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Abstract
Deep convolutional neural networks have emerged as strong candidates for a model

of human vision, often outperforming competing models on both computer vision bench-
marks and computational neuroscience benchmarks of neural response correspondence.
The design of these models has undergone several refinements in recent years drawing
on both statistical and cognitive insights and, in the process, shown increasing correspon-
dence to primate visual processing representations. However, their training methodology
still remains in contrast to the process of primate visual development, and we believe
that it can benefit from being more aligned with this natural process. Primate visual de-
velopment is characterized by low visual acuity and colour sensitivity as well as high
plasticity and neuronal growth in the first year of infancy, prior to the development of
specific visual-cognitive functions such as visual object recognition. In this work, we
investigate the synergy between the gradual variation in the distribution of visual in-
put and the concurrent growth of a statistical model of vision on the task of large-scale
object classification, and discuss how it may yield better approaches to training deep
convolutional neural networks. The experiments we performed across multiple object
classification benchmarks indicate that a growing statistical model trained with a gradu-
ally varying visual input distribution converges to a better generalization at a faster rate
than traditional, more static training setups.

1 Introduction
The first models of convolutional neural networks [12] drew inspiration from the work of
Hubel and Wiesel [15], introducing a computational architecture for visual processing based
on the properties of the simple and complex cells found in the cat’s visual cortex. Through
successive refinements in the model architecture [13, 14, 21], appropriate application of
training methods [19, 23], and collection of large-scale datasets [7], researchers have devel-
oped models that not only show human-level performance in object classification, but also
serve as tools to study and predict behavioural and neural responses in computational neu-
roscience [26]. While recent work has sought to refine the model in terms of its architecture
to address specific limitations such as few shot learning [11] or compactness for closer cor-
respondence to the human ventral pathway [20], the current training methodology of these
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models can be further improved. The conventional training approach for convolutional neu-
ral networks (CNNs) assumes a fixed statistical network in terms of capacity and architecture
receiving a mostly constant visual input distribution throughout training1. Networks for spe-
cific tasks such as object classification are trained to minimize a classification loss through
backpropagation until convergence. While such a training setup has found great success in
computer vision, it often requires a large number of training iterations for convergence, and
may benefit from being more aligned to the process of visual development in primate infants.

The study of infant visual development has its roots in the work of Fantz [10], who
published key findings on a systematic approach to identify and measure the preferential
attention to visual stimuli in human infants. This challenged the common assumption at
that time of infants being congenitally blind, and piqued interest in the study of primate
visual development. While a number of remarkable findings characterizing visual develop-
ment have been published since then, in this work, we specifically study two relevant aspects
when training statistical models of vision. First, it is established that human infants demon-
strate low color sensitivity and poor spatial resolution in processing visual input during the
first year of infancy [17]. Thus, the input distribution upon which a developing infant ac-
quires visual abilities is much coarser compared to the distribution processed by adults, and
it constantly gets refined until about the first year of infancy. Hence, the development of
higher-order visual functions such as object recognition, stereopsis, and figure-ground seg-
regation is postulated to emerge at older ages, once basic visual input processing abilities are
sufficiently mature [4, 17].

While this might be a result of the physiological maturation of the infant’s retina and
photoreceptor development, it is of our interest to identify the possible role that a gradu-
ally refining visual input distribution may have on the concurrently developing visual cortex,
bringing us to our second relevant aspect of visual development – network growth. Devel-
opmental researchers recognize the high rate of synaptic growth in the form of connections
or myelination in the first year of growth and the ability of the cortex to wire itself during
early development in primate infants [1, 5]. Specifically for the visual cortex, the process of
wiring is known to be plastic and dependent on the nature of visual experience, although the
interaction between cortical wiring and visual experience remains not well understood [22].
We thus recognize the growth of the visual cortex in early infancy as the second salient as-
pect of infant visual development relevant to the training of a statistical model for vision. In
this work, we do not delve into the physiological aspects of visual cortex development, and
regard growth as only being the addition of parameters to a statistical model of post-retinal
visual processing.

