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Abstract
We tackle the panoptic segmentation problem with a conditional random field (CRF)

model. Panoptic segmentation involves assigning a semantic and an instance label to each
pixel of a given image. At each pixel, the semantic label and the instance label should be
compatible. Furthermore, a good panoptic segmentation should have a number of other
desirable properties such as the spatial and color consistency of the labeling. To tackle
this problem, we propose a CRF model, named Bipartite CRF or BCRF, with two types of
random variables for semantic and instance labels. In this formulation, various energies
are defined within and across the two types of random variables to encourage a consistent
panoptic segmentation. We propose a mean-field-based efficient inference algorithm for
solving the CRF and empirically show its convergence properties. This algorithm is fully
differentiable, and therefore, BCRF inference can be included as a trainable module in
any deep network. In the experimental evaluation, we quantitatively and qualitatively
show that the BCRF yields superior panoptic segmentation results in practice. Our code
is publicly available at: https://github.com/sahan-liyanaarachchi/bcrf-detectron.

1 Introduction
Panoptic segmentation of images is a problem that has received considerable attention in
computer vision recently. It combines two well-known computer vision tasks: semantic
segmentation and instance segmentation. The goal of panoptic segmentation is to assign a
semantic label and an instance label for each pixel in the image as presented formally in [10].

Although semantic segmentation and instance segmentation are apparently very related
problems, current state of the art methods in computer vision solve these in substantially
different ways. The semantic segmentation problem is usually solved with a fully convolu-
tional network architecture such as FCN [20] or DeepLab [4], whereas the instance segmen-
tation problem is solved using an object detector based method such as Mask-RCNN [7].
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Figure 1: BCRF in an end-to-end trainable deep net. The Bipartite CRF proposed in this paper
can be used to combine the predictions of a semantic segmentation model and an instance segmentation
model to obtain a consistent panoptic segmentation.

Each of these architectures have their own strengths and weaknesses. For example, fully-
convolutional network based semantic segmentation methods have a wide field of view, spe-
cially when used with dilated convolutions [28], and therefore can make semantic segmenta-
tion predictions with global information about the image. In contrast, region proposal based
networks, such as Mask-RCNN, focus on specific regions of interest during the later stages of
the network and make predictions using strong local features available within a given region
of interest [3]. It is natural to think of a systematic way of combining the complementary
strengths of these two different approaches.

We propose a Conditional Random Field (CRF) based framework for panoptic segmen-
tation: Bipartite Conditional Random Fields (BCRF). This module performs probabilistic
inference on a graphical model to obtain the best panoptic label assignment given the se-
mantic segmentation classifier, the instance segmentation classifier, and the image itself.
Our framework provides a heuristic-free, probabilistic method to combine semantic seg-
mentation results and instance segmentation results - yielding a panoptic segmentation with
consistent labeling across the entire image. We formulate our bipartite CRF using different
energy functions to encourage the spatial, appearance and semantic consistency of the final
panoptic segmentation. The optimal labeling is then obtained by performing mean field in-
ference on the bipartite CRF - solving for both the semantic segmentation and the instance
segmentation in a jointly optimal way.

Importantly, we show that our proposed BCRF inference is fully differentiable with re-
spect to the parameters used within the CRF and also the semantic segmentation and instance
segmentation classifier inputs. Therefore, the BCRF module can be used as a first-class cit-
izen of a deep neural network to perform panoptic segmentation. A deep network equipped
with the BCRF module is capable of structured prediction of consistent panoptic labels and
is end-to-end trainable. We show an example application of this framework and demonstrate
that superior results can be gained by probabilistic combination of a semantic segmentation
classifier and an instance segmentation classifier in the BCRF framework.

2 Related Work
2.1 Panoptic Segmentation
Since its formal introduction by Kirillov et al. [10], the task of panoptic segmentation has
gained popularity, with multiple works attempting to transform existing network architec-
tures to tackle this task [6, 16, 17, 19, 26, 27]. The work in [26] presents a parameter-free
panoptic head that logically combines instance and semantic logits. Our work achieves a dif-
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ferent goal of individually optimising the two sets of logits learning arbitrary complex map-
pings between them. Also, the panoptic combination head in [26] could be used on top of
our module instead of the generic combination in [10] that we use for further improvement.
The spatial ranking methods described in [14, 17] optimize ranking between overlapping
instance masks. The work in [16] uses two attention modules to optimize the background
segmentation. Our framework performs both these tasks together using our cross-potential
terms while enforcing the two branches to have a consensus in their outputs. The BCRF
module is thus more robust in terms of information integration.

