
PEIKE LI, ET AL: WHEN HUMANS MEET MACHINES 1

When Humans Meet Machines:
Towards Efficient Segmentation Networks

Peike Li
peike.li@student.uts.edu.au

Xuanyi Dong
xuanyi.dong@student.uts.edu.au

Xin Yu
xin.yu@uts.edu.au

Yi Yang
yi.yang@uts.edu.au

ReLER Lab
Australian Artificial Intelligence Institute
University of Technology Sydney
Sydney, AUSTRALIA

Abstract

In this paper, we investigate how to achieve a high-performance yet lightweight
segmentation network for real-time applications. By analyzing three typical segmen-
tation networks, we observe that the segmentation backbones and heads are often imbal-
anced which restricts network efficiency. Thus, we develop a lightweight context fusion
(LCF) module and a lightweight global enhancement (LGE) module to construct our
lightweight segmentation head. Specifically, LCF fuses multi-resolution features to cap-
ture image details and LGE is designed to enhance feature representations. In this man-
ner, our lightweight head facilities network efficiency and significantly reduces network
parameters. Furthermore, we design a Multi-Resolution Macro Segmentation structure
(MRMS) to incorporate human knowledge into our network architecture composition.
Given the resource-aware constraint (e.g., latency time), we optimize our network with
network architecture search while considering the relationships among atomic operators,
network depth and feature resolution in segmentation tasks. Since MRMS embeds the
segmentation-specific knowledge, it also provides a better architecture search space. Our
Human-Machine collaboratively designed Segmentation network (HMSeg) achieves bet-
ter performance and faster inference speed. Experiments demonstrate that our network
achieves 71.4% mean intersection over union (mIOU) on Cityscapes dataset with only
0.7M parameters at 172.4 FPS on NVIDIA GTX1080Ti.

1 Introduction

Semantic segmentation is broadly applied in the fields of autonomous driving [19], video
analysis [11], and virtual reality [17]. Since many applications require segmentation net-
works to run in real time, it is desirable to design an efficient network. Moreover, as the
development of portable intelligence devices, deploying efficient networks to those devices
also becomes highly demanded. Compared with high-end GPUs, those devices often have
limited computational resources and thus require lightweight networks.

c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Li, Wei, and Yang} 2020{}

Citation
Citation
{Feng, Yang, Li, Wei, and Yang} 2019{}

Citation
Citation
{Li, Xu, Wei, and Yang} 2019{}

2 PEIKE LI, ET AL: WHEN HUMANS MEET MACHINES

Previous methods manually design convolutional neural networks (CNN) [37, 39] to
achieve real-time segmentation models. In general, these manually designed CNN-based
segmentation networks are divided into two main components, i.e., a backbone encoder and
a segmentation decoder head. Previous works usually employ lightweight classification net-
works as backbones to reduce computational cost. However, this might lead to weak local-
ization ability since segmentation targets the pixel-level classification rather than yielding an
image-level prediction [10].

Recent works [4, 38] have been proposed to automatically choose a segmentation net-
work from several architecture candidates. However, those methods highly rely on the neural
architecture search (NAS) to select candidates. The architecture candidates are mainly built
based on image classification macro-structure and do not take task-specific characteristics
into account. In addition, those methods oversight the resource-aware constraints [4] or re-
strict them implicitly [38]. Therefore, previous works are not suitable to obtain a lightweight
high-accuracy segmentation network.

In this work, we observe some key factors for designing an efficient segmentation net-
work:

The segmentation backbone and head are often imbalanced. As illustrated in Fig-
ure 1, we analyze three typical efficient segmentation networks. Although those three meth-
ods all employ lightweight backbones to achieve real-time performance, their segmentation
heads still remain heavy in terms of both parameter size and computational cost. This im-
balance between the backbone and segmentation head is often overlooked in previous meth-
ods, preventing them from attaining efficient segmentation networks. Thus, designing a
lightweight segmentation head is desirable to achieve an efficient segmentation network. To-
wards this goal, we not only employ a lightweight backbone, but also propose a lightweight
segmentation head. To be specific, we introduce two extremely efficient modules in the seg-
mentation head, i.e., the Lightweight Context Fusion (LCF) module and the Lightweight
Global Enhancement (LGE) module. Our LCF is designed to preserve image detailed spatial
information via fusing different multi-resolution branch features. Our LGEM is developed
to capture semantic context information by highlighting class-specific features. By doing so,
our segmentation head can segment class-wise details more accurately.

The computational cost of a layer grows quadratically as feature resolution or chan-
nel numbers increase. We profile the GPU running time of different layers with different
resolution in Figure 2. When the resolution of a layer becomes larger, the computational
cost increases quadratically as seen in Figure 2. Similarly, increasing the channel numbers
(e.g., from stage 4 to stage 5) with the same feature resolution also leads to quadratical
growth of computational cost. Moreover, we observe that most of the computational cost
lies in the layers with large input resolution (stage 1) and large channel numbers (stage 4
and 5). In order to improve the inference efficiency, existing methods either restrict input
resolutions [25, 30, 39] or reduce the channel numbers [1, 28, 39]. Although inference speed
has improved to some extent, these methods sacrifice the spatial detail information or the
potential capacity, leading to performance degradation. To pursue efficiency and effective-
ness simultaneously, we design a Multi-Resolution Macro Segmentation (MRMS) structure
to balance the architecture design of feature resolutions and channel numbers while main-
taining network efficiency and effectiveness. In particular, we adopt our MRMS in different
stages of our network. For instance, we employ more resolution while less channel numbers
to extract low-level features while less resolution and more channels to represent high-level
class-specific information.