Based on these two aspects of primate infant visual development discussed above, we
aim to investigate a training setup wherein a growing statistical model of vision receives
a gradually refining visual input distribution, and compare its performance to other setups
wherein either the visual input or the statistical model is fully formed. Through appropriate
experiments, we also aim to determine the role that each of these aspects may play in aiding
visual learning. Previous research investigating the role of growth in learning includes El-
man’s work [9] in the domain of language acquisition. He showed how gradually increasing
the window size of a simple recurrent network [8] during training, analogous to the increase
in working memory and attention span in child development, allows the network to learn
the task of processing complex sentences with correct verb agreement prediction signifi-
cantly better than a static, fully formed network. Elman hypothesized that the relatively slow

1Here, "mostly" indicates the possible usage of data augmentation techniques.
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process of development in humans, which is often seen in a negative light, may in fact be
‘the enabling conditions which allow learning to be most effective’ [9]. Our work hopes to
uncover a similar finding in the context of visual learning – whether having an originally
coarse visual representation that refines over time may, in fact, aid learning when taken in
consideration with a concurrently growing statistical model of post-retinal visual process-
ing. In the next sections, we describe the methodology of our approach that includes the
computational methods for implementing model growth and refinement in the visual input
distribution, followed by experiment details and a discussion of corresponding results.

2 Methodology
We aim to implement a statistical model of vision that grows in parameters during training
with the concurrent refinement of the visual input distribution in terms of spatial resolution,
saturation and contrast. While primate infant visual development is most likely to be a
continuous process depending on physiological maturation and nature of visual experience,
we take inspiration from Elman [9] and propose to train the network in a discrete number
of stages. In each of these stages, we grow the statistical network and vary the visual input
distribution in accordance to stage specific settings (see Figure 1). It is to note that while our
CNN training strategy draws inspiration from cortical development in primate infants, it is
not intended to be physiologically equivalent at the neural level.

2.1 Network growth resembling cortical growth
The notion of growth in CNN models of vision has been captured in previous approaches
such as greedy layer-wise training [3] where new layers are added to an existing network
in an unsupervised or a supervised setup. Recent work has also investigated how growing
model capacity in terms of network depth or width during training or fine-tuning can lead to
better classification and transfer performance [2, 25].

For our work, we adopt a similar approach to greedy layer-wise addition in a supervised
setup, where we increase the depth of the network by adding a new block of convolutional
layers at each stage. Formally, the architectureAs at stage s∈ {1..,S} appends a new feature
extraction moduleFs to the prior architecture at stage s−1. The feature extraction moduleFs
consists of a sequence of convolutional blocks, each with an input down-sampling operator
Ps and a sequence of convolutional operators W s

Θ
= {Wθk} (k denoting the convolutional

layer depth in a block comprising j convolutional operations followed by non-linearity). The
classifier module C comprises of a single linear layer Wc followed by softmax σ to output
the predicted class distribution z over n classes. Hence, the architecture at stage s denoted by
As is given by:

As = Fs(·,W s
Θ)◦Ps ◦As−1 (1)

z = σ ◦Wc ◦Pc ◦As ∈ Rn (2)

As shown in Equation 1, the system appends the previous stage’s architecture As−1 with
a new convolutional block Fs at each stage. The output of As is downsampled through an
adaptive pooling operator Pc and passed to C (i.e., Wc). The parameters at each stage are
tuned through backpropagation for given iterations. A0 is the initial convolutional block.
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Figure 1: Illustration of our methodology for model growth and visual input refinement in-
tended to simulate infant visual development. Across stages, we progressively refine the
visual input in terms of its contrast, saturation, and resolution, while we grow the model in
depth by adding new convolutional blocks. To enable continuity in learning when transition-
ing across stages, we use a decaying weighted sum of the old and new convolutional block
(as shown for Stage 2) as input to the classification layer that is shared across stages.

While the above setup captures the conception of statistical network growth across stages,
it suffers from discontinuities in learning when transitioning across stages that could effec-
tively increase the number of training iterations to reach convergence besides possibly in-
hibiting generalization performance.

First, when transitioning across stages, if the number of output channels of the previ-
ous convolutional block is different from the new convolutional block, the previous stage
classifier layer is effectively discarded, thereby requiring additional training iterations to re-
initialize besides losing information for the classifier from the previous stage. Hence, in our
work, we adopt the same number of output channels for each convolutional block, and retain
the classifier across stages.