Another similar recent work by Arnab et al. [1] moves in a slightly new direction by using
a CRF to obtain instance segmentation outputs from a semantic segmentation using bounding
box (from an object detection network) and instance shape cues. Our work differs from
this in three significant ways: presence of pixel-wise cross potentials, using instance mask
cues from a region-based network, and the ability to explicitly learn and model relationships
between classes.

2.2 Conditional Random Fields
Conditional Random Fields (CRFs) are a class of statistical modeling models excellent at
structured prediction tasks such as semantic segmentation. While early methods of CRFs for
semantic segmentation [8, 22] used 4-connected or 8-connected locally connected graphs,
the development of an efficient mean field based inference algorithm [12] to solve fully
connected CRFs with Gaussian edge potentials resulted in a resurgence of its use in deep
networks. The authors of [29] showed that this CRF inference algorithm can be formulated
as a Recurrent Neural Network (RNN), which plugged into a fully convolutional network
could obtain the state-of-the-art in semantic image segmentation. Similar trainable CRF
models have been used in works such as [2, 21] for semantic segmentation and [1] for
instance segmentation. In [15], where the problem of panoptic segmentation with weak and
semi supervision was addressed, the authors used a CRF for refining instance segmentation
labels. However, it worked on homogeneous instance labels only and therefore was similar
in spirit to previous fully connected CRFs.

In our work, we propose a bipartite CRF operating on the semantic segmentation task
and the instance segmentation task simultaneously. This CRF has energies within semantic
segmentation labels, energies within instance segmentation labels, and also energies across
semantic and instance segmentation labels. To the best of our knowledge, this is the first
time a bipartite CRF with cross connections between semantic and instance labels has been
proposed in the context of pixel-wise labeling.

3 Background: Conditional Random Fields
A CRF, used in the context of pixel-wise label prediction, models pixel labels as random vari-
ables that form a Markov Random Field (MRF) when conditioned upon the image. CRFs
have primarily been used in computer vision for semantic image segmentation. In this set-
ting, CRFs encourage the desirable properties of a good segmentation, such as the spatial
consistency (e.g. spatially neighboring pixels should have the same label) and color consis-
tency (e.g. a semantic segmentation boundary should correspond to an edge in the image)
through various energy functions used in the formulation. A CRF formulation usually has
energy terms arising from an imperfect classifier (sometimes known as the unary energy) and
energy terms encouraging the consistency properties of the segmentation (sometimes known
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Table 1: Visualizations on Pascal VOC Dataset. Columns left to right: original image, semantic
output and instance output before BCRF, semantic output and instance output after BCRF.

as the pairwise energy). Some semantic CRF models also include higher order energy terms
to encourage higher order consistency properties such as consistency of the labeling within
super-pixels [2].

Once an appropriate energy function is formed, the optimal labeling is found as the la-
beling that minimizes the CRF energy (or equivalently, maximizes the probability). This
is known as the inference of the CRF. The exact inference of a CRF with dense pairwise
connections is intractable and hence approximate inference methods such as mean field vari-
ational inference has to be utilized to solve the CRF in reasonable time [12]. For a detailed
treatment of CRFs, the reader is referred to [11].

4 Bipartite CRFs
We propose a CRF formulation with bipartite random variables to capture interactions be-
tween semantic labels and instance labels. Inference of this CRF gives the jointly most
probable semantic and instance segmentation (and therefore, the panoptic segmentation) for
a given image.

For each pixel i, define a pair of discrete random variables (Xi,Zi) to denote its semantic
label and the instance label, respectively. For each i, Xi can take values in L= {l1, l2, . . . , lL},
where each l j is a semantic label and L is the number of semantic labels (includes both
stuff and thing classes). Therefore, L = Lstuff ∪Lthings, where Lstuff is the set of stuff class
labels and Lthings the set of thing class labels. Similarly, for each i, Zi can take values in
T = {inst0,inst1, . . . ,instNinst}, where Ninst is the number of instances detected in the
image, and the label inst0 is reserved to represent the "no instance” case (the pixel belongs
to a stuff class).