As aforementioned, by integrating the human expert knowledge into our network design,

Citation
Citation
{Yu, Wang, Peng, Gao, Yu, and Sang} 2018

Citation
Citation
{Zhao, Qi, Shen, Shi, and Jia} 2018

Citation
Citation
{Feng, Kang, Fan, and Yang} 2019{}

Citation
Citation
{Chen, Collins, Zhu, Papandreou, Zoph, Schroff, Adam, and Shlens} 2018{}

Citation
Citation
{Zhang, Qiu, Liu, Yao, Liu, and Mei} 2019

Citation
Citation
{Chen, Collins, Zhu, Papandreou, Zoph, Schroff, Adam, and Shlens} 2018{}

Citation
Citation
{Zhang, Qiu, Liu, Yao, Liu, and Mei} 2019

Citation
Citation
{Mazzini} 2018

Citation
Citation
{Romera, Alvarez, Bergasa, and Arroyo} 2017

Citation
Citation
{Zhao, Qi, Shen, Shi, and Jia} 2018

Citation
Citation
{Badrinarayanan, Kendall, and Cipolla} 2017

Citation
Citation
{Paszke, Chaurasia, Kim, and Culurciello} 2016

Citation
Citation
{Zhao, Qi, Shen, Shi, and Jia} 2018

PEIKE LI, ET AL: WHEN HUMANS MEET MACHINES 3

Deeplabv3+
MobileNetv2

ICNet BiSeNet
Xception39

0

20

40

60

80

100
Pe

rc
en

t(%
)

Backbone
(FLOPs)
 Head
(FLOPs)
Backbone
(Params)
Head
(Params)

Figure 1: Computational cost (FLOPs)
and model size (Params) for real-time seg-
mentation methods, i.e., Deeplabv3+ (Mo-
bileNetV2) [5], ICNet [39], BiSeNet [37].

0 15 30 45 60 75 90 105 120 135 150
Layer Index

0

2

4

6

8

Pr
of

ile
 ti

m
e(

m
s)

Stage 4

Stage 5
Segmentation
Head

Full Resolution (1024x2048)
Half Resoltuion (512x1024)

Figure 2: GPU profile time of Deeplabv3+
(MobilNetv2) on Cityscapes full resolution
and half resolution inputs.

we propose MRMS to achieve a real-time semantic segmentation as illustrated in Figure 3.
Although our hand-crafted network has incorporated human expert knowledge [10], the net-
work might be a sub-optimal solution to the trade-off between the accuracy and inference
speed. Moreover, it is challenging and time-consuming to manually optimize the topology
under a reference resource-aware constraint, e.g., satisfying a latency time. We leverage ma-
chine automatically search to optimize our network architecture within human prior based
network design space.

Furthermore, our human knowledge based network architecture space is more flexible
compared to NAS based segmentation methods [4, 26]. Since we observe that the feature
resolution plays a key role in the semantic segmentation, we optimize along the dimension
of the resolution. Specifically, our approach allows a network to be optimized with respect
to atomic operator in each layer, the depth and the feature resolution for each branch with an
explicit resource-aware constraint. Our human-machine collaboratively designed Segmen-
tation network (HMSeg) achieves superior segmentation performance and inference speed.
Experiments demonstrate that our network achieves 71.4% mean intersection over union
(mIOU) on Cityscapes with only 0.7M parameters at 172.4 FPS on NVIDIA GTX1080Ti.

2 Related Work
Prior works on designing efficient segmentation networks can be roughly divided into two
categories, i.e., manually designed architecture with human knowledge and machine-driven
architecture optimization.
Hand-crafted Efficient Segmentation Networks. The works [1, 37, 39] designed lightweight
networks from scratch to achieve real-time performance. MobileNetV2 [33] designed an
efficient block by applying depth-wise separable convolutional operations. However, the
network was designed for image classification tasks rather than segmentation tasks. IC-
Net [39] adopted the image cascaded structure to speed up and reduce computational cost.
BiSeNet [37] introduced a shallow spatial branch to process full resolution images while
learning context information by a deep branch. Unlike previous works, our method presents
two lightweight modules (i.e., LFM and LGE) to achieve higher performance while remain-
ing lightweight. We further design the MRMS to better incorporate human knowledge.
Machine-driven Architecture Optimization. Neural Architecture Search (NAS) [8, 9]
is an effective technique to switch the labor-intensive architecture design to an automatic

Citation
Citation
{Chen, Zhu, Papandreou, Schroff, and Adam} 2018{}

Citation
Citation
{Zhao, Qi, Shen, Shi, and Jia} 2018

Citation
Citation
{Yu, Wang, Peng, Gao, Yu, and Sang} 2018

Citation
Citation
{Feng, Kang, Fan, and Yang} 2019{}

Citation
Citation
{Chen, Collins, Zhu, Papandreou, Zoph, Schroff, Adam, and Shlens} 2018{}