Second, when adding a new convolutional block, merely adding a new convolutional
block in between the old convolutional block and classifier can cause a sudden shift in the
distribution of value of both the input features to the classifier and the backpropagated gra-
dient to the previous stage block. This can lead to a rapid and possibly unstable change in
the previously tuned parameters for both the classifier and the previous stage blocks. To
avoid this, we gradually shift the gradient flow by utilizing a decaying weighted sum of the
activations of the old and new convolutional blocks as the feature extractor output F ′s fed to
the classifier, as shown in:

F ′s = (1−α)∗ (PsFs−1)+α ∗Fs (3)

Although a similar approach was used in the progressive training of GANs [16], in our
implementation α is uniformly scaled from 0 to 1 for only an initial preset number of training
iterations for every new stage. Future work could also investigate a greedy strategy in the
variation of α wherein it is not uniformly scaled per training iteration.
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Figure 2: Stage-wise development of the receptive field by applying masks on 3×3 convo-
lution filters across three stages of growth. The effect of masking is shown for selected input
convolution filters (12 and 55) of a pretrained Resnet50. At the first stage, edges are more
coarse- for example, the overall body sketch is less well formed for filter 12 and the nose is
not discriminated for filter 55 in comparison to later stages.

2.2 Refining visual input distribution resembling retinal growth

In relation to visual input processing and development in infant primates, we study two
factors – spatial resolution and color sensitivity in terms of saturation and contrast. While
refinement of the visual input in primates may be a result of gradual physiological matura-
tion of the retina [17], we do not implement this in our statistical model as part of the current
work, and instead represent changes directly in the visual input. As shown in Figure 1, the
input images are gradually transformed across stages in terms of contrast, saturation and res-
olution. While one may draw a parallel to this process of input refinement as being a data
augmentation technique, the key difference here is that the transformations are applied se-
quentially in a developmentally plausible timeline, providing a course visual representation
at the onset of training and gradually becoming more refined over later stages. For evalua-
tion, we performed additional control experiments wherein the transformations are applied
randomly during training at a similar probability, and did not find the performance to be
equivalent. A more detailed illustration of the visual input refinement process is provided in
the supplemental materials.

Although the above approach to input refinement mimics the gradual growth of visual
input, it requires setting stage-specific values of the input refinement factors (contrast, sat-
uration and resolution) prior to training and these values may vary across datasets. Hence,
an alternative approach that we investigate to realize visual input refinement is to grow the
receptive field of convolutional filters incrementally across stages. Specifically, given a NxN
convolutional kernel, we apply a maskM of same size at each stage that selectively activates
filter values as shown in Figure 2 for a 3x3 filter. We use a simple formulation that allows us
to grow the receptive field in 3 stages. At the first stage,M only activates the centre element
(when N is odd) or the middle two principle diagonal elements (when N is even) of the filter.
At the second stage, M activates alternating element indices, while the third stage corre-
sponds to the fully grown receptive field whereinM is an all-ones matrix. This strategy is
inspired by the gradual development of rods and cones and retinal ganglion cells in the retina
and resembles the incremental development of high resolution visual processing.

Citation
Citation
{Kiorpes} 2016



6 JAISWAL, CHOI, & FERNANDO: IMITATING VISUAL DEVELOPMENT IN CNNS

3 Experiments
In this work, we perform two primary experiments. First, we study the performance of a
block-style CNN architecture as introduced in Section 2.1 in four setups each varying in
refinement of the visual input distribution or growth of the statistical network across stages.
We then perform relevant ablation experiments to determine the role of each input refinement
factor (saturation, contrast and resolution) and the usage of the decaying weighted sum to
gradually transition across stages. Second, we investigate the impact of training conventional
variants of CNN models of vision in stages wherein only the visual input distribution is
gradually refined across stages, and compare performance to the conventional model training
approach. We then analyze the performance when the receptive field is grown over stages,
and as before, perform ablation analysis to determine the role of input refinement factors.

