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Abstract

Zero-shot learning (ZSL) has been attracting ever-increasing research interest due
to its capability of recognizing novel or unseen classes. A lot of studies on ZSL are
based mainly on two baseline models: compatible visual-semantic embedding (CVSE)
and adversarial visual feature generation (AVFG). In this work, we integrate the merits
of the two baselines and propose a novel and effective baseline model, coined adversar-
ial visual-semantic embedding (AVSE). Different from CVSE and AVFG, AVSE learns
visual and semantic embeddings adversarially and jointly in a latent feature space. Addi-
tionally, AVSE integrates a classifier to make latent embeddings discriminative, and a re-
gressor to preserve semantic consistency during the embedding procedure. Moreover, we
perform embedding-to-image generation which visually exhibits the embeddings learned
in AVSE. The experiments on four standard benchmarks show the advantage of AVSE
over CVSE and AVFG, and empirical insights through quantitative and qualitative re-
sults. Our code is at https://github.com/Liuy8/AVSE.

1 Introduction

Nowadays, many computer vision tasks [7, 20, 21, 28] achieve outstanding performance un-
der the standard supervised learning scenario, where the pre-defined classes are consistent at
both training and test time. In contrary, in the setting of zero-shot learning (ZSL) [17, 26],
the test classes are disjoint with the training classes. In other words, ZSL targets at clas-
sifying novel/unseen classes outside training classes. Apart from the above standard ZSL
setting, some research is also focused on an extended yet practical setting, namely general-
ized zero-shot learning (GZSL) [37], where both seen and unseen classes are included in the
test set. The problem of ZSL or GZSL has been much researched in the literature for a wide
variety of real-world applications such as person re-identification [36], event detection [5]
and visual navigation [3].

While no visual data is available for those unseen classes, they are also pre-defined in
a form of auxiliary semantic features, for example, common attributes [17], word embed-
ding [24], sentence descriptions [29] or semantic similes [22]. The key to solving ZSL is
firstly learning a model to bridge visual and semantic features from seen classes only, and
then transferring the model to handle unseen classes at test time. In general, most ZSL ap-
proaches build on top of one out of two baseline models. (1) The first baseline (Fig. 1 (a))
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Figure 1: Conceptual illustration of three ZSL baseline models. (a) CVSE: measuring the
compatibility between visual and semantic embedding in the latent space; (b) AVFG: using
semantic features to generate visual features in the visual space; (c) our AVSE: performing
adversarial learning between visual and semantic embedding in the latent space.

is compatible visual-semantic embedding (CVSE) [1, 34, 38, 43], which projects both visual
and semantic features into a latent embedding space and then learns a metric learning objec-
tive to maximize the compatibility between the two embeddings. The latent embeddings in
CVSE are able to retain high discrimination and bridge the visual-semantic gap. (2) The sec-
ond baseline (Fig. 1 (b)), namely adversarial visual feature generation (AVFG) [32, 39, 44],
is inspired by generative adversarial network (GAN). The generator takes as input seman-
tic features and adversarially generates pseudo visual features as similar as possible to real
ones. It addresses the lack of visual samples for unseen classes, and thereby converts ZSL to
a conventional supervised learning problem.

In this work, we present a novel ZSL baseline (Fig. 1 (c)), coined adversarial visual-
semantic embedding (AVSE), which allows to integrate the merits from CVSE and AVFG.
First, like CVSE, AVSE also maps visual and semantic features into a latent embedding
space to overcome the modality gap. However, the embedding in AVSE are learned in an
adversarial fashion, instead of utilizing metric learning functions. Second, in contrast to
AVFG which learns to generate the input visual features, AVSE introduces a visual encoder
to embed the visual features in a latent embedding space. We find that the visual encoder
helps to balance the capabilities between the generator and discriminator, and to ease the fol-
lowing feature generation from semantic features. As shown in the full model of our AVSE
(Fig. 2), we further learn a classifier on top of the visual-semantic embedding to maintain
their discriminative power. Additionally, a regressor is imposed to preserve the semantic
consistency with the original semantic features. The entire AVSE model is end-to-end train-
able by jointly optimizing several objective functions. Moreover, to provide new insights
into our embedding, we train an embedding-to-image generator and visually demonstrate
what visual information is preserved or discarded by the model (Sec. 3.4). Lastly, we ex-
periment with several standard benchmark datasets where extensive results demonstrate the
improvements of AVSE beyond CVSE and AVFG, under the context of both ZSL and GZSL.
Additional quantitative and qualitative results shed further light on the effectiveness of the
components used in AVSE.
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2 Background: ZSL Baseline Models

