based compression model. We
conduct extensive experiments on several datasets, including KITTI [8] and Kinetics [12]
for video compression, as well as ILSVRC [21] and Kodak [6] for image compression, with
various settings for quantitative evaluation. The results in comparison to the state-of-the-art
baselines verify the effectiveness of our proposed method in improving the visual quality
without significant increase in the cost of residual transmission.

2 Related Works
Image/Video Compression Conventional image/video encoding procedures (e.g., JPEG [1,
26], MPEG-4 [15], H.264 [28], and HEVC [23]) are built upon several important components,
such as transformation coding, quantization, and entropy coding, where the transformation
coding is particularly responsible for extracting features from image/video data. However,
the common choices for transformation coding (e.g. Fourier transform, discrete cosine
transform) are mostly linear operations, and most importantly, need careful hand-crafted
design. Therefore, it can not be well generalized to different cases to have simultaneously
efficient compression and good image/video compression quality. For instance, H.264 [28],
which is a widely used video compression codec based on DCT, can provide good video
quality under the case of high bitrate but suffer from blocking artifacts for the low bitrate.
Learning-based Image/Video Compression Previous works [4, 18, 22] have explored to
automatically learn the transformation or feature extraction from visual data in order to assist
the compression process. Particularly, the recent advance of deep learning brings a great
progress along this direction, where most of proposed models [2, 24] inherit from autoen-
coder frameworks [10], in which the encoding and decoding processes in an autoencoder is
analogous to the concept of compression. For instance, [24] propose to train a convolutional
autoencoder for learning feature representations of images, and then apply typical quanti-
zation and entropy encoding on the features to perform compression. Instead of having a
stage-by-stage pipeline as [24], [2] propose a deep architecture for learning compression,
which integrates a uniform quantizer into the autoencoder. The discontinuous loss function
for learning quantizer is approximated by a continuous proxy and thus the overall model is
end-to-end trainable. In addition to dealing with quantization, [19] advance to use entropy
coding techniques based on 3D-CNN context model for balancing the trade-off between
the reconstruction error and the entropy of latent representation in the autoencoder. On the
other hand, [29] recently propose an end-to-end trained deep video codec, where the video
compression is formulated as image interpolation with motion compensation.
Image/Video Artifact Removal Another strategy of improving the quality of compressed
output is to enhance the decoder or perform post-processing to reconstruct a better output
[16, 17, 30]. For example, [20] enable the decoder to synthesize compressed output with
photo-realistic quality by utilizing adversarial learning [9]; [5] propose a post-processing
model based on the super-resolution network for removing artifacts on the compressed image.
The work from [7] has a similar idea but the artifact removal network is implemented as a
generative adversarial network (GAN) [9]. Recently, [25] addresses the video compression
task from a different perspective: the compressed data is coupled with the corresponding
residual, which is encoded in a binary form. Therefore, the quality of compressed video
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Figure 2: Overview of our proposed architecture to efficiently transmit the residual for
improving compression, which contains three main components: feature extraction on residual,
residual pattern discovery, and residual reconstruction. Please refer to Section 3 for details.

frames can be improved by adding back the decoded residual information accordingly. Our
proposed method is closely related to [25], but advances to propose a holistic framework for
improving the quality of compressed data with a more efficient way to encode the residual
information by discovering patterns of residual. Moreover, the work from [25] only targets
at domain-specific videos, whereas our method is designed for a general usage and can be
applicable to reduce artifacts generated from various images/videos compression methods,
including conventional and learning-based ones.

3 Proposed Method
Our goal is to learn efficient representations of residual information by discovering its patterns
and approximating them, such that the residual can be transmitted with a minimal occupation
of bandwidth and boost the quality of compressed videos or images. Our proposed framework
consists of three components, as shown in Figure 2: 1) feature extraction on residual, 2)
residual pattern discovery, and 3) residual reconstruction. We detail each component and
the learning workflow in the following, where the network architectures and implementation
details are provided in the supplement. The code and model will be released to the public.