Citation
Citation
{Nekrasov, Chen, Shen, and Reid} 2019

Citation
Citation
{Badrinarayanan, Kendall, and Cipolla} 2017

Citation
Citation
{Yu, Wang, Peng, Gao, Yu, and Sang} 2018

Citation
Citation
{Zhao, Qi, Shen, Shi, and Jia} 2018

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018

Citation
Citation
{Zhao, Qi, Shen, Shi, and Jia} 2018

Citation
Citation
{Yu, Wang, Peng, Gao, Yu, and Sang} 2018

Citation
Citation
{Dong and Yang} 2019{}

Citation
Citation
{Dong and Yang} 2019{}

4 PEIKE LI, ET AL: WHEN HUMANS MEET MACHINES

High
Resoltuion

Branch

Medium
Resoltuion

Branch

Low
Resolution

Branch

St
ag

e
1

St
ag

e
2

St
ag

e
3

Lightweight Backbone Lightweight Segmentation Head

LCF

LCF

LCF
Input Image

Fi
xe

d
D

ow
ns

am
pl

e
Sc

al
e=

0.
5

Input Image

Fi
xe

d
D

ow
ns

am
pl

e
Sc

al
e=

0.
5

Input Image

St
ag

e
4

St
ag

e
5

Large Input Tensor

Small Input Tensor

Tr
an

sf
or

m
C

on
v

U
ps

am
pl

e

D
ep

th
w

is
e

C
on

v

Po
in

tw
is

e
C

on
v

Input Tensor

Av
er

ag
e

Po
ol

in
g

C
on

v

Ba
tc

hN
or

m

Si
gm

oi
d

Se
gm

en
ta

tio
n

O
ut

pu
t

Se
gm

en
ta

tio
n

O
ut

pu
t

Se
gm

en
ta

tio
n

O
ut

pu
t

Lightweight Context Fusion (LCF) Module

Lightweight Global Enhancement (LGE) Module

Tr
ai

n
on

ly

LG
E

Figure 3: The architecture of MRMS. Our method instantiates MobileNetV2 as the
lightweight backbone. Starting from the high resolution branch, we step-wisely reuse the
intermediate feature maps and downsample them. The downsampled features are fed to
medium and low resolution branches. We introduce two efficient lightweight modules, i.e.,
LCF and LGE (in the LCF upper branch) to balance our backbone and segmentation head.

machine-driven optimization process. Prior arts [4, 24, 26, 34, 38] have exceeded the perfor-
mance of manually designed networks. DPC [4] and AuxCell [26] searched configuration
of a multi-scale context module while their backbone networks still remained the same as
existing classification networks. However, those might not be suitable for segmentation
tasks. Auto-Deeplab [24] searched a segmentation-specific network composed of a shared
cell structure. These works only focus on segmentation accuracy without considering the
computational cost. Recently, CAS [38] introduced a customized resource-aware constraint
in searching an efficient segmentation network. However, the backbones of previous works
are either fixed or repeat the same searching cell structure. In contrast, our approach allows
each layer to be optimized under resource-aware constraints while taking into account the
relationships among kernel sizes, network depths and feature resolution. Thus, our network
achieves a better trade-off between inference speed and performance.

3 Methodology

3.1 Human-driven Prototype Design
In our human-driven design process, we leverage the expert knowledge to achieve an effi-
cient segmentation network. As illustrated in Figure 3, our MRMS includes a lightweight
backbone and a lightweight segmentation head.
Multi-resolution Lightweight Backbone. Segmentation tasks require a higher localization
ability than classification tasks. Thus, we improve such ability in the following two aspects.
First, we observe that a large receptive field is crucial for encoding long-term relation be-
tween pixels and leveraging context information [18]. Since an efficient backbone (e.g.,
MobileNetV2) is often shallow, we enlarge the receptive field by utilizing the dilated con-
volutions in stage 4 and 5. Second, fusing the low-level features and high-level features is
also critical for efficient segmentation networks. Generally, low-level features contain de-
tailed localization information while high-level features involve more semantic information.
To better aggregate these information while reducing the computational cost, we propose a
multi-resolution macro segmentation structure (see Figure 3).

Citation
Citation
{Chen, Collins, Zhu, Papandreou, Zoph, Schroff, Adam, and Shlens} 2018{}

Citation
Citation
{Liu, Chen, Schroff, Adam, Hua, Yuille, and Fei-Fei} 2019

Citation
Citation
{Nekrasov, Chen, Shen, and Reid} 2019

Citation
Citation
{Shaw, Hunter, Landola, and Sidhu} 2019

Citation
Citation
{Zhang, Qiu, Liu, Yao, Liu, and Mei} 2019

Citation
Citation
{Chen, Collins, Zhu, Papandreou, Zoph, Schroff, Adam, and Shlens} 2018{}

Citation
Citation
{Nekrasov, Chen, Shen, and Reid} 2019

Citation
Citation
{Liu, Chen, Schroff, Adam, Hua, Yuille, and Fei-Fei} 2019

Citation
Citation
{Zhang, Qiu, Liu, Yao, Liu, and Mei} 2019

Citation
Citation
{Li, Pan, Liu, Xu, and Yang} 2020{}

PEIKE LI, ET AL: WHEN HUMANS MEET MACHINES 5

Searchable
Operator Layer Drop Searchable

Operator Layer
Searchable

Operator Layer

St
ag

e
1

St
ag

e
2

St
ag

e
3

St
ag

e
4

St
ag

e
5

Search
for

Depth

Search
for

Operator

Search
for

Resolution

Searchable
Resolution

Layer

Backbone Model

downsample 0.4

downsample 0.5

downsample 0.6

Searchable Resolution Layer

Searchable Operator Layer

Gumbel-Softmax
Sampler

Operator1
� = 1, � = 3

Operator2
� = 3, � = 3

Indentity (optional)

searchable
expansion conv

� searchable
depthwise conv

� searchable
pointwise conv

�

Operator

Input

Input

Output

Output

Searchable
Resolution

Layer

Figure 4: Configuration of architecture optimization space. Our macro-search space
builds upon the backbone in our human-designed network. We aim to optimize the reso-
lution downsampling rate of each branch via a searchable resolution layer, the depth in each
stage, and the types of inverted residual bottleneck [33] via a searchable operator layer.
A layer will be skipped by choosing an identity transformation. In our searchable resolu-
tion and operator layers, only one single path is selected each time by our gumbel-softmax
sampler.