The problem of ZSL has become a significant and realistic scenario in many vision appli-
cations [3, 5, 36, 37]. In addition, some variants have developed over the past ten years,
including generalized ZSL, transductive ZSL and generative ZSL. The next summarizes the
baseline models upon which previous approaches are mainly built.

CVSE Baseline Model. Figure 1 (a) depicts a general pipeline of CVSE. Metric learning
objectives, such as hinge loss or contrastive loss, are optimized to preserve the compatibil-
ity between paired visual-semantic embeddings in the latent space. Latent embeddings are
able to distill the most common and important information across two modalities, which
help to make the model generalize better to unseen classes. In recent years, many works
have improved CVSE with deep neural networks and solved the task in an end-to-end fash-
ion[1,4,6,13,16,23,34, 35, 38, 42, 43]. For instance, the work of [34] presented a bidirec-
tional latent embedding learning framework with two subsequent learning stages including
bottom-up learning and top-down learning. In [41], it extensively studied the combination of
several compatibility functions. LATEM [38] constructed several latent embedding spaces
and combined multiple compatibility scores. In other works [13, 35], the concept of knowl-
edge graph is further adopted to leverage structure information among latent embeddings.
AVFG Baseline Model. Deep generative models [10, 15, 19] have recently attracted much
attention in the research of ZSL due to their ability of synthesizing new visual features for
unseen classes [8, 18, 32, 39, 44]. This allows to address ZSL under a supervised learning
mode. Figure 1 (b) shows the pipeline of AVFG, where the generator is trained to produce
fake visual features G(a,z) conditioned on semantic feature a and random noise z. Mean-
while, the discriminator is learned to retain the ability of telling real and fake visual features
apart. For example, f-CLSWGAN [39] built a GAN model [10] to produce CNN visual fea-
tures from random noise conditioned by semantic features. Similarly, Cycle-CLSWGAN [8]
added a cycle-consistency loss to preserve semantic consistency in synthetic visual features.
To ensure that fake samples were close to real ones, the recent work Lis-GAN [18] defined
soul samples to regularize the generator.

Comparison. As shown Figure 1 (c), our AVSE combines the latent embedding in CVSE
and the feature generation in AVFG. In contrast to AVFG, we perform the adversarial learn-
ing in the latent space, by using a visual encoder to learn visual embedding E(x), and making
the synthesized semantic embedding G(a,z) as similar as possible to the visual embedding.
The components in AVSE are pre-existing, however, being able to leverage those compo-
nents to design a generic baseline model is precisely important for the field of ZSL.

3 Adversarial Visual-Semantic embedding

Notation and Definition. In the setting of ZSL, the full set of classes ) is divided into seen
classes )V* and unseen classes Y, so that Y*U V" = ) and Y* N Y* = 0. Regarding the seen
classes, there is a training set D° = {(x;,y;,a;),i = 1,...,N°}, where x; € X”* is the visual
representation extracted from a pre-trained CNN and a; € A® indicates the semantic feature
(e.g. an attribute vector) for the seen class y; € J*. Similarly, the data set for the unseen
classes is denoted as D* = {(x;,y;,a;),i = 1,...,N"}, where x; € X*, y; € Y* and a; € A".
Note that the visual features X'* are not available during training. In the next, we drop the
subscript i for simplicity. The classical ZSL aims to learn a function f : x — V*, while GZSL
classifies both seen and unseen samples by f : x — YU Y.
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Figure 2: Network architecture of the proposed adversarial visual-semantic embedding
(AVSE). The adversarial objective is performed between visual and semantic embeddings
within a latent space. The classifier makes the embedding discriminative, and the regressor
is to preserve their semantic consistency with the semantic features.