3.1 Feature Extraction on Residual
Given a compression method such as H.264 to compress a video in a frame-by-frame basis,
the first component of our model aims to find the high-level representations of the residual
information Ir between a video frame I and its compressed version Ic, i.e., Ir = I− Ic. This
is realized by an autoencoder, which is widely used for unsupervisedly learning feature
representations of data. A typical architecture of an autoencoder is composed of a pair of
encoder E and decoder D, where in our case the encoder projects a residual information Ir
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into a feature vector E(Ir), then the decoder maps it back to reconstruct the original residual
Ĩr = D(E(Ir)). The reconstruction error minimized over N frames is defined as:

Lae =
N

∑
i=1

∥∥Ĩi
r− Ii

r
∥∥

1 . (1)

As such, the autoencoder learns to retain the latent residual information of the input Ir in the
feature space, while extracting useful knowledge E(Ir) for the next step.

3.2 Residual Pattern Discovery
As shown in Figure 2, the feature map E(Ir) extracted from the residual image Ir is of the size
M×N×D, where M = H/8,N =W/8,D are height, width, and channel number respectively.
We denote a vector Pmn

r of length D obtained from each spatial location (m,n) to represent a
corresponding patch in the residual image with respect to its receptive field. In other words, we
obtain in total R = M×N patches from the residual image and extract features for these patch-
wise residuals. We hypothesize that the collection P of all feature vectors Pr representing
patch-wise residuals from training video frames is distributed with multiple modes, i.e., they
can be grouped and each group shows a specific pattern of patch-wise residual. Based on
this hypothesis, the second component in our model is to perform clustering on P in order
to discover residual patterns. Here we adopt k-means as our clustering algorithm. Assume
there are K modes/groups in P , the center {Ck | k = 1 · · ·K} of each group can be treated as
the representative one and used to approximate other members belonging to the same group.

However, as the distribution of P is dependent upon the extracted features E(Ir), the qual-
ity of such approximation and the clustering outcome also varies accordingly. Therefore, we
try to update the autoencoder during model training such that E(Ir) better fits our hypothesis
and reflects a more compact structure in the distribution of P , by minimizing the objective:

Lcen =
|P|

∑
r=1

∥∥Pr−Cκ(r)
∥∥

1 , (2)

where |P| denotes the number of feature vectors in P , and κ(r) ∈ {1, · · · ,K} is a mapping
function to obtain the group index of a feature vector Pr. Given a video frame I, its residual
information Ir can now be efficiently represented as the group indexes P̃ = {κ(r) | r = 1 · · ·R}
of corresponding patch-wise residual patterns {Pr | r = 1 · · ·R}. As a result, it costs only
R× log2(K) bits to transmit the residual, which is significantly lower than transmitting the
real residual in double precision. To further reduce the cost during transmission, we apply
Huffman coding [11] on P̃ and is empirically able to reduce around 97% of the bitrate.

3.3 Residual Reconstruction
When a client receives from the server a compressed video frame Ic together with its residual
represented as P̃, the ensuing task is to use P̃ for improving the quality of Ic. Here, we
assume that the client stores the database of K representative patch-wise residual patterns
beforehand. Given {Ck | k = 1 · · ·K} learned from the stage of residual pattern discovery,
P̃ can be converted to approximated residual features via retrieving center patches from
indexes as Pc =

{
Cκ(r) | r = 1 · · ·R

}
. We then propose a residual reconstruction network T to

reconstruct the original frame I based on Pc and Ic, where T is composed of two sub-networks:
an upsampling network U and a refinement network F . As shown in Figure 2, the upsampling
network U first maps Pc to a higher-dimensional feature map U(Pc), and then the refinement
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network F processes U(Pc) and Ic to output the final result Ĩ = F(Ic,U(Pc)). The objective of
training reconstruction network is to minimize the difference between Ĩ and I:

Lrec =
N

∑
i

∥∥Ĩi− Ii∥∥
1 . (3)

3.4 Iterative Training Procedure
We summarize the overall training procedure in Algorithm 1, where we denote the parameters
of {encoder E, decoder D, upsampling network U , and refinement network F} as {θE , θD,
θU , θF} respectively. In particular, for the first L epochs during training, we skip the stage
of residual pattern discovery and focus on learning the autoencoder and the reconstruction
network, in order to stabilize the training at the early stage. Therefore, the input to the
upsampling network becomes the real patch-wise residual features {Pr | r = 1 · · ·R}, while
the objective function for reconstruction is thus re-written as:

L∗rec =
N

∑
i

∥∥F(Ii
c,U(Pi

r))− Ii∥∥
1 . (4)

Algorithm 1: Training procedure of our proposed framework.
Data: Input frames I and the corresponding compression Ic in

training videos.
1 for Each Epoch do
2 if index of current epoch < L then
3 ∀I : θE ,θD

+←−∆θE ,θDLae;

4 ∀I : θE ,θU ,θF
+←−∆θE ,θU ,θFL∗rec;

5 clustering on P to get {Ck | k = 1 · · ·K};
6 else
7 ∀I : θU ,θF

+←−∆θU ,θFLrec;

8 θE
+←−∆θELcen;

9 ∀I : θE ,θD
+←−∆θE ,θDLae;

10 clustering on P to get {Ck | k = 1 · · ·K};

4 Experiments
Datasets and Metrics. Four datasets are considered, including the tracking benchmark on
KITTI [8] and Kinetics [12] for video compression, ILSVRC [21] and Kodak [6] for the
image part, where the first three are used for both training and testing while the last one (i.e.
Kodak) is for testing only. The PSNR and SSIM [27] metrics are adopted for evaluation.

• KITTI: Tracking benchmark on KITTI includes 50 various sequences of street scenes.
We resize the videos into resolution of 360×1200 for our feature extraction , which
contains three downsapmling operations. Our training and testing split of KITTI dataset
is exactly the same as [25], in which the training split contains 14688 frames from 42
videos. The remaining 8 videos (i.e., 3590 frames) are used for the testing split.

• Kinetics: Kinetics is a large-scale dataset collected from Youtube which has a diverse
range of human activities. Two subsets are collected from Kinetics: 10K frames in 1093
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videos over 391 classes for training, and 3253 frames in 345 videos over 345 classes
for testing respectivelt. Note that the video classes are overlapped between training and
testing sets, but the video sequences are not. In order to remove compression artifacts
introduced by prior codecs on YouTube, we follow the same procedure as in [29] to
downsample high resolution videos into the ones of 352×288px.

• ILSVRC: The ImageNet dataset from ILSVRC2012 is used. Both training and testing
sets (i.e., 10996 and 2500 images respectively) are obtained by randomly sampling from
around 1000 categories. We apply 128×128 center crops for image preprocessing.

• Kodak: Kodak dataset consists of 24 lossless images, and is commonly used for testing.

Number of Residual Pattern Group K. In order to determine K (i.e., the number of
groups for residual patterns), we conduct an ablation study on KITTI, which is detailed in
the supplementary material. We empirically find that the performance saturates when K
goes up to a certain amount, e.g., K = 2048. In practice, we use K = 1024 for all the other
experiments to account for both the accuracy and efficiency.

4.1 Video Compression Performance
We conduct experiments on several coding standards (e.g., HEVC, H.264, and VP9) under
various bitrate settings, and introduce two baseline models for the comparison: 1) a state-of-
the-art video compression pipeline from [25] which originally is proposed for domain-specific
video streaming, and 2) an artifact removal network which is widely used to eliminate the
distortions caused by compression, denoted as DRN+. For the former baseline from [25],
as discussed in the section of related works, it aims to transmit the binary-encoded residual
together with the compressed data. We adopt the best experimental setting in their paper,
i.e., {number of channels, number of layers} = {32,3}. For the latter baseline, it is an 8-layer
convolutional neural network based on [13, 31] with residual blocks, in which each conv-layer
is followed by a ReLU activation function except for the last one. The network is fed by the
compressed image as input in a frame-by-frame process and outputs the enhanced image.
Note that there is no any stride in the DRN+ model in order to keep the resolution of frames.
Both baselines are trained on KITTI and Kinetics datasets with different codecs and bitrates.

