
RINGWALD ET AL.: UDA BY UNCERTAIN FEATURE ALIGNMENT 1

Unsupervised Domain Adaptation by
Uncertain Feature Alignment
Tobias Ringwald
tobias.ringwald@kit.edu

Rainer Stiefelhagen
rainer.stiefelhagen@kit.edu

Institute for Anthropomatics and
Robotics (CV:HCI Lab)
Karlsruhe Institute of Technology
Karlsruhe, Germany

Abstract

Unsupervised domain adaptation (UDA) deals with the adaptation of models from a
given source domain with labeled data to an unlabeled target domain. In this paper, we
utilize the inherent prediction uncertainty of a model to accomplish the domain adapta-
tion task. The uncertainty is measured by Monte-Carlo dropout and used for our pro-
posed Uncertainty-based Filtering and Feature Alignment (UFAL) that combines an Un-
certain Feature Loss (UFL) function and an Uncertainty-Based Filtering (UBF) approach
for alignment of features in Euclidean space. Our method surpasses recently proposed
architectures and achieves state-of-the-art results on multiple challenging datasets. Code
is available on the project website.

1 Introduction
Training modern convolutional neural network (CNN) architectures with millions of param-
eters requires a vast amount of training data. However, data might be very expensive or
difficult to acquire for a target domain while labeled data is readily available from another
domain (source data). For example, the source domain could be constructed from synthetic
data while classifying unannotated data (e.g. medical images) is the actual inference task.
Unfortunately, the domain difference between source and target data results in a severely
degraded performance when evaluating a source-trained model on the new target domain.

Unsupervised domain adaptation seeks to address this domain shift problem in order
to maximize a model’s accuracy on unlabeled target images given only labeled data from
a source domain. Several different approaches have been proposed in recent research to
achieve this goal. Pixel-level methods try to manipulate source and target images through
style-transfer by mapping them into a joint image space so that a common classifier can be
used. At feature level, methods either try to minimize distribution divergence measures such
as the maximum mean discrepancy (MMD) [14], Kullback-Leibler divergence [23] or reach
feature similarity by enforcing domain confusion between source and target features through
adversarial training [12, 27]. Other approaches – such as [9, 21, 22] – have combined this
with a model’s predictive uncertainty by e.g. forcing the uncertainty distribution to be similar
on source and target data. In this paper, we also explore the usage of uncertainty for unsuper-
vised domain adaptation, which we quantify under the Monte Carlo dropout [6] approxima-
tion of Bayesian inference. However, in contrast to prior work, we leverage the uncertainty

c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Kang, Jiang, Yang, and Hauptmann} 2019

Citation
Citation
{Meng, Li, Gong, and Juang} 2018

Citation
Citation
{Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros, and Darrell} 2018

Citation
Citation
{Pinheiro} 2018

Citation
Citation
{Han, Zou, Gao, Wang, and Metaxas} 2019

Citation
Citation
{Long, Cao, Wang, and Jordan} 2018

Citation
Citation
{Manders, van Laarhoven, and Marchiori} 2018

Citation
Citation
{Gal and Ghahramani} 2016

2 RINGWALD ET AL.: UDA BY UNCERTAIN FEATURE ALIGNMENT

35%

30% 25%

10%

A

B C

D

(a) (b)
Figure 1: Our two applications of uncertainty: (a) Iteratively reassigned Uncertain Feature
Means (UFM). Instead of having a fixed position, feature means move depending on the
assignment of grey samples. In a 2D example, we can visualize the uncertain area with
dashed circles. In higher dimensions, this produces a hypersphere. (b) Uncertainty-based
distances for the Uncertain Feature Loss (UFL). The distance of the current sample (grey
blob) is adjusted based on its uncertain assignment to the class set {A,B,C,D}.

for feature alignment in Euclidean space and also for filtering of target data instances. Fur-
thermore, we identify batch-normalization [3, 13] as point of failure for domain adaptation
training on multiple GPUs and present a concept based on ghost batch-normalization [11]
to fix this problem. Our thorough experimental section shows that our proposed approach
achieves state-of-the-art results on popular UDA benchmark datasets.