3.1 Model Architecture

The overall framework of AVSE is illustrated in Fig. 2, which is optimized jointly by three
objectives: an adversarial objective, a classification objective and a regression objective.
First of all, the adversarial objective is to make the synthesized semantic embedding consis-
tent with the distribution of the visual embedding. In addition, we train a classifier to su-
pervise the discriminative power of visual and semantic embeddings. Finally, the regressor
reconstructs the input semantic feature so as to preserve semantic consistency while learning
the embeddings. Next, we introduce details on these three objectives.

Adversarial objective. We extract the input visual feature x from a pre-trained CNN and
then use the visual encoder E to learn the visual embedding E(x). The generator G learns to
synthesize the semantic embedding G(a,z) conditioned on the concatenation of the semantic
feature a and random noise z ~ N(0, 1). Random noise helps to retain the diversity of syn-
thetic samples, as each semantic feature can describe a variety of image instances. Then, we
concatenate either E(x) or G(a,z) with a before passing them to the discriminator D. Specif-
ically, we consider the visual embedding E(x) as real samples and the semantic embedding
G(a,z) as the fake samples. Like f~CLSWGAN [39], we employ the WGAN-GP [11] to
train the generator and the discriminator jointly. The adversarial objective for learning visual
and semantic embeddings is formulated with

Laav(E,G,D) = E[D(E(x),a)] —E[D(G(a,z),a)] = AE[(||[VeD(e.a)|[— 1))], (1)

where e = uE(x) + (1 — 1)G(a,z) with u ~ U(0, 1) and the penalty coefficient A = 10.
Classification objective. The above adversarial objective enables to bridge the distributions
between visual and semantic embeddings. Nevertheless, we still need to supervise the dis-
crimination of those embeddings. To this end, we learn a shared classifier C on top of both
E(x) and G(a,z). We train the classification objective with the negative log likelihood by

Las(E,G,C) = —E[log P(y|E(x))] — E[log P(y|G(a, )], @

where y is the ground-truth class label. The Softmax probabilities P(y|E(x)) and P(y|G(a,z))
are compute by

PolE) - P (CE))

_ exp(C(G(a,z)),)
= Y, eyt €Xp (C(E(X))yk) ,P(y|G(a,z))

 Y,evexp(C(G(a,z))y,)


Citation
Citation
{Xian, Lorenz, Schiele, and Akata} 2018

Citation
Citation
{Gulrajani, Ahmed, Arjovsky, Dumoulin, and Courville} 2017


Y. LIU, T. TUYTELAARS: ADVERSARIAL VISUAL-SEMANTIC EMBEDDING 5

Notice that the classification objective is performed for seen classes only, as we do not have
the labelled image data of unseen classes.

Regression objective. Furthermore, we add a regressor to map the visual and semantic em-
beddings back to the semantic feature space. The reconstructed semantic features, R(E(x))
and R(G(a,z)), help preserving the semantic consistency of our embedding. To train the
regressor, we adopt the L1 norm loss

Lreg(E,G,R) = E[[[R(E(x)) —al[i] + BE[||R(G(a,z)) —all1], )

where f3 is the weight for the second term.
Full objective. Our full objective integrates the above three objectives simultaneously

L(E,G,D,C,R) = Laav(E,G,D) +YLs(E,G,C) + Lyeg (E, G, R), ®)

where 7 regulates the relative importance of the classifier term. Finally, the goal is to opti-
mize all the parameters in the model based on

E*,G" = argEIIGliélleé)lX,C(E,G,D, C,R). (6)

3.2 Discussion

Despite that AVSE is a simple and generic baseline by integrating pre-existing components,
it has technical strength over previous approaches. In particular, generative ZSL meth-
ods [18, 39] have an inherent imbalance between the capabilities of generator and discrim-
inator. Specifically, the discriminator has been able to tell real and fake samples, while the
generator is still struggling in pushing fake samples consistent with real samples distribution
that is fixed by the choice of a given dataset. To solve the imbalance issue, AVSE leverages
a simple yet effective visual encoder (E) which can progressively adjust the real samples to
make the capability of the generator fit properly with that of the discriminator. Consequently,
balancing the capabilities helps to improve the generation quality. For instance, AVSE out-
performs other methods significantly even when only one sample is generated (Fig. 5). One
related work to ours is Tempered Adversarial Networks [30] that add a lens in between the
real data and the discriminator. However, their work is focused on general image generation,
rather than ZSL image classification.