Note that, apart from the bandwidth used by video coding standards, both our model
and the baseline from [25] require additional bandwidth to transmit the residual information:
our proposed model consumes ∼0.043/0.01 Mbps for KITTI/Kinetics datasets while [25]
needs ∼0.96/0.23 Mbps respectively. Hence, in order to have fair comparison, during training
baselines and our model, we take these extra bitrate into consideration by adjusting the
bandwidth of video coding (e.g., deduce the bitrate of video coding used for the [25] method),
such that each method consumes the overall bandwidth equally.

Quantitative Results. In Table 1 we show that our method generally outperforms both
baseline models on KITTI and Kinetics, achieving improvement by at most 1.9dB in PSNR
(under H.264 codec on Kinetics). This attributes from our design that 1) learns patch patterns
from the input residual, which makes the following reconstruction task easier, and 2) transmits
the residual information in a more efficient manner. In contrast, the DRN+ baseline focuses
on reconstruction directly from the compressed frame, which may suffer from the overfitting
issue and is not aware of the residual pattern, while [25] requires much higher bitrate to
transmit the residual information such that it can only use less bitrate for video coding under
the same overall bandwidth. We note that, the Kinetics dataset is a more challenging one than
KITTI, as it contains a diverse set of object categories with motions.
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Kinetics KITTI
Coding Standard H.264 HEVC VP9 H.264
BitRate (bits/sec) 1M 2M 5M 1M 2M 5M 1M 2M 5M 1M 2M 5M

PS
N

R

Original 31.638 34.680 37.271 29.209 33.255 37.512 33.152 35.008 36.445 26.039 27.692 28.568
Tsai et al. [25] 31.156 34.694 37.775 30.116 33.167 38.064 33.318 35.093 36.967 26.702 28.298 29.047
DRN+ [14, 31] 32.776 36.264 39.432 29.944 34.550 39.536 34.276 36.296 38.162 26.664 28.342 29.273
Ours 33.044 36.384 39.651 30.030 34.570 39.754 34.425 36.555 38.292 27.000 28.527 29.679

SS
IM

Original 0.895 0.940 0.967 0.814 0.887 0.968 0.911 0.940 0.958 0.750 0.813 0.849
Tsai et al. [25] 0.884 0.935 0.965 0.854 0.886 0.964 0.915 0.935 0.958 0.765 0.829 0.847
DRN+ [14, 31] 0.909 0.952 0.976 0.827 0.895 0.972 0.922 0.947 0.966 0.768 0.827 0.860
Ours 0.913 0.953 0.977 0.831 0.898 0.976 0.925 0.950 0.967 0.778 0.832 0.869

Table 1: Results on the Kinetics and KITTI datasets with several coding standards (i.e., H.264,
HEVC, and VP9) under various bitrates.

Figure 3: Example results on the Kinetics dataset. We show that under severe condition such
as low bit-rate, DRN+ and Tsai et al. are likely to produce undesirable results. For example,
in the second row of (c), the tile line in the bottom-left corner of the zoom-in patch is missing.

Qualitative Results. We present some example results with original frame, compressed
frame, results from baselines and our model in Figure 3. The results show that our reconstruc-
tion from the H.264, VP9 and HEVC standard is able to recover more details than baselines.
More results are provided in the supplementary material.