As depicted in Figure 3, we step-wisely share the model weights and reuse the inter-
mediate feature maps. We input a full-size high resolution image to the high resolution
branch (i.e., stage 1, 2 and 3 in backbone). Thus, we are able to discover the detailed spa-
tial information with fine object boundaries. To capture more semantic information [12],
we feed the feature maps to the medium resolution branch (i.e., stage 4) and the low reso-
lution branch (i.e., stage 5). Although the medium and low branch contain more channels,
they only introduce a small computation overhead due to the low feature resolution. Unlike
the image cascade structure [39], our mulit-resolution branch structure shares the weights
among branches as well as reuses the intermediate features to save computational cost. With
this simple yet effective design, our MRMS becomes an efficient architecture for semantic
segmentation.
Lightweight Segmentation Head. The imbalance between the backbone and head (as we
explained in § 1) leads to redundant computational cost and thus prevents from attaining an
efficient segmentation network. To tackle this issue, we design a Lightweight Context Fusion
(LCF) module to aggregate the output features C3,C4,C5 from multi-resolution branches and
the global average pooling feature Cgap from C5, as illustrated in Figure 3. Instead of con-
catenating those features, we add the intermediate features from different resolution branches
to ensure efficiency. With negligible computational cost, we further design the Lightweight
Global Enhancement (LGE) module by adopting a global average pooling to capture global
context as well as applying channel-wise attention to enhance the feature representation.
Taking advantages of depth-wise separable convolutions, our LCF and LGE achieve higher
computational efficiency and model compactness. The details of the segmentation head are
shown in Figure 3.
Intermediate Boosting Strategy. To stabilize the training process and improve the segmen-
tation accuracy, we introduce a boosting training strategy. Our intermediate boosting strategy
can enhance the feature representation learning in the training phase and does not introduce
any extra computation overhead in the inference phase. Specially, we upsample the outputs
Xm and Xl from the medium and low resolution branches as intermediate boosting signals for

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018

Citation
Citation
{Feng, Wu, Fan, Yan, Xu, and Yang} 2020

Citation
Citation
{Zhao, Qi, Shen, Shi, and Jia} 2018

6 PEIKE LI, ET AL: WHEN HUMANS MEET MACHINES

segmentation. Thus, we minimize the total loss L as,

L(X ;θ) = lh(Xh;θ)+ lm(Xm;θ)+ ll(Xl ;θ). (1)

By doing this, we enhance the feature extraction ability of our backbone network even though
it is shallow and lightweight.

3.2 Machine-driven Architecture Optimization
MRMS has incorporated the human expert knowledge. However, accuracy and inference
speed of the network might be sub-optimal. Inspired by the prevailing architecture search
methods [8, 9, 35, 36], we optimize our MRMS framework based on strong human pri-
ors to achieve a hardware resource-aware efficient segmentation network. Considering the
characteristics of semantic segmentation tasks (e.g., resolution often matters), we optimize
different aspects of our backbone model, including the operators in each single layer, the
depth in each stage and the resolution down-sample ratio for each branch. Our architecture
optimization space is depicted in Figure 4.
Operator optimization. We seek the best operator configuration in each layer considering
two most important aspects, i.e., the expansion ratio and the kernel size. In each search-
able operator layer, it consists of inverted residual blocks with various expansion ratios
e ∈ {1,3,6} and various kernel size k ∈ {3,5,7} as candidates. We denote the distribution of
each operator among total |O| candidate operators as α ∈ R|O|. The probability of selecting
i-th operator is pi = σ(αi), where σ is a softmax function. To reduce the memory cost, our
aim is to sample one operator I⊆O each time. However, sampling a discrete operator from
the candidate set is non-differentiable, preventing gradients back-propagation to α . Instead,
we employ Straight-Through Gumbel-Softmax approximation [15] to soften the sampling
procedure,

p̂i =
exp((log(pi)+oi)/τ)

∑
|O|
k=1 exp((log(pk)+ok)/τ)

, s.t. oi =− log(− log(u)), (2)

where u ∼ U(0,1) is sampled from a uniform distribution. τ is a temperature parameter to
control the sparsity. When τ→ 0, the distribution p̂ becomes a one-hot vector. When τ→∞,
p̂ becomes a uniform distribution. To enable the network explore all the potential candidates
and then converge to a certain one, the temperature τ anneals from 10 to 0.1. We discretize
p̂ using argmax and only forward the sampled path I in the forward pass [8]. During the
gradient back-propagation, we use the continuous approximation. Therefore, we sample one
operator once a time and learn the operator weights in an end-to-end manner.
Depth optimization. Another aspect for optimizing the architecture is to determine the
number of layers in each stage. To achieve this goal, we allow a whole layer to be replaced
by an identity mapping, known as a skip connection. For example, as illustrated in Figure 4,
there are four potential searchable operator layers in stage 2 and the second layer has been
skipped by the identity transformation. In our method, we enable all layers without a channel
number change to be skipped by the identity transformation operator d. Then, our searchable
candidate set becomes O∪{d}. This newly added operator assists us to optimize the depth
of each resolution branch.
Resolution optimization. In our human designed MRMS, the input resolution of each
branch is fixed. However, this configuration might be sup-optimal since semantic segmen-
tation pays more attention to spatial context information. Thus, we optimize the resolution