3.1 Datasets and training setup

We perform experiments on the CIFAR10, CIFAR100 [18] and a subset of the ImageNet
dataset [7] comprising of 200 classes (hereafter referred to as ImageNetH200) selected by
traversing the ImageNet (originally WordNet) synset hierarchy. A reduced subset for Ima-
geNet is used due to computational limitations, and we expect our results to scale on the full
1000-class dataset. The CIFAR10 and CIFAR100 datasets comprise of 32x32 RGB images
with 50k training and 10k test samples. CIFAR10 comprises of 10 labels whereas CIFAR100
comprises of 100 classes. ImageNetH200 comprises of 256x256 RGB images with approx-
imately 1300 training samples per class. Standard data augmentation techniques of random
cropping and random horizontal flips with probability of 0.5 were used for training. Specifi-
cally for ImageNetH200, training is done on 224x224 random crop while evaluation is done
on the centre crop. Experiment details and hyperparameter settings are provided in the sup-
plemental materials. Code to recreate experiments is available at the following link.

3.2 Evaluating growing networks with gradually refining inputs

In this experiment, we evaluate the training methodology for block style CNN models intro-
duced in Section 2.1, wherein across stages, the visual input distribution is progressively re-
fined while the model is grown in parameters. We compare the learning performance against
3 alternate training setups differing in either the visual input distribution being fully formed
or the model being static throughout training. Our hypothesis is that having an initially
small network and a coarse visual input that both grow during training may enable stronger
hierarchical learning allowing the model to first discriminate global visual patterns before
proceeding to finer patterns, and thereby aid learning performance. The model is based on
the VGG-13 architecture [24] with batch normalization comprising of 5 convolutional blocks
but with all output channels set to 256, and a single fully-connected classification layer. For
stage-wise training, we train the model over 5 stages and choose stage-specific parameters to
be reflective of the documented infant visual development trajectory [17] as shown in Table
1. We report results on CIFAR10 and CIFAR100 for this experiment.

Do growing models generalize better and faster?
As shown in Table 2, we find that the developmentally inspired setup wherein the model is
gradually grown along with a refining input distribution across stages outperforms the base-
line approach wherein the model and input are both static throughout training. Specifically,
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CIFAR10 and CIFAR100
Stage number 1 2 3 4 5
Total epochs 5 5 10 15 315
Stage transition epochs - 2 4 6 20
Saturation ratio 0.00 0.33 0.67 0.90 1.00
Contrast ratio 0.50 0.60 0.80 0.90 1.00
Resolution 24 26 28 32 32

Table 1: Stage-specific parameters for stage-wise training on CIFAR datasets.

Model CIFAR10 CIFAR100
Static model, Static input (baseline) 93.76± 0.09 72.53± 0.10
Static model, Refining input 93.55± 0.10 71.91± 0.13
Growing model, Static input 94.10± 0.11 73.92± 0.22
Growing model, Refining input 94.16± 0.13 74.01± 0.24
Growing model (non-gradual), Static input 93.90±0.11 73.42± 0.11
Growing model (non-gradual), Refining input 93.64±0.15 73.28± 0.13

Table 2: Top-1 test accuracies (%) of a block style CNN architecture in 4 different training
setups for CIFAR10 and CIFAR100 reported over 5 trials. Setups with a growing model have
a better convergence performance across both datasets, even though all setups have the same
model size at the final stage. Additionally, gradually growing the models with a decaying
weighted sum performs better than directly adding a new block (non-gradual).

we find an improvement of 0.40% and 1.48% in test accuracy on CIFAR10 and CIFAR100
respectively. Additionally, the developmentally inspired setup has a faster rate of learning,
reaching the best accuracy of the baseline approach in 156 epochs in comparison to the base-
line’s 241 for CIFAR10 (a relative speedup of 35.27%) and 151 epochs in comparison to the
baseline’s 237 for CIFAR100 (a relative speedup of 36.28%). These results are significant
considering both setups had the same model architecture and size at the last stage of training.