3.3 Learning Classifiers for Unseen Classes

In the test stage, we use the trained AVSE model to generate semantic embeddings G(a,z)
for unseen classes, denoted as U = {(G(a,z),y)}, where a € A and y € J*. Based on the
set U, it enables to train classifiers for those unseen classes. (1) For the classical ZSL, we
train a Softmax classifier P(y[h, 0) with (h,y) € U; (2) For GZSL, we first extract the visual
embedding of training images, denoted as S = {(E(x),y)}, where y € J*. Then we merge
U and S to train a GZSL classifier P(y|h,0) with (h,y) € /US. In summary, given any test
image, we extract and classify its visual embedding E(x) by

y* = argmax P(y|E(x), 0), (7
yey

where Y = V" for ZSL and Y = Y U V" for GZSL.
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Seen Classes Unseen Classes
Ig
Iy
s
Ground- oxeye mexican bishop of common pink english bird of tiger lily
truth label daisy aster llandaff dandelion primrose marigold paradise
Prediction oxeye mexican bishop of common pink black-eyed magnolia blackberry
label daisy aster llandaff dandelion primrose susan lily

Figure 3: Visualization of our generated images for several seen classes (Left) and unseen
classes (Right) from Oxford Flowers [25]. Compared to the real images Ir, the generated
images Iy and Ig, which are conditioned on visual and semantic embeddings, respectively,
preserve critical semantics about the flowers. Below the images, we show the ground-truth
class labels and the predicted ones, including both success and failure cases.

3.4 Visualization of Embeddings

Embedding-to-image generation. To visually show what embeddings are learned in AVSE,
we train an image generation network that synthesizes new images conditioned on the em-
bedding. We adapt the StackGAN architecture [40] to perform the embedding-to-image gen-
eration process. Specifically, we train a new StackGAN based on the visual embedding E(x).
Following the ZSL setting, only seen data is used to train the StackGAN, which generates
256 %256 photo-realistic images, denoted as Iy. Likewise, we feed the semantic embedding
G(a,z) into StackGAN and study whether their generated images Ig are visually consistent
with Iy. Figure 3 visualizes the real images Ir and their corresponding generated images Iy
and Ig for Oxford Flowers [25]. It can be seen that Iy and Is have similar visual content and
appearance. We further discuss the details from two aspects:

What information is preserved. By comparing the generated images with the original real
images, we can observe what information has been preserved in visual-semantic embeddings.
First, the color and shape clues about the flowers are kept in the generated images for both
seen and unseen classes. Besides, some attribute parts like the petal and stamen are preserved
well, because they are critical for representing the semantics. The generated flowers in the
last column are less accurate due to their complex appearance.

What information is discarded. On the other hand, we aim to qualitatively show, based on
these visualizations, what information has been discarded by the encoder E and the genera-
tor G. Intuitively, these information should not affect the correct recognition of the images.
For example, the background in the generated images is blurred compared to the real im-
ages. Considering other irrelevant information, the bee in the fourth real image is missing
in the generated images; when several flowers appear in the real image, fewer flowers are
synthesized in the generated images (in the 3rd and 5th columns).
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#images #images #seen  #unseen Ratio .
Dataset . #Attributes
(train+val)  (test seen/unseen) classes classes  (seen/unseen)
CUB 7057 1764/2679 150 50 3.00 312
SUN 10320 2580/1440 645 72 8.96 102
AWA 23527 5882/7913 40 10 4.00 85
FLO 1640 5394/1155 82 20 4.10 1024

Table 1: Statistics of the four datasets for zero-shot learning. Additionally, we show the ratio
of seen classes to unseen classes in each dataset.