Citation
Citation
{Dong and Yang} 2019{}

Citation
Citation
{Dong and Yang} 2019{}

Citation
Citation
{Tan, Chen, Pang, Vasudevan, Sandler, Howard, and Le} 2019

Citation
Citation
{Wu, Dai, Zhang, Wang, Sun, Wu, Tian, Vajda, Jia, and Keutzer} 2019

Citation
Citation
{Jang, Gu, and Poole} 2017

Citation
Citation
{Dong and Yang} 2019{}

PEIKE LI, ET AL: WHEN HUMANS MEET MACHINES 7
Im
ag
e

G
T

H
M
Se

g
Ti
ny

H
M
Se

g

Figure 5: Visualization results of our HMSeg and TinyHMSeg on Cityscape validation set.

from a set L for each branch. Specifically, we search the searchable resolution layer set
L with various downsampling ratios {0.4,0.5,0.6}. We denote the distribution of each res-
olution downsampling ratio by β ∈ R|L|. We adopt the strategy proposed in the operator
optimization in Eq. (2) to make β differentiable.
Resource-Aware Constraint. Our overall architecture optimization space can be regarded
as a directed acyclic graph (DAG). Any path in the graph corresponds to a specific architec-
ture. The goal of our optimizing procedure is to find the best architecture a from architecture
parameters A= {α,β}. The optimizing procedure is formulated as follows,

min
a
Lseg (θ

∗
a ,a)+λcostLcost (θ

∗
a ,a) , s.t. θ

∗
a = argmin

θ
Lseg(θ ,a), (3)

where Lseg is the segmentation loss defined in Eq. (1), Lcost is a loss accounting for the
computational cost, and λcost controls the weight between the two losses. Since we treat both
of these two objectives equally important, we set λcost to 1 in all the experiments. During the
network learning procedure, we alternatingly optimize the architecture parameters A and the
model weight parameters θ .

In Eq. (3), we introduce the loss Lcost to account for the computational cost since we aim
to achieve a lightweight segmentation network. This computational cost loss encourages our
network to converge to a specific hardware resource requirement R. Towards this goal, we
pre-calculate a lookup table (LUT) for the computational cost of each candidate in the search
space. The table is constructed based on the latency time of each candidate. By doing so, we
can also optimize the network under different hardware constraints, e.g., hardware-agnostic
computational cost (FLOPs), the number of parameters, etc. Therefore, the objective Lcost
is expressed as,

Lcost = sign(Fcost(a)−R) log(Ecost(A)) (4)

where sign(·) is a sign function, Fcost(a) is the cost of derived architecture and Ecost is the
expected computational cost of architecture parameters A based on the probability of each
candidate. The final optimized architecture a is obtained by selecting the candidate with the
highest probability from the architecture parameters A.

4 Experiment
We conduct our experiments and ablation studies on the Cityscapes [7] dataset. To further
valid the effectiveness and generalization ability of our method, we also report the perfor-

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

8 PEIKE LI, ET AL: WHEN HUMANS MEET MACHINES

mance and speed on different semantic segmentation application scenarios, i.e., CamVid [2]
for urban street understanding and LIP [13] for human parsing [21, 22].

Implementation Details. We train our network on Cityscapes from scratch with random
initialization. Our training scheme partially follows [37]. In brief, our network is trained on
Cityscapes images of 768x1536 pixels for 720 epochs. SGD is used to optimize our network
with a base learning rate 0.01 and weight-decay 5e−4. We employ Inplace Synchronized
BatchNorm [31] to ensure the batch size large enough for training stability. Benefiting from
our lightweight base model, our network can be trained only on two GTX 1080Ti GPUs.
For all our experiments, we use the prefix Tiny to denote a more efficiency version of our
network with the half channel capacity.

To deploy on diverse devices, we test the inference speed of our network with the high-
performance inference framework TVM [6]. All the batch normalization layers are merged
with the convolution layers. Note all of our results are reported in FP32 mode. The mean
Intersection over Union (mIoU) is chosen as the performance metric. For real-time segmen-
tation tasks, we measure the mIoU without using any test-time augmentation e.g., flipping
and multi-scale testing.

4.1 Real-time Semantic Segmentation Comparisons

Results on Cityscapes. We evaluate both our proposed network MRMS with human expert
knowledge and machine optimized network HMSeg on Cityscapes. Different from most of
other methods, our model is trained from scratch without leveraging any extra data e.g., Im-
ageNet pre-train weights or coarse annotations of Cityscapes dataset. Results are reported
in Table 1. With our effective human design, TinyMRMS outperforms ICNet in terms of
mIoU while reducing almost 90.1% FLOPs and 97.7% parameters. Our network achieves
the fastest speed 139 FPS and outperforms BiSeNet and DFANet. Furthermore, HMSeg
achieves superior results compared with other NAS-based methods. It is noteworthy that
our HMSeg achieves considerably better mIoU and speedup in comparison to MobileNetV3.
Our TinyHMSeg (with 0.7M parameters) only requires storage space about 2.8MB, mak-
ing the deployment of our network possible in almost any embedded devices. All these
results demonstrate the effectiveness of HMSeg and its ability to balance the performance
and resource-aware constraints.

Results on CamVid. We compare our method with other real-time segmentation approaches
on CamVid dataset in Table 2. Note that, our architecture is optimized from Cityscapes and
we only fine-tune the network weights on Camvid. As indicated in Table 2, our HMSeg
outperforms all the other real-time methods. Compared with CAS, our model runs 64% faster
and still achieves better segmentation performance. This impressive result also demonstrates
the generalization ability of our network.