It is interesting to analyze the difference in impact of applying a refining input distribu-
tion on a static fully formed model and a growing model. When the model is static, training
with a refining input distribution degrades performance in comparison to a static distribution
with a drop in test accuracy of 0.21% and 0.62% for CIFAR10 and CIFAR100 respectively.
However, the same is not true when the model is gradually grown, wherein applying a re-
fining input results in an improvement of 0.06% (94.10% vs 94.16%) and 0.09% (73.92%
vs 74.01%) for respective datasets. This is interesting from a statistical learning perspective.
Given a static fully formed model at the onset of training, providing an initially coarse in-
put distribution might induce spurious generalizations due to model over-parameterization
at early stages of training. This may provide an incorrect initialization for later stages of
training wherein the input is more refined, and thereby lead to an overall worse optimum. In
contrast, given an initially small model (in parameters) and a coarse input distribution, the
model may require lesser iterations for parameterization at earlier stages, and with concur-
rent growth of both the model and the input may converge to a better generalization.

Importance of gradual growth vs non-gradual growth of networks
The importance of selecting an appropriate model growth mechanism is reflected in the per-
formance difference between non-gradual growth (wherein a new convolutional block is di-
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Model CIFAR10 CIFAR100
Static model, Static input (baseline) 93.76± 0.09 72.53± 0.10
Growing model, Refining input 94.16± 0.13 74.01± 0.24
Growing model, Refining Input = [Sat,Con] 93.85± 0.11 73.55±0.18
Growing model, Refining Input = [Sat,Res] 94.10± 0.09 73.45±0.16
Growing model, Refining Input = [Con,Res] 94.07± 0.07 73.52±0.11

Table 3: Comparison of "Growing model and Refining input" setup when one of the three
input refinement factors- saturation (Sat), contrast (Con) and resolution (Res)- is not altered
during training. Removing any one of the factors leads to decline in performance.

rectly added to the existing architecture) and gradual growth (wherein a decaying weighted
sum is utilized). The difference is especially pronounced in the refining input setup, wherein
non-gradual addition drops accuracy from 94.16% to 93.64% (below baseline performance)
in the case of CIFAR10, and 74.01% to 73.28% for CIFAR100.

Ablation analysis of visual input refinement factors
To quantify the role of each visual input refinement factor, we perform ablation experiments
in the "Growing model and Refining input" setup. Specifically, we "deactivate" (keep fully
formed) one of saturation, contrast or resolution, and compare the performance to the orig-
inal setup. As shown in Table 3, we find that removing even one of the input refinement
factors leads to a drop in generalization performance, indicating that all three factors may
contribute to better convergence. For CIFAR100, the performance drop is similar for all three
factors, with removal of contrast the most pronounced (0.56%), whereas for CIFAR10, the
performance drop is less significant, with removal of resolution most pronounced (0.31%).

3.3 Impact of training popular CNN models with a refining input
distribution applied in stages

In this experiment, we evaluate a training methodology for popular CNN models wherein
the visual input distribution is progressively refined across stages from an initially coarse
representation to a fully formed representation in terms of saturation, contrast and resolu-
tion. Here we do not consider statistical network growth across stages and study 3 CNN
architectures – ResNet, DenseNet and VGG. As before, we trained the model over 5 stages
and chose similar stage parameters as shown in Table 4. The results are reported in Table 5.

CIFAR10 and CIFAR100 ImageNetH200
Stage number 1 2 3 4 5 1 2 3 4 5
Total epochs 2 3 5 10 330 2 2 2 4 90
Saturation ratio 0.00 0.25 0.5 0.75 1.00 0.00 0.25 0.5 0.75 1.00
Contrast ratio 0.50 0.60 0.80 0.90 1.00 0.50 0.60 0.80 0.90 1.00
Resolution 24 26 28 30 32 184 194 204 214 224

Table 4: Stage parameters for training on CIFAR10/100 and ImageNetH200 datasets.