To summarize, our contributions are as follows: (i) We propose a new loss function
that exploits a model’s uncertainty for feature alignment in Euclidean space and filtering of
uncertain pseudo-labels. (ii) We extend the concept of ghost batch-normalization to UDA
setups and propose the smart batch layout (SBL). (iii) In combination, our proposed ap-
proach achieves state-of-the-art (SOTA) results on multiple benchmark datasets such as
Office-Home [33] and Office-Caltech [8]. Code will be made available to the community
to encourage the reproduction of our results.

2 Related Work

In prior research, the domain shift problem was tackled in multiple different ways: The au-
thors of [1] propose an image-level domain adaptation approach that leverages style transfer.
Synthetic data is used for training and then transferred into the real domain to achieve do-
main adaptation for monocular depth estimation. Similarly, Bousmalis et al. [2] also use a
GAN-based approach to modify source examples and make them appear as if drawn from
the target domain. Methods based on feature-level adaptation have also been proposed: One
of the first works in this direction was proposed by Ganin et al. [7]. They present a gradient
reversal layer that is attached to a feature extractor. This often called RevGrad layer forces
the feature distributions from the source and target domain to be as indistinguishable as pos-
sible, thus yielding domain-invariant representations. Similarly, Pinheiro et al. [27] use a
prototype-based algorithm that forces features extracted by a CNN to be domain-invariant.
They propose a setup that eventually learns a pairwise similarity between said prototypes
and images from the target domain. Another popular way to match feature representations

Citation
Citation
{Chang, You, Seo, Kwak, and Han} 2019

Citation
Citation
{Ioffe and Szegedy} 2015

Citation
Citation
{Hoffer, Hubara, and Soudry} 2017

Citation
Citation
{Venkateswara, Eusebio, Chakraborty, and Panchanathan} 2017

Citation
Citation
{Gong, Shi, Sha, and Grauman} 2012

Citation
Citation
{Atapour-Abarghouei and Breckon} 2018

Citation
Citation
{Bousmalis, Silberman, Dohan, Erhan, and Krishnan} 2017

Citation
Citation
{Ganin and Lempitsky} 2015

Citation
Citation
{Pinheiro} 2018

RINGWALD ET AL.: UDA BY UNCERTAIN FEATURE ALIGNMENT 3

between domains is based on maximum mean discrepancy. While already used by Long et
al. [19], it was recently picked up again by Kang et al. [14] and achieves domain adaptation
by minimizing this measure between the source and target distributions. Chang et al. [3] fol-
low another direction and propose domain-specific batch-normalization layers to capture the
different distributions between the domains. Other approaches combine these feature- and
image-level approaches. Hoffman et al. [12], for example, proposed the CyCADA frame-
work, that adapts feature representations at both the feature- and pixel-level by enforcing
local and global structural consistency. Additionally, they use cycle-consistent pixel trans-
formation, which they show to be important for their semantic segmentation task.

The usage of a prediction model’s uncertainty was also the subject of prior research in
domain adaptation. The foundation for many works using uncertainty is the popular Monte
Carlo dropout (MC dropout) [6]. MC dropout leverages the standard dropout layer [30] dur-
ing inference time to get varying probability outputs which can be seen as an approximation
to Bayesian inference in deep Gaussian processes. Long et al. [21], for example, control the
classifier uncertainty to guarantee the transferability and also condition a domain discrimi-
nator on the uncertainty of classifier predictions. Han et al. [9] propose the calibration of
predictive uncertainty of target domain samples given the source domain uncertainties. They
quantify their model’s uncertainty by a Bayesian Neural Network under a general Rényi en-
tropy regularization framework. Manders et al. [22] make use of an adversarial approach
that enforces the target domain uncertainties to be indistinguishable from the source domain
uncertainties. In this work, we explore the use of uncertainty in a different way than prior
work: We do not use adversarial or pixel-level methods but instead consider uncertainty as
a distance measure at the feature level. Given a CNN feature extractor and uncertainties ob-
tained through MC dropout, we align the features in Euclidean space in a way that reflects
the model’s uncertainty. This helps to separate distinct classes during early training while
keeping together instances with high confusion potential until their certainty level rises. In
a similar way, we exploit a model’s uncertainty to filter low quality pseudo-labels and defer
their usage for later training stages.