Results on LIP. Human parsing is another vital application that acquires real-time perfor-
mance. To the best of our knowledge, previous works mainly focus on the mIoU perfor-
mance while overlook the real-time efficiency. Here, we compare with some mIoU-driven
methods in Table 3. The performance of our efficient HMSeg even surpasses the network
of [3] that employs an extremely heavy backbone. Notably, our TinyHMSegachieves 15×
speedup (455.6 vs 29.3 FPS) and 90× less parameters (0.7M vs 66.7M) with a sacrifice of
mere 4% performance decrease.

Citation
Citation
{Brostow, Fauqueur, and Cipolla} 2009

Citation
Citation
{Gong, Liang, Zhang, Shen, and Lin} 2017

Citation
Citation
{Liang, Shen, Feng, Lin, and Yan} 2016{}

Citation
Citation
{Liang, Shen, Xiang, Feng, Lin, and Yan} 2016{}

Citation
Citation
{Yu, Wang, Peng, Gao, Yu, and Sang} 2018

Citation
Citation
{Rotaprotect unhbox voidb@x protect penalty @M {}Bul{ò}, Porzi, and Kontschieder} 2018

Citation
Citation
{Chen, Moreau, Jiang, Zheng, Yan, Shen, Cowan, Wang, Hu, Ceze, etprotect unhbox voidb@x protect penalty @M {}al.} 2018{}

Citation
Citation
{Chen, Papandreou, Kokkinos, Murphy, and Yuille} 2017

PEIKE LI, ET AL: WHEN HUMANS MEET MACHINES 9

Table 1: Comparisons with the state-of-the-art real-time semantic segmentation methods on
Cityscapes dataset. We report the computation cost (FLOPs), latency time and model size
(Params). The symbol † indicates that the method use ImageNet pre-train weights.

Method mIoU(%)↑ FPS↑ Resolution FLOPSs↓ Latency(ms)↓ Params↓
H

um
an

SegNet† [1] 57.0 16.7 360x640 286G 59.9 29.5M
ICNet† [39] 69.5 30.3 1024x2048 28.3G 33.0 26.5M
ERFNet† [30] 68.0 11.2 512x1024 27.7G 89.3 20M
SwiftNet [27] 69.4 27.7 1024x2048 41.0G 36.1 2.4M
FastSCNN [29] 68.0 106.2 1024x2048 11.7G 9.4 1.1M
DFANet† [16] 67.1 120 1024x1024 2.1G 8.3 4.8M
BiSeNet† [37] 68.4 105.8 768x1536 14.8G 9.5 5.8M
MRMS 73.7 67.7 768x1536 7.3G 14.7 2.1M
TinyMRMS 69.9 139.5 768x1536 2.8G 7.2 0.6M

M
ac

hi
ne

MobileNetV3 [14] 72.4 46.6 1024x2048 9.74G 21.5 1.51M
DF1-Seg-d8† [20] 71.4 136.9 1024x2048 28.2G 7.3 6.7M
CAS† [38] 70.5 108.0 768x1536 12.0G 9.3 1.7M
HMSeg 74.3 83.2 768x1536 8.1G 12.0 2.3M
TinyHMSeg 71.4 172.4 768x1536 3.0G 5.8 0.7M

Table 2: Results on CamVid. The
input resolution is 720x960.

Method mIoU(%)↑ FPS↑
ICNet [39] 67.1 34.5
ENet [28] 51.3 61.2
BiseNet [37] 65.6 165.4
CAS [38] 71.2 169.0
HMSeg 75.1 130.8
TinyHMSeg 71.8 278.5

Table 3: Results on LIP. The input resolution is
512x512.

Method mIoU(%)↑ FPS↑ FLOPs↓ Params↓
DeepLab [3] 44.80 12.7 183.1G 42.5M
JPP [23] 51.37 6.6 374.0G 93.4M
CE2P [32] 53.10 30.3 87.7G 66.7M
HMSeg 49.43 292.6 1.8G 2.3M
TinyHMSeg 47.71 455.6 0.7G 0.7M

4.2 Ablation Study

Component Analysis of Human-Designed Network. We investigate the components of our
human design framework in Table 4: (a) We directly upsample and simply use the outputs
C3,C5 from the backbone to predict segmentation results. (b) We insert the LGE module, and
achieve an improvement of 1.99% mIoU. (c) We employ the LCF instead of simply fusing
the multi-resolution features. LCF significantly improves mIoU by a large margin of 4.18%.
This demonstrates the importance of aggregating low-level and high-level features. Our final
network employs both modules, with less than 0.3M extra parameters and marginal increase
of computation cost, but improves the segmentation performance significantly.
Effects of Different Architecture Optimization Strategies. Under the same resource-
aware constraint, we investigate the effect of different architecture optimization aspects,
including the operator (O), the depth (D) and the resolution (R). Table 6 indicates that op-
timizing the architectures in larger search space brings more performance gain. Specially,
due to the importance of spatial information in segmentation tasks, optimizing R brings sig-
nificant performance improvements without increasing latency time. Since our network is
manually designed and the input images are in high resolution, we found that our network
cannot satisfy the desired latency time. Therefore, we did not solely optimize the architecture
in the dimension of the resolution. Table 6 verifies the effectiveness of our MRMS.
Inference Speed w.r.t Resolution. Figure 6 presents the inference speed of our model on var-
ious input image resolution. Theoretically, the inference speed (FPS) is proportional to the