4.2 Image Compression Performance
In addition to video compression, our framework is also applicable to the image case. We
apply our method based on various codecs such as JPEG2000, BPG and a deep learning-
based model [19], which is the state-of-the-art image compression method. We adopt the
same baselines as the video compression part. For JPEG2000 and BPG, we set the bpp
(bits/pixel) to be 0.15 as reference to the recent challenge on learned image compression, hold
in CVPR 2019. For [25] baseline, we use {number of channels, number of layers} = {8, 5}
for having the same extra bitrate as ours, since the original setting {32, 3} will exceed more
than 0.15bpp. The results on ILSVRC are presented in Table 2, and our method performs
favorably against both baseline methods under different codecs. In Table 3, we further use
the Kodak dataset, which is considered as a common benchmark for image compression task
due to its high quality. Since there is no training set available on this dataset, we directly
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ILSVRC
Coding Standard JPEG2000 BPG Coding Standard DL-based
bpp (bits/pixel) 0.15 0.15 Quality low medium high

PS
N

R
Original 22.989 28.625 Original 25.274 26.003 26.786
Tsai et al. [25] 23.157 28.538 Tsai et al. [25] 25.290 26.150 26.917
DRN+ [14, 31] 24.876 29.112 DRN+ [14, 31] 25.550 26.448 27.295
Ours 25.327 29.299 Ours 25.902 26.843 27.885

SS
IM

Original 0.570 0.755 Original 0.758 0.788 0.808
Tsai et al. [25] 0.571 0.752 Tsai et al. [25] 0.758 0.787 0.806
DRN+ [14, 31] 0.656 0.772 DRN+ [14, 31] 0.765 0.797 0.820
Ours 0.658 0.779 Ours 0.773 0.809 0.835

Table 2: Results on the ILSVRC dataset. For JPEG2000 and BPG, 0.15 bpp is adopted. For
deep-learning based compression method, we follow their release code to have three levels.

Kodak
Coding Standard JPEG2000 BPG Coding Standard DL-based
bpp (bits/pixel) 0.15 0.15 Quality low medium high

PS
N

R

Original 12.912 28.537 Original 27.179 28.775 30.147
Tsai et al. [25] 13.071 28.538 Tsai et al. [25] 27.204 28.908 30.296
DRN+ 13.062 29.062 DRN+ 27.186 28.802 30.058
Ours 13.513 29.448 Ours 27.830 29.084 30.402

SS
IM

Original 0.423 0.755 Original 0.845 0.887 0.918
Tsai et al. [25] 0.442 0.755 Tsai et al. [25] 0.845 0.887 0.917
DRN+ [14, 31] 0.448 0.773 DRN+ [14, 31] 0.836 0.879 0.908
Ours 0.468 0.789 Ours 0.854 0.885 0.914

Table 3: Results on the Kodak dataset. For JPEG2000 and BPG, 0.15 bpp is adopted. For
deep-learning based compression method, we follow their release code to have three levels.

use the model trained on ILSVRC for evaluation. Similarly we observe that our results are
mostly improved from the original image and outperforms both baselines, which demonstrates
the generalizability of our learned residual patterns. Note that, in the DL-based setting, we
observe that SSIM is not always improved, and one possible reason is that our reconstruction
network is not optimized for SSIM, given that the SSIM score is already high in this case.
Qualitative results are shown in Figure 4 and our method is able to recover details of the
heavily compressed region.

Figure 4: Example results on the Kodak dataset. We show that our method produces more
clear reconstruction compared to the DRN+ method and [25], especially on textured regions.
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5 Conclusion
In this paper, we present a deep learning-based method to reduce the influence of compression
artifacts. We perform clustering on the patch-wise latent residual to find residual patterns,
such that only patch indexes are required for transmission and corresponding residual infor-
mation can be retrieved on the client side. As a result, our method simultaneously reduces
the cost of transmitting residual information and boosts video or image quality. We conduct
extensive experiments and show that our method outperforms baseline models consistently
under several coding standards, not only for video compression (e.g., H.264, HEVC, and
VP9) but also for the image case (e.g., JPEG2000, BPG, and CNN-based model).
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