3 Approach
In an unsupervised domain adaptation (UDA) setup, we consider a labeled source domain
dataset Ds = {(x(i)s ,y(i)s)}Ns

i=1 and unlabeled target domain dataset Dt = {x(i)t }Nt
i=1, where x(i)s

is the i-th example in the source domain and y(i)s ∈ C is its corresponding label from label set
C with |C|= N classes. The objective is then to predict the associated ground truth label y(i)t

for a given x(i)t . For our approach, we utilize a common CNN feature extractor (f (·), such
as ResNet [10]) in conjunction with a classifier (cl(·)) that predicts class probabilities. We
denote their combination as g(·) with trainable weights θ .

With this setup, we can now formally introduce our concept of uncertainty using MC
dropout. Let NMC be the number of stochastic forward passes using MC dropout. We can
then calculate the new class probabilities as

p̃(x(i)t) =
1

NMC

NMC

∑
j=1

cl
(

f (x(i)t)�m j

)
, (1)

where m j is a mask drawn from a Bernoulli distribution according to the dropout rate and� is
the element-wise multiplication. We interpret the averaged probabilities p̃(·) as a proxy

Citation
Citation
{Long, Wang, Ding, Sun, and Yu} 2013

Citation
Citation
{Kang, Jiang, Yang, and Hauptmann} 2019

Citation
Citation
{Chang, You, Seo, Kwak, and Han} 2019

Citation
Citation
{Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros, and Darrell} 2018

Citation
Citation
{Gal and Ghahramani} 2016

Citation
Citation
{Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov} 2014

Citation
Citation
{Long, Cao, Wang, and Jordan} 2018

Citation
Citation
{Han, Zou, Gao, Wang, and Metaxas} 2019

Citation
Citation
{Manders, van Laarhoven, and Marchiori} 2018

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

4 RINGWALD ET AL.: UDA BY UNCERTAIN FEATURE ALIGNMENT

measure for how uncertain (or certain) the model is in its predictions. Under this definition,
a model would be completely uncertain of its prediction when p̃ is equal to the uniform
distribution and completely certain when it can be expressed by the Kronecker delta function.
Usually, the probability distribution exhibits a few distinct peaks. These are the classes the
model is confused by and which it can not separate given the current training progress.
For brevity, we will use p to denote the usual softmax probabilities of a network and p̃ to
denote the probability distribution obtained by averaging NMC MC dropout iterations. In the
following sections, we will describe how this uncertainty measure is used to achieve UDA.

3.1 Binned Instance Sampling
As the foundation of our method, we propose a new sampling scheme called Binned Instance
Sampling (BIS). Before applying BIS, we first train our classification network g with weights
θ in a supervised fashion on data tuples (x(i)s ,y(i)s) ∈ Ds. This already enables us to obtain
a probability distribution p(i)t = {gθ (x

(i)
t)|x(i)t ∈ Dt} for every target domain image. Every

few training steps, we estimate pseudo-labels as p̂(i)t = argmax
c∈C

p(i)t,c and associate it with the

i-th example in the target domain. Based on this, we start the actual domain adaptation
phase. Evidently, a model only trained on the source domain will suffer from the domain
shift problem and produce noisy label estimates. The goal of BIS is to reduce the impact
of wrong pseudo-labels by preferring high confidence examples while still considering the
whole target domain dataset for training.

Given NB bins of decreasing size λ = {λ0, ...,λNB−1}, BIS first groups target domain
examples into structure κ1..|C| based on their pseudo-label assignment and then sorts them
in descending order based on their softmax probability pp̂ where p̂ was obtained earlier by
pseudo-labeling. At this point, a class c ∈ C is drawn. We then randomly sample instances
from κ according to Equation 2. Here, sample(a, b) randomly takes b samples from the list
of samples a and [·, ·] is the slicing operator.

Tc =
NB−1⋃
i=0

sample
(

κc

[
i
|κc|
NB

,(i+1)
|κc|
NB

]
,λi

)
(2)

For a batch B with size |B|, this sampling process is repeated until |
⋃

cTc| = |B|
2 is reached

where Tc is the set consisting of ∑ j λ j instances of randomly sampled class c. The other half
of the batch is similarly sampled from the source domain and denoted by S. In this case,
however, the order of samples is irrelevant. The final result of BIS is two lists S and T both
containing instances for the same classes. Note that T is based on fuzzy pseudo-labels and
might contain instances that do not correspond to the sampled class label. The further usage
of these two lists for training is discussed in the following section.