Let X = [X1,X2, . . . ,XN ] and Z = [Z1,Z2, . . . ,ZN ], where N is the number of the pixels
in the image. A joint assignment (x,z) to these two random vectors (X,Z) gives a unique
semantic label and an instance label to each pixel i, and therefore represents a panoptic
segmentation of the image. Note that, x ∈ LN and z ∈ T N . In this work, we discuss the
probability of such assignments and formulate the probability distribution function so that
the “good” panoptic segmentation will have a high probability. We then perform inference
on this formulation to find the assignment that maximizes the probability to obtain the best
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panoptic segmentation.
The probability of a panoptic segmentation (x,z), given the image I, can be modeled as

a Gibbs distribution of the following form:

Pr(X = x,Z = z|I) = 1
Z(I)

exp(−E(x,z|I)), (1)

where Z(I) = ∑(x,z) exp(−E(x,z|I)), is a normalization constant, sometimes known as the
partition function. The term E(x,z|I) is known as the energy of the configuration (x,z).
Hereafter, we drop the conditioning on I in the notation for brevity. The energy of our
bipartite CRF is defined as follows:

E(x,z) =∑
i

φ(xi)+∑
i< j

Φ(xi,x j) +∑
i

ψ(zi)+∑
i< j

Ψ(zi,z j) +∑
i

ω(xi,zi)+∑
i< j

Ω(xi,z j) (2)

where xi and zi are the elements of the vectors x and z, respectively. The meaning of each
term will be described in detail below. Note that, since a “good” panoptic segmentation
should have a high probability, it should have a low energy. Various terms in Eq. (2) should
therefore encourage a good panoptic segmentation by penalizing disagreements with our
prior knowledge about a consistent panoptic segmentation.

4.1 Semantic & Instance Components of the CRF
In the following, we discuss the first two terms of the energy function in Eq. (2). The first
term encourages the semantic segmentation result to be consistent with the initial classifier,

φ(Xi = xi) =− log(Pr0(Xi = xi)), (3)

where Pr0(.) is the classifier probability score for the semantic segmentation. The second
term in Eq. (2) encourages the smoothness of the semantic labeling,

Φ(Xi = xi,X j = x j) = µ(xi,x j)SimΦ(i, j), (4)

where µ : L×L→ R is the label compatibility function, and SimΦ(i, j) is a similarity mea-
sure between the pixels i and j. This term penalizes assigning different labels to a pair of
pixels that are "similar". Following [12], we use a mixture of Gaussians as the similarity
measure and define a general similarity function,

Simχ(i, j) = ∑
m

wχ,m exp

−‖f(m)
i − f(m)

j ‖2

2σ2
χ,m

 (5)

where fi is a feature vector for pixel i containing information such as its spatial location and
bilateral features (RGB + spatial coordinates). We use the same spatial and bilateral features
used in [12]. The similarity measure SimΦ is derived accordingly.

The next two terms of the energy function in Eq. (2) perform the same for instance
classification. Similarly we assume the existence of an initial classifier, such as Mask R-
CNN. Despite methods like Mask R-CNN providing fixed-size predictions with respect to
the bounding boxes of the detections, these predictions can be easily mapped to the full image
by using bilinear interpolation and trivial coordinate transforms similar to [26] as follows.

If there are N detections in the MaskRCNN output, instance segmentation unary poten-
tials is a tensor of shape [imheight , imwidth,N+1]. There are (N + 1) channels to accommodate
no instance at channel 0, i.e. at each pixel, the unary potential is a vector of length (N + 1)
that contains negative logits (see Eq. (3)) corresponding to the detection confidence of each
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particular instance. Each pixel in the image may belong to none, one or multiple instances,
since overlaps between bounding boxes are possible. These cases are handled as follows:
1) None: "no-instance" channel (channel 0) will have a high negative score. 2) One: The
corresponding channel will have a negative score proportional to the detection confidence
of the MaskRCNN. 3) Multiple (say u and v): channels u and v will have negative scores
proportional to the confidence scores for the two detections. In all cases, other channels will
be set to zero.