4 Experiments

Datasets and settings. We experiment with four widely-used benchmarks including Caltech-
UCSD-Birds (CUB) [33], Oxford Flowers (FLO) [25], SUN Attributes (SUN) [27] and An-
imals with Attributes2 (AWA) [37]. To ensure the disjoint between seen and unseen classes,
we follow the new data splits in [37]. The dataset settings are summarized in Table 4.
Implementation details. We extract visual features from the ResNet-101 [12] model pre-
trained on ImageNet. For semantic features, we use the attribute vectors pre-defined in
the datasets, except that FLO uses a 1024-dimensional RNN feature from [29]. Besides,
the main components in AVSE are implemented with multi-layer perceptron (MLP). To be
specific, the encoder E and the generator G contain two fully-connected (FC) layers. Leaky
ReLU activation is added behind the first FC layer and standard ReL.U activation is used
for the second FC layer. The discriminator D is built with an FC layer, a Leaky ReLU
layer and an FC layer. In the classifier C, one FC layer is trained based on the number of
training classes. Like [39], the classifier is pre-trained before training the entire model. The
regressor R contains one FC layer with ReLU activation. The output of R has the same size as
the semantic feature. We optimized the AVSE model via Adam [14] with an initial learning
rate of 0.001 and a mini-batch size of 64. We set the parameters § = 0.1 and y = 0.01.
Evaluation metrics. Following the metrics used in [37], when evaluating the classical ZSL,
we denote the accuracy T for unseen classes )),; for the GZSL evaluation, we measure the
accuracy S on seen classes ), the accuracy U on unseen classes ), and their harmonic
mean H, i.e. H=2x (SxU)/(S+U).

Compared methods. First of all, we implement the two baseline models including CVSE
and AVFG, and compare AVSE with them. For a fair comparison, the classification and
regression objectives are imposed for all the three baselines. In addition, we show other ZSL
methods that are widely compared in the literature ( Table 2 and Table 3).

4.1 Comparison and Discussion

ZSL results. We report the ZSL results on the four datasets in Table 2. First, AVSE out-
performs both CVSE and AVFG consistently, which verifies the effectiveness of integrating
latent embeddings and adversarial learning. In addition, generative methods outperform em-
bedding methods, because of generating new and extensive samples for unseen classes. We
can see that AVSE is competitive with other generative methods across most metrics. More-
over, AVSE yields the best average accuracy (66.0%) over the four datasets.

GZSL results. Table 3 compares the results under the GZSL setting. Note that, genera-
tive methods alleviate the performance gap between the S and U accuracy, while embedding
methods have a relatively large gap between the two accuracy results. Likewise, AVSE per-
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Method Latent Generative CUB SUN AWA FLO ‘ Average
AVSE (ours) vV Vv 61.5 636 69.8 69.0 66.0
CVSE V4 X 548 575 563 495 54.5
AVFG X Vv 59.0 605 674 678 63.7
LATEM [38] vV X 493 553 551 404 50.0
DEVISE [9] v X 520 565 542 459 522
ALE [2] V4 X 549 581 599 485 554
GAZSL [44] X Vv 558 613 682 605 61.5
f-CLSWGAN [39] X Vv 573 608 682 672 63.4
Cycle-CLSWGAN [8] X Vv 586 599 668 67.7 63.3
LisGAN [18] X Vv 588 61.7 706 69.6 65.2

Table 2: Compared results of zero-shot learning on four datasets. We report the top-1
accuracy (T) for unseen classes. The last column shows the average accuracy over the four
datasets. ‘Latent’ indicates the methods learn latent embeddings, while ‘Generative’ means
the methods need to generate features in an adversarial manner.