We find that training ResNet models (ResNet18 and ResNet50) with a gradually refining
input distribution leads to higher validation accuracy across all three datasets. Specifically
for ResNet50, we find an increment of 1.7% on CIFAR100 and about 1.0% for CIFAR10
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Model CIFAR10 CIFAR100 ImageNetH200
ResNet18 (Static input) 93.50 ± 0.10 72.68 ± 0.22 73.37
ResNet18 (Refining input) 94.20 ± 0.25 73.93 ± 0.18 74.16
ResNet50 (Static input) 93.62 ± 0.23 73.05 ± 1.01 76.80
ResNet50 (Refining input) 94.64 ± 0.21 74.74 ± 0.95 77.76
VGG13bn (Static input) 92.84 ± 0.10 70.98 ± 0.31 74.46
VGG13bn (Refining input) 92.55 ± 0.12 70.26 ± 0.28 74.02
DenseNet121 (Static input) 94.93 ± 0.14 76.33± 0.27 77.60
DenseNet121 (Refining input) 95.11 ± 0.18 76.48± 0.39 77.83

Table 5: Top-1 test (CIFAR) and validation (ImageNetH200) accuracies (%) for models
based on different training strategies. ResNet models respond most favorably to a refining
input distribution across all 3 datasets.

Model CIFAR10 CIFAR100 ImageNetH200
ResNet50 (Static input) 93.62 ± 0.23 73.05 ± 1.01 76.80
ResNet50 (Refining input=[Res,Sat,Con]) 94.64 ± 0.21 74.74 ± 0.95 77.76
ResNet50 (Refining input=[Sat,Con]) 94.08 ± 0.10 73.62 ± 1.61 76.83
ResNet50 (Refining input=[Res,Con]) 94.60 ± 0.12 74.07 ± 1.29 75.74
ResNet50 (Refining input=[Res,Sat]) 94.55 ± 0.08 73.93 ± 1.01 77.17
ResNet50 (Receptive field growth) 94.50 ± 0.18 73.89 ± 0.64 75.40

Table 6: ResNet50 input refinement ablation study and receptive field growth results. All
three visual input refinement factors contribute to learning. Growing the receptive field in
stages performs better than static input setups for CIFAR10/100 without requiring stage pa-
rameter settings that can vary across datasets.

and ImageNetH200 respectively. However, we do not see similar improvement for VGG13.
Based on the results, we conjecture that the usage of skip connections may enable ResNet
models to implicitly capture statistical growth across stages, and thereby respond better to a
gradual refinement in the input distribution. To better understand how learning differs when
trained with a gradually refining input distribution, we visualize filters induced at salient
training points, and provide comparative analysis in supplemental materials.

Analysis of refining input distribution and receptive field growth on ResNet50
As done before, we first perform an ablation analysis of the input refinement factors by
deactivating one of the input refinement factors for ResNet50 stage-wise training. Second,
we evaluate whether growing the receptive field across three stages can serve as an alternative
strategy for capturing gradual visual input refinement.

As shown in Table 6, we find that across all three datasets, removing even one of the
input refinement factors leads to a drop in generalization performance. For ImageNetH200,
keeping saturation unaltered leads to the highest decline from 77.76% to 75.74% (performing
below static input setup). Gradually growing the receptive field performs better than static
input setups with an improvement of about 0.9% for CIFAR 10 and CIFAR100 and does not
require setting dataset specific stage parameters. However, for ImageNetH200, wherein the
input convolutional layer comprises of 7x7 filters (which is 3x3 for CIFAR10/100), applying
masking at earlier stages may result in extreme information loss which could inhibit learning
at future stages and thereby result in an overall lower performance.
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4 Conclusion
In this work, we identified two aspects of visual development in primate infants relevant
to the training of CNNs – a gradually refining input visual distribution and a concurrently
developing statistical network. Our first experiment analyzed the performance of a block-
style CNN architecture when it is gradually grown in stages during training along with the
progressive refinement of the visual input distribution. We found that such a training setup
attains a better generalization at a faster rate than alternate setups, pointing to a possible
synergy between the process of input refinement and statistical network growth. In our
second experiment, we evaluated the impact of training conventional CNN variants with a
refining visual input distribution applied in stages, and found that it significantly benefits
learning in ResNet models, besides some improvements in DenseNet models.

For future work, we wish to draw on physiological insights in visual development such as
the formation of top-down feedback in the visual cortex [6] to inform computational mech-
anisms of network growth, and further investigate other approaches to model retinal and
photoreceptor growth. We also hope to study the impact of the stage-wise training approach
in the context of few-shot and contrastive learning techniques and extend our work to finer
visual tasks such as object recognition and semantic segmentation.
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