Similar to the semantic segmentation case, the third term in Eq. (2) encourages the panop-
tic segmentation to be consistent with the instance classifier probabilities. The fourth term in
Eq. (2) encourages instance label consistency across the whole image by penalizing assign-
ing different instance labels to similar pixels:

Ψ(Zi = zi,Z j = z j) = [zi 6= z j]SimΨ(i, j). (6)
The compatibility transform in this case is fixed to be [zi 6= z j], where [.] is the Iverson
bracket. The similarity measure SimΨ is derived from Eq. (5).

4.2 Cross Potentials in the CRF
An important contribution of this paper is the introduction of cross potentials between the
semantic segmentation and instance segmentation. The semantic segmentation and the in-
stance segmentation are highly related problems and therefore the solutions should agree:
the semantic label at any pixel has to be compatible with the instance label at that pixel.
For example, if the instance labeling says that the pixel i belongs to an instance of a person
class, the semantic label at pixel i should also have the person label. If the initial classifier
results for the instance segmentation and the semantic segmentation do not agree, one of
them should correct itself depending on the interactions of other terms in the CRF.

The first cross potential term (the fifth term in Eq. (2)), encourages instance label and the
semantic label at a given pixel to agree:

ω(Xi = xi,Zi = zi) = f (xi,class(zi)). (7)

Here, class(zi) is the class label of the instance zi with inst0 mapped to a special class null.
Note that, for all valid instances, the class label can be obtained from the instance classifier
(e.g. Mask R-CNN). The function f (., .) : (L,Lthings ∪{null})→ R+

0 , captures the cost of
incompatibility and is defined as follows:

f (xi,class(zi)) =


0, if xi = class(zi)

0, if xi ∈ Lstuff and class(zi) = null
η(xi,class(zi)), otherwise.

(8)

The above function covers three cases: 1) If the semantic label and the class label of the
instance label match, there will be no penalty for such assignment since there is no incom-
patibility in this case. 2) If the semantic segmentation assigns a stuff label and the instance
segmentation assigns inst0 label, there will be no penalty in that case either. 3) If the
semantic label and the instance label mismatch, there will be a penalty with the magnitude
decided by the function η(., .) : Lthings ∪{null}×Lthings ∪{null} → R+. This function is
learned from data as described in Section 5.

The last term in Eq. (2), encourages the consistency of semantic label and the instance
label among similar looking pixels and has the form:

Ω(Xi = xi,Z j = z j) = f (xi,class(z j)) SimΩ(i, j), (9)

where each symbol has the meaning described above and SimΩ is derived from Eq. (5).
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5 Inference and Parameter Optimization
The best panoptic segmentation given the model described in Section 4 is the assignment
(x,z) that maximizes the probability in Eq. (1). However, since the graphical model used
in BCRF has dense connections between the pixels, the exact inference is infeasible. We
therefore use an approximate parallel mean field inference algorithm following [12].

In this setting, the joint probability distribution is approximated by the product of marginal
distributions:

Pr(X = x,Z = z)≈∏
i

Qi(xi)Ri(zi), (10)

where Qi(xi) = Pr(Xi = xi) and Ri(zi) = Pr(Zi = zi) are the marginal distributions. Out of
all the distributions that can be written down in this factorized form, the closest distribution
to the original joint distribution is found by minimizing the KL divergence [11, 12]. For our
BCRF formulation, this results in the iterative algorithm detailed in Algorithm 1.

Algorithm 1 Inference on Bipartite CRF

1: Qi(l) := softmaxi(−φi(l)) and Ri(t) := softmaxi(−ψi(t)) . Initialization
2: while not converged do
3: Q′i(l)−= φi(l) . Update due to the first term
4: Q′i(l)−= ∑l′∈L

(
µ(l, l′)∑ j 6=i SimΦ(i, j)Q j(l′)

)
. Update due to the second term

5: R′i(t)−= ψi(t) . Update due to the third term
6: R′i(t)−= ∑t ′∈T

(
[t 6= t ′]∑ j 6=i SimΨ(i, j)R j(t ′)

)
. Update due to the fourth term

7: Q′i(l)−= ∑t∈T

(
f (l,class(t))Ri(t)

)
8: R′i(t)−= ∑l∈L

(
f (l,class(t))Qi(l)