3.2 Smart Batch Layout
The batch-normalization layer first proposed by Ioffe et al. [13] is an important part of most
modern neural network architectures. Batch-normalization is said to address the internal co-
variate shift problem and enables faster training with higher learning rates. During training,
batch-normalization whitens a given input feature map x by applying Equation 3. Here, µ

and σ2 are the channel-wise mean and variance of all channel-slices in a mini-batch. γ and

Citation
Citation
{Ioffe and Szegedy} 2015

RINGWALD ET AL.: UDA BY UNCERTAIN FEATURE ALIGNMENT 5

Replica 1 Replica 2 Replica 3

Target

Source

Replica 4

Figure 2: Visualization of our proposed smart batch layout (SBL) with 4 replicas, 6 classes
and 2 domains. Each colored box is representing multiple images of a certain class.

β are learnable parameters that can scale and shift the outputs if necessary. Additionally, an
exponential moving average is calculated over the mini-batch µ and σ2 values while train-
ing. During test time, these aggregated population statistics are used instead of the current
mini-batch statistics.

BatchNorm(x) = γ
x−µ√
σ2 + ε

+β (3)

In modern deep learning frameworks (e.g. PyTorch [25]) models can often be distributed
over multiple GPUs. To avoid synchronization overhead during training, these frameworks
calculate the mean and variance only over the partial mini-batch on the local replica, e.g. for
a batch size of 128 and 4 GPUs, every replica would consider only 32 examples. Updates
to the population statistics are only done on the first replica and then broadcasted before the
next forward pass. While this setup – sometimes referred to as ghost batch-normalization –
is not the correct implementation w.r.t. [13], it can actually help to improve results [11].

However, this can be problematic in UDA setups. As per definition of the domain adap-
tation problem, the source and target data are drawn from a different distribution. Consider
e.g. a source domain of synthetic data (gray scale images) and a target domain of real world
images (full RGB): When using multiple GPUs for training, the updates to µ and σ2 are now
highly dependent on the order of examples within a mini-batch as the statistics are only com-
puted per replica. If exclusively source instances are on the first replica, only their means
and variances will contribute to the test time population statistics; the same holds true for
other extreme constellations. This hinders domain adaptation performance when using the
same network as pseudo-labeler, as the statistics are now adjusted for the source distribution.
We propose the smart batch layout to counteract this problem: Given the two lists S and T
from the previous section and number of replicas NR, we distribute the sampled instances so
that every replica contains |B|

2×NR
samples from both S and T . Examples from a single class

(Sc and Tc) are first equally exhausted before considering the next class. Overall, this evenly
distributes classes and domains so that every replica considers both the source and target
distributions for local statistics computations. The same concept applies to the first replica
responsible for the aggregation of population statistics and is visualized in Figure 2.

3.3 Uncertain Feature Loss and Filtering

Only training on pseudo-labels generated by our model g leads to degraded performance, be-
cause wrong predictions are eventually considered as training targets during the following it-
erations. We thus try to make the model aware of its own prediction uncertainty and consider

Citation
Citation
{Paszke, Gross, Chintala, etprotect unhbox voidb@x protect penalty @M {}al.} 2017

Citation
Citation
{Ioffe and Szegedy} 2015

Citation
Citation
{Hoffer, Hubara, and Soudry} 2017

6 RINGWALD ET AL.: UDA BY UNCERTAIN FEATURE ALIGNMENT

other plausible classes instead of only the maximum prediction. Recall from above our basic
training loop: After training g on the source domain, we start the adaptation phase by gen-
erating pseudo-labels (p̂(i) from distribution p(i)) every few mini-batches. Additionally, we
calculate the uncertainty distribution p̃ and features ϒ = {∀i : υ(i) = f (x(i))}. We then gener-
ate mean features for all classes. However, we do not rely on the maximum prediction p̂ but
instead assign a class based on the uncertainty p̃ by conducting weighted random sampling
p(i) = weightedSampling(C, p̃(i)). Given these assignments, we then construct uncertain
mean features (UFM) for every class as Ω(c) = 1

|ιc| ∑ ιc, where ιc = {υ(i)|υ(i) ∈ϒ∧ p(i) = c}.
Because p is resampled every few steps, this does not result in a fixed feature mean, but in-
stead in an uncertain hypersphere around the class mean embedding based on the current
iteration’s assignments (visualized in Figure 1a).