CUB SUN AWA FLO

Method U S H U S H U S H U S H
AVSE (ours) 515 574 543 474 395 431 593 651 621 567 809 66.7
CVSE 226 563 322 204 335 253 163 745 267 124 592 205
AVFG 482 59.0 531 456 358 40.1 584 630 60.6 585 742 654
LATEM [38] 152 573 240 147 288 195 73 717 133 6.6 476 115
DEVISE [9] 23.8 53.0 328 169 274 209 134 687 224 99 442 162
ALE [2] 237 628 344 21.8 331 263 168 76.1 275 133 61.6 219
GAZSL [44] 239 60.6 343 21.7 345 267 192 865 314 281 774 412

f-CLSWGAN [39] 43.7 5777 497 42,6 366 394 579 614 596 59.0 738 656
Cycle-CLSWGAN [8] 479 593 530 472 338 394 59.6 634 598 616 692 652
LisGAN [18] 465 579 516 429 378 402 526 763 623 577 838 68.3

Table 3: Compared results of generalized zero-shot learning. U and S measure the top-1
accuracy for unseen and seen classes, respectively. H is the harmonic mean of U and S.

forms better than CVSE and AVFG across the metrics, and obtains competitive performance
with other methods. For example, our H accuracy is the highest on CUB and SUN (54.3%
and 43.1%), the second highest on FLO (66.7%) and AWA (62.1%).

4.2 Ablation Study

We further implement several ablation variants for AVSE (Table 4), including M1 by using
only the adversarial loss L,4,, M2 by combining L,;, with the classification loss L, and
M3 that is a full model trained with all the three objectives. First, M2 obtains a large im-
provement over M1, such as the T accuracy on CUB increasing from 56.8% to 60.1%. It
reveals the importance of the classifier for learning class-distinct embedding. Second, com-
pared to M2, adding the regression loss in M3 has further improvements for both T and H
accuracy. Third, in contrast to M3, we implement another full model M4 without sharing
the classifier C and the regressor R between visual and semantic embedding. However, the
performance of M4 is lower than that of M3. It implies that the sharing mechanism helps
leveraging the relations between the two embeddings.
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CUB SUN AWA FLO
Model Variants T H T H T H T H
M1: AVSE (Luav) 56.8 469 58.1 344 664 579 652 632
M2: AVSE (Lyav + Leis) 60.1 514 618 397 685 60.6 67.5 664
M3: AVSE (Logy+Leis+Lreg) 615 543 63.6 431 698 62.1 69.0 66.7
M4: AVSE-unshared 60.7 528 624 413 690 614 684 66.1

Table 4: Ablation study on several AVSE variants. We report the top-1 accuracy T in the
ZSL setting and the harmonic mean H in the GZSL setting.

Visual Feature Space Visual Feature Space Latent Feature Space

15
10 %@5 10 gn*‘tg 20
. g . %-%g’ o Seen class (Real)
e T A Seen class (Fake)
0 % 0 G ° :',7;@“ 0 Unseen class (Real)
5 5 %0 i ‘égg -10 rf#?gﬂ Unseen class (Fake)
br 1R
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-20 0 20 -20 0 20 -20 0 20

Figure 4: Analyzing the distributions of real and fake samples. Left: f~CLSWGAN [39].
Middle: Lis-GAN [18]. Right: Our AVSE. We select a seen class (i.e. Spotted Catbird) and
an unseen class (i.e. American Pipit) from CUB. Each method synthesizes 100 fake samples
for the two classes. AVSE separates the two classes with a larger distance.

4.3 Detailed Analysis

We provide more experiments to further analyze the strength of AVSE and compare it with
two recent generative methods, f~-CLSWGAN [39] and Lis-GAN [18].

Distribution of real and fake samples. Figure 4 vi-
sualizes the t-SNE distributions [31] for a seen class
and an unseen class from CUB. For f-CLSWGAN and

Lis-GAN, real samples represent the ground-truth vi- Method Dist.  Var

sual features and fake samples are the synthetic visual ~ f-CLSWGAN  0.568 0.136
features. For AVSE, visual and semantic embeddings Lis-GAN 0.588 0.129
in the latent space act as real and fake samples, respec- AVSE 0.654 0.122

tively. We can see that AVSE leads to a large distance
between the seen class and the unseen class, while
f-CLSWGAN and Lis-GAN suffer from the misclas-

Table 5: Quantifying the distribu-
tions of CUB classes with between-
class distance (Dist.) and within-

sification due to the small distance between the two
classes. Furthermore, we quantify the distributions
with between-class distance and within-class variance. For any seen class, we compute its
prototype by average the visual embeddings of its image instances. For each unseen class,
its prototype is based on averaging a number of synthetic semantic embeddings. We calcu-
late the between-class distance between any two prototypes, and the within-class variance
by comparing the distance of each sample to its prototype. As reported in Table 5, AVSE
can enlarge the between-class distance, as well as retain a small within-class variance.