)
. Updates due to the fifth term

9: Q′i(l)−= ∑t∈T
(

f (l,class(t)) ∑ j 6=i SimΩ(i, j)R j(t ′)
)

10: R′i(t)−= ∑l∈L
(

f (l,class(t)) ∑ j 6=i SimΨ(i, j)Q j(l′)
)

. Updates due to the sixth
term

11: Qi(l) := softmaxi

(
Q′i(l)

)
and Ri(t) := softmaxi

(
R′i(t)

)
. Normalization

12: end while

To make our model flexible, we deliberately include a number of parameters in the BCRF
model, which we automatically learn from the training data. More specifically, the BCRF
model has the following parameters:

1. Weight multipliers for different energy terms: each term in Eq. (2) is multiplied with
a weight parameter, which decides the relative strength of the term. This parame-
terization helps learn the optimal combination of different energies in the CRF. For
example, if the initial semantic segmentation model has better accuracy than the in-
stance segmentation model, the φ unary energy might be weighted more than the ψ

unary energy.
2. Parameters for similarity functions: Each similarity function SimX (i, j) of the form

shown in Eq. (5) has its own parameters. These learn the relative strength of spatial
and appearance consistency of the panoptic segmentation.

3. Label compatibility matrices: The two functions µ(., .) and η(., .) are initialized to
have a zero cost for a pair of identical labels and a fixed cost for any combination
of two different labels. They are then given the freedom to automatically learn the
relative penalty strengths for different label combinations.
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Figure 2: Convergence of BCRF Inference
The KL divergence is plotted against the num-
ber of iterations. We pick 20 random images
from the Pascal VOC validation set and aver-
age the KL divergence for each iteration across
these images. It can be seen that the KL di-
vergence measure, and therefore the inference
algorithm, converges within a few iterations.

Table 2: Results on Pascal VOC Dataset
Our baseline uses DeepLab-v3 and Mask-RCNN
followed by combination using the generic
method outlined in [10]. CRF only corresponds
to setting the BCRF cross-potential terms to zero
while BCRF is our complete network.

Method PQ SQ RQ
DeeperLab [27] 67.35 - -
Ours (baseline) 70.50 88.65 78.83

Ours (CRF only) 67.72 87.62 76.48
Ours (BCRF) 71.76 89.63 79.33

6 Experiments
In this section, we first show the convergence of inference for BCRF followed by how end-
to-end training is performed for a deep network with BCRF. The usefulness of BCRF module
is then established through experiments on public datasets. The PQ, RQ, and SQ metrics as
defined in [10] are used for all experiments.

6.1 Convergence of Inference
It is difficult to provide a theoretical convergence guarantee for mean field algorithms with
parallel updates [11, 23]. We therefore provide empirical evidence by estimating the KL di-
vergence between the original joint distribution and the factorized distribution (see Eq. (10)),
at the end of each iteration in Algorithm 1. Note that this KL divergence can be estimated
up to a constant using the method described in [13]. Our experimental results are shown in
Fig. 2. We also note that visual results do not change after about 5 iterations.

6.2 BCRF in a Deep Network
In [29], authors show that, in the semantic segmentation setting, mean field inference of a
CRF with Gaussian pairwise potentials can be formulated as a Recurrent Neural Network
(RNN). Since our BCRF uses an iterative mean field algorithm of similar nature, it is readily
adaptable into this RNN based inference described in [29]. This formulation allows auto-
matic optimization of the BCRF parameters described in Section 5, using backpropagation
and a gradient descent algorithm. Accordingly, we build a PyTorch implementation of BCRF
which is used in our experiments. Further, given a suitable loss function for panoptic seg-
mentation, the differentials with respect to this loss can be passed on to both the semantic
branch and the instance branch to optimize their parameters, and subsequently, the feature
extractor CNN’s parameters, thus jointly training the entire network end-to-end.

6.3 Results on Pascal VOC Dataset
In this experiment we use the architecture shown in Figure 1 with generic instance and se-
mantic segmentation networks, initialize the BCRF parameters with ones obtained through
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PQ SQ RQ
Category Baseline BCRF Baseline BCRF Baseline BCRF

All 41.4 41.7 78.3 79.1 50.8 51.1
Things 47.4 47.9 80.4 82.1 57.3 57.7
Stuff 32.5 33.2 75.1 77.1 40.9 41.6

Table 3: Results on COCO dataset. Comparison of mAP values against a baseline using [9].