Citation
Citation
{Badrinarayanan, Kendall, and Cipolla} 2017

Citation
Citation
{Zhao, Qi, Shen, Shi, and Jia} 2018

Citation
Citation
{Romera, Alvarez, Bergasa, and Arroyo} 2017

Citation
Citation
{Orsic, Kreso, Bevandic, and Segvic} 2019

Citation
Citation
{Poudel, Liwicki, and Cipolla} 2019

Citation
Citation
{Li, Xiong, Fan, and Sun} 2019{}

Citation
Citation
{Yu, Wang, Peng, Gao, Yu, and Sang} 2018

Citation
Citation
{Howard, Sandler, Chu, Chen, Chen, Tan, Wang, Zhu, Pang, Vasudevan, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Li, Zhou, Pan, and Feng} 2019{}

Citation
Citation
{Zhang, Qiu, Liu, Yao, Liu, and Mei} 2019

Citation
Citation
{Zhao, Qi, Shen, Shi, and Jia} 2018

Citation
Citation
{Paszke, Chaurasia, Kim, and Culurciello} 2016

Citation
Citation
{Yu, Wang, Peng, Gao, Yu, and Sang} 2018

Citation
Citation
{Zhang, Qiu, Liu, Yao, Liu, and Mei} 2019

Citation
Citation
{Chen, Papandreou, Kokkinos, Murphy, and Yuille} 2017

Citation
Citation
{Liang, Gong, Shen, and Lin} 2018

Citation
Citation
{Ruan, Liu, Huang, Wei, Wei, and Zhao} 2019

10 PEIKE LI, ET AL: WHEN HUMANS MEET MACHINES

Table 4: Analysis of our human-designed
segmentation head, i.e., LCF and LGE.

Exp LCF LGE mIoU Latency(ms) FlOPs Params
(a) - - 68.77 12.9 6.35G 1.8M
(b) - X 70.76 13.0 6.37G 1.8M
(c) X - 72.95 14.7 7.32G 2.0M
(d) X X 73.67 14.7 7.33G 2.1M

Table 5: Inference speed on Snapdragon835
(Mobile), XeonE5-2682v4 (CPU) and
GeForce 1080Ti (GPU). The input resolution
is 256x512.

Model Mobile CPU GPU
HMSeg 15.2 25.5 332.5
TinyHMSeg 30.1 59.1 612.1

pixel numbers of input images. Although lower resolution inputs tend to have low arithmetic
intensities, the testing results may not strictly follow the theoretical rules. Our TinyHMSeg
achieves inference speed of 349.5 FPS, 105.4 FPS for half-resolution (512×1024 pixels)
and full-resolution (1024x2048 pixels) inputs, respectively. We also report the speed for
commonly used video resolutions 360p, 720p and 1080p respectively in Figure 6.

256x
512

512x
512

480x
640

512x
1024

720x
1280

768x
1536

1080
x192

0
1024

x204
8

Resolution

200

400

600

Fr
am

es
 p
er
 se

co
nd

332.5 292.6
188.6 207.6

98.1 83.2 49.5 56.4

612.1

455.6

295.2
349.5

208.9 172.4
99.3 105.4

HMSeg
TinyHMSeg

Figure 6: Inference speed w.r.t various input
resolutions on GTX 1080 Ti.

Table 6: Impacts of different architecture op-
timization strategies, including the Operators
(O), Depth (D) and Resolution (R).

Exp O D R mIoU↑ Latency(ms)↓
(a) X - - 73.44 11.9
(b) X - X 74.01 12.1
(c) - X - 73.18 12.2
(d) - X X 73.72 12.0
(e) X X X 74.27 12.0

Inference Speed w.r.t Hardware. We also evaluate the inference speed of our model on
different hardware platforms , including CPU, GPU and mobile devices. The results are
shown in Table 5. Our HMSeg achieves an outstanding speed for 332.5 FPS on the GPU
platform. Our TinyHMSeg achieves real-time segmentation on both CPU and mobile devices
at 59.1 and 30.1 FPS, respectively. All these evaluations demonstrate our HMSeg is practical
in real-world applications.

5 Conclusion

In this work, we proposed a simple yet effective network HMSeg for real-time semantic
segmentation. We introduced a new paradigm for designing an efficient network by incor-
porating the task-specific expert knowledge. Based on the expert knowledge, we are able to
balance the feature extraction backbone and segmentation head, thus achieving a lightweight
segmentation network. To enable our network to run on embedded devices, we employ ar-
chitecture search to optimize our network configuration and further improve segmentation
performance. Extensive experiments demonstrate our HMSeg attains superior performance
in comparison to state-of-the-art real-time segmentation approaches.

Acknowledgment

This work is in partly supported by ARC DP200100938.

PEIKE LI, ET AL: WHEN HUMANS MEET MACHINES 11

References
[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional

encoder-decoder architecture for image segmentation. TPAMI, 39(12):2481–2495, 2017.

[2] Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic object classes in video: A
high-definition ground truth database. Pattern Recognition Letters, 30(2):88–97, 2009.

[3] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. TPAMI, 40(4):834–848, 2017.

[4] Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George Papandreou, Barret Zoph, Florian
Schroff, Hartwig Adam, and Jon Shlens. Searching for efficient multi-scale architectures for
dense image prediction. In NeurIPS, pages 8699–8710, 2018.

[5] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam.
Encoder-decoder with atrous separable convolution for semantic image segmentation. In ECCV,
pages 801–818, 2018.

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An automated end-to-end optimizing
compiler for deep learning. In 13th Symposium on Operating Systems Design and Implementation
(OSDI 18), pages 578–594, 2018.

[7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In CVPR, pages 3213–3223, 2016.

[8] Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In CVPR,
pages 1761–1770, 2019.

[9] Xuanyi Dong and Yi Yang. Network pruning via transformable architecture search. In NeurIPS,
2019.