Number of synthetic samples. We analyze the effect of increasing the number of synthetic
samples on the performance (i.e. T accuracy) of ZSL. The number we test ranges from 1 to
500 (Fig 5). It is worth noting that AVSE obtains good performance, even if we generate
few samples per class. Specifically, when the number is 1, the accuracy for AVSE is 49.7%

class variance (Var.).


Citation
Citation
{Xian, Lorenz, Schiele, and Akata} 2018

Citation
Citation
{Li, Jing, Lu, Ding, Zhu, and Huang} 2018

Citation
Citation
{Xian, Lorenz, Schiele, and Akata} 2018

Citation
Citation
{Li, Jing, Lu, Ding, Zhu, and Huang} 2018

Citation
Citation
{vanprotect unhbox voidb@x penalty @M  {}der Maaten and Hinton} 2008


10 Y. LIU, T. TUYTELAARS: ADVERSARIAL VISUAL-SEMANTIC EMBEDDING
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Figure 5: Analyzing the effect of the number of synthetic samples on the T accuracy in ZSL.

Unseen class ZSL GZSL
f-CLSWGAN: White breasted Nuthatch; Loggerhead Shrike; | f-CLSWGAN: Great Grey Shrike; White breasted Nuthatch;
Mockingbird; Groove billed Ani; Tree Swallow Loggerhead Shrike; Mockingbird; Black throated Blue Warbler
Lis-GAN: White breasted Nuthatch; Loggerhead Shrike; Lis-GAN: Great Grey Shrike; White breasted Nuthatch; Loggerhead Shrike;
Tree Swallow; Groove billed Ani; Scott Oriole Black throated Blue Warbler; Black throated Sparrow

AVSE: Loggerhead Shrike; Groove billed Ani; Tree Swallow; ! AVSE: Loggerhead Shrike; Red legged Kittiwake; Groove billed Ani;

Red legged Kittiwake; Yellow billed Cuckoo Tree Swallow; Forsters Tern

f-CLSWGAN: watering hole; tundra; field cultivated; f-CLSWGAN: marsh; estuary; pond; lake natural; river
canal natural; bog

Lis-GAN: watering hole; canal natural; bog; vineyard; Lis-GAN: watering hole; marsh; estuary; pond; bog
field cultivated

AVSE: bog; parking lot; watering hole; workshop; motel; AVSE: marsh; estuary; bog; parking lot; vineyard

Figure 6: Analyzing different predictions from ZSL and GZSL. The first unseen class is from
CUB and the second one is from SUN. We show the class labels of the top-5 predictions
under ZSL (Middle) and GZSL (Right). The seen class labels and unseen class labels are in
green and blue, respectively. The ground-truth labels are underlined.

on CUB and 42.6% on SUN, which is largely higher than that of f-CLSWGAN (27.2%
and 23.6%) and Lis-GAN (25.9% and 26.1%). When the number is larger than 100, the
performance becomes stable. Without loss of generalization, we use AVSE to synthesize
200 samples per class for all the four datasets.

Qualitative comparison. Moreover, we exhibit some qualitative results in Fig. 6. AVSE
estimates better predictions than f-CLSWGAN and Lis-GAN. In addition, we can observe
the different predictions under the ZSL and GZSL settings. Since GZSL needs to classify
both seen and unseen classes, its predictions are more difficult than ZSL.

5 Conclusion

We have proposed a simple and effective baseline model for zero-shot learning. The compo-
nents in AVSE are pre-existing, however, integrating those components to design a generic
baseline model is as important as exploring a specific approach. In addition, we perform
embedding-to-image generation which visually exhibits the embeddings. The results across
the datasets consistently show the improvements of our AVSE over previous baselines. AVSE
has the potential to serve as a new baseline for ZSL. In the future,it is encouraged to improve
the quality of synthetic data by imposing graph structure.

Acknowledgements. This research was funded by the FWO project “Structure from Se-
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