Method Backbone Params PQ PQst PQst

OCFusion [14] ResNetXt-50 - 41.9 49.9 29.9
Panoptic FPN [9] ResNet - 50 - 39.0 45.9 28.7
Panoptic-DeepLab [5] Xception-71 46.7M 41.2 44.9 35.7
Axial-DeepLab [24] Axial-ResNet-L 44.9M 43.9 48.6 36.8
Panoptic FPN with BCRF ResNet - 50 46.0M 41.7 47.9 33.2

Table 4: Comparison with the state-of-the-art for COCO dataset. We compare against other
similar sized networks. Panoptic FPN with BCRF (last row) is our work.

a coarse grid search, and initialize the compatibility matrices as described in Section 5. Dur-
ing both training and inference we used 5 mean-field iterations for BCRF. At the output, we
calculate the loss function as a summation of two components: the usual pixel-wise cate-
gorical cross entropy loss for the semantic component [18] and the cross entropy loss with
"matched" ground truth [1] for the instance component. We used full-image training with
batch size 1, SGD with learning rate 0.0007, momentum 0.99, and run just 10 epochs to
obtain the following results. In Table 2, we report the summary of the quantitative results
for the PASCAL VOC validation dataset. Setting cross-potential terms to zero results in a
degradation, which highlights the contribution of the BCRF module in fusing two informa-
tion sources. Qualitative results are shown in Table 1.

6.4 Results on the COCO Dataset
We experiment on the COCO validation set by adding BCRF on top of Panoptic FPN [9]
and training using default parameters and panoptic loss functions in its Detectron2 [25]
implementation. The quantitative results are reported in Table 4.

6.5 Results on the Cityscapes Dataset
To evaluate the usefulness of BCRF without efforts for thorough end-to-end training, we sim-
ply plug in BCRF on an existing pre-trained model, followed by fine-tuning on a small subset
of train images. We use a COCO pre-trained Panoptic FPN [9], and run two experiments
(with and without BCRF) training on 200 randomly selected images from the Cityscapes
train split. Quantitative results for the entire validation set obtained from this experiment are
reported in Table 5.

PQ SQ RQ
Category Baseline BCRF Baseline BCRF Baseline BCRF

All 49.810 50.299 77.271 77.726 62.088 62.412
Things 46.247 46.547 77.819 78.555 59.205 59.002
Stuff 52.402 53.028 76.872 77.122 64.186 64.892

Table 5: Results on Cityscapes dataset. Panoptic segmentation results on the validation set.
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Figure 3: Visualisation on COCO Dataset. Columns left to right: original image, semantic output
before BCRF, instance output before BCRF, semantic output after BCRF, instance output after BCRF.

6.6 Cross Potentials
Our BCRF module allows the network to learn complex class-aware relationships between
the semantic and instance features belonging to each class. While there is room for it to
learn a simple logical relationship, the variation of parameters learnt in Figure 4 verifies that
a complex class-specific mapping has been learned by the network. For example, the high
value for dining table to sofa and low value for boat to dining table (Figure 4 left) corresponds
to the likelihood of finding such objects together in the natural image distribution in Pascal
dataset, acting as an attention mechanism on regions of the image.

Figure 4: Heatmap illustrating inter-class dependencies learned by BCRF. It shows how important
logits belonging to each class in one branch are for predicting each class in the other branch. Instance
classes on x-axis and semantic on y-axis. Note that a logarithmic scale has been used for the legend.

7 Conclusion
We proposed a probabilistic graphical model based framework for panoptic segmentation.
Our BCRF model, containing two different kinds of random variables, is capable of opti-
mally combining the predictions from a semantic segmentation model and an instance seg-
mentation model to obtain a good panoptic segmentation. We use different energy functions
in our BCRF to encourage the spatial, appearance, and instance-semantic consistency of the
panoptic segmentation. An iterative mean field algorithm is then used to find the panoptic
labeling that approximately maximizes the conditional probability of the labeling given the
image. We further show that the proposed BCRF framework can be used as an embedded
module within a deep neural network to obtain superior results in panoptic segmentation.
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