[10] Qianyu Feng, Guoliang Kang, Hehe Fan, and Yi Yang. Attract or distract: Exploit the margin of
open set. ICCV, 2019.

[11] Qianyu Feng, Zongxin Yang, Peike Li, Yunchao Wei, and Yi Yang. Dual embedding learning for
video instance segmentation. In Proceedings of the IEEE International Conference on Computer
Vision Workshops, 2019.

[12] Qianyu Feng, Yu Wu, Hehe Fan, Chenggang Yan, Mingliang Xu, and Yi Yang. Cascaded revi-
sion network for novel object captioning. IEEE Transactions on Circuits and Systems for Video
Technology, 2020.

[13] Ke Gong, Xiaodan Liang, Dongyu Zhang, Xiaohui Shen, and Liang Lin. Look into person: Self-
supervised structure-sensitive learning and a new benchmark for human parsing. In CVPR, pages
932–940, 2017.

[14] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. arXiv
preprint arXiv:1905.02244, 2019.

[15] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2017.

12 PEIKE LI, ET AL: WHEN HUMANS MEET MACHINES

[16] Hanchao Li, Pengfei Xiong, Haoqiang Fan, and Jian Sun. Dfanet: Deep feature aggregation for
real-time semantic segmentation. In CVPR, pages 9522–9531, 2019.

[17] Peike Li, Yunqiu Xu, Yunchao Wei, and Yi Yang. Self-correction for human parsing. arXiv
preprint arXiv:1910.09777, 2019.

[18] Peike Li, Pingbo Pan, Ping Liu, Mingliang Xu, and Yi Yang. Hierarchical temporal modeling
with mutual distance matching for video based person re-identification. IEEE Transactions on
Circuits and Systems for Video Technology, 2020.

[19] Peike Li, Yunchao Wei, and Yi Yang. Meta parsing networks: Towards generalized few-shot
scene parsing with adaptive metric learning. In Proceedings of the 28th ACM International Con-
ference on Multimedia. ACM, 2020.

[20] Xin Li, Yiming Zhou, Zheng Pan, and Jiashi Feng. Partial order pruning: for best speed/accuracy
trade-off in neural architecture search. In CVPR, pages 9145–9153, 2019.

[21] Xiaodan Liang, Xiaohui Shen, Jiashi Feng, Liang Lin, and Shuicheng Yan. Semantic object
parsing with graph lstm. In ECCV, pages 125–143, 2016.

[22] Xiaodan Liang, Xiaohui Shen, Donglai Xiang, Jiashi Feng, Liang Lin, and Shuicheng Yan. Se-
mantic object parsing with local-global long short-term memory. In CVPR, pages 3185–3193,
2016.

[23] Xiaodan Liang, Ke Gong, Xiaohui Shen, and Liang Lin. Look into person: Joint body parsing
& pose estimation network and a new benchmark. IEEE transactions on pattern analysis and
machine intelligence, 41(4):871–885, 2018.

[24] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L Yuille, and
Li Fei-Fei. Auto-deeplab: Hierarchical neural architecture search for semantic image segmenta-
tion. In CVPR, pages 82–92, 2019.

[25] Davide Mazzini. Guided upsampling network for real-time semantic segmentation. BMVC, 2018.

[26] Vladimir Nekrasov, Hao Chen, Chunhua Shen, and Ian Reid. Fast neural architecture search of
compact semantic segmentation models via auxiliary cells. In CVPR, pages 9126–9135, 2019.

[27] Marin Orsic, Ivan Kreso, Petra Bevandic, and Sinisa Segvic. In defense of pre-trained ima-
genet architectures for real-time semantic segmentation of road-driving images. In CVPR, pages
12607–12616, 2019.

[28] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello. Enet: A deep neu-
ral network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147,
2016.

[29] Rudra PK Poudel, Stephan Liwicki, and Roberto Cipolla. Fast-scnn: fast semantic segmentation
network. arXiv preprint arXiv:1902.04502, 2019.

[30] Eduardo Romera, José M Alvarez, Luis M Bergasa, and Roberto Arroyo. Erfnet: Efficient resid-
ual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent
Transportation Systems, 19(1):263–272, 2017.

[31] Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder. In-place activated batchnorm for
memory-optimized training of dnns. In CVPR, pages 5639–5647, 2018.

PEIKE LI, ET AL: WHEN HUMANS MEET MACHINES 13

[32] Tao Ruan, Ting Liu, Zilong Huang, Yunchao Wei, Shikui Wei, and Yao Zhao. Devil in the details:
Towards accurate single and multiple human parsing. In AAAI, volume 33, pages 4814–4821,
2019.

[33] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, pages 4510–4520, 2018.

[34] Albert Shaw, Daniel Hunter, Forrest Landola, and Sammy Sidhu. Squeezenas: Fast neural ar-
chitecture search for faster semantic segmentation. In Proceedings of the IEEE international
conference on computer vision workshops, 2019.

[35] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In CVPR, pages
2820–2828, 2019.

[36] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong
Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet
design via differentiable neural architecture search. In CVPR, pages 10734–10742, 2019.

[37] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao, Gang Yu, and Nong Sang. Bisenet:
Bilateral segmentation network for real-time semantic segmentation. In ECCV, pages 325–341,
2018.

[38] Yiheng Zhang, Zhaofan Qiu, Jingen Liu, Ting Yao, Dong Liu, and Tao Mei. Customizable
architecture search for semantic segmentation. In CVPR, pages 11641–11650, 2019.

[39] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, and Jiaya Jia. Icnet for real-time
semantic segmentation on high-resolution images. In ECCV, pages 405–420, 2018.