The distribution p̃(i)c can be interpreted as a measure for how likely the model currently
thinks the i-th example belongs to class c. We propose to use this information as a distance
measure in order to align the features in Euclidean space according to the uncertainty. In-
tuitively, the distance between a feature embedding and a class mean embedding should be
minimized when the model is certain about its assignment and maximized when it is uncer-
tain. Figure 1b visualizes this in a toy example. There, the current sample x(i) (grey disk) has
p̃(i) = {0.35,0.30,0.25,0.10} for the 4 classes. We now want to align f (x(i)) in a way that its
distance to the uncertain class means reflects p̃(i): Distances to more likely assignments are
kept low, while unlikely ones are pushed further away in comparison. As a result, highly un-
likely classes (such as D) are separated from x(i) due to their low probability so that the model
only needs to discriminate a reduced subset of possible assignments during following train-
ing steps. This can be seen as a deferred feature disentanglement: First, easy to distinguish
classes are separated from each other due to having a single peak in the uncertainty distribu-
tion, thus minimizing the distance towards that class. As training progresses, the model sees
more and more target data which improves its feature estimation and prediction qualities.
For hard to classify examples, this shifts the multimodal uncertainty distribution towards a
Kronecker delta, eventually forcing the model to also separate the more difficult samples.
Implementation-wise, we achieve this by enforcing the softmax-normalized negative `2 dis-
tances to all class mean embeddings to reflect p̃(i). With these preconditions, we can write
our proposed Uncertain Feature Loss (UFL) loss function as a combination of above uncer-
tain feature alignment (distance-based) and the current pseudo-label p̂ (prediction-based) in
Equation 4.

LUFL(x, Ω) =−∑
c∈C

distance-based︷ ︸︸ ︷
p̃c log ζ

2 ({
ω ∈Ω : -|| fθ (x)−ω||22

})
c−∑

c∈C

prediction-based︷ ︸︸ ︷
φ(p̂)c log(gθ (x)c) (4)

where ζ (z)k =
ezk

∑ j ez j
and φ(z)c =

{
1, z = c
0, z 6= c

(5)

Our UFL loss is only applied to the target domain samples during training; source instances
are trained with normal cross-entropy loss with label smoothing. Additionally, we consider
another use for p̃: As written above, p̃ contains information about how certain the model is
for a class assignment. A peak of 100% for one class reflects total certainty while a uniform
distribution reflects total uncertainty. In the latter case, the sample should not be used for
training as its pseudo-label is inaccurate with high probability. Based on this observation,
we also propose Uncertainty-Based Filtering (UBF), which removes a sample from training
if ∑ topk(p̃(i)) ≤ ϕ where ϕ is a fixed threshold. Parameter k is dynamically set as |C|4 thus

RINGWALD ET AL.: UDA BY UNCERTAIN FEATURE ALIGNMENT 7

(a) Office-Home (b) Office-Caltech (c) VisDA 2017
Figure 3: Example images from the three datasets used for evaluation: (a) Office-Home with
Art, Clipart, Product and Real-world domains. (b) Office-Caltech with Amazon, Caltech,
DSLR and Webcam domains. (c) VisDA 2017 with synthetic and real domains.

depending on the total number of classes in a dataset and considering the rising uncertainty
that comes with more classes. Intuitively, this enforces the top classes to contain the majority
of the probability mass. The UBF process also removes samples from the UFM calculation,
therefore providing a cleaner estimate for the class means.

4 Experiments

4.1 Setup

Datasets. We evaluate our proposed method on three public benchmark datasets: Office-
Home [33] is a challenging dataset with 15,588 images from 65 classes in the four domains
Art, Clipart, Real-World and Product. Especially the Art and Clipart domains constitute a
large domain gap to real-world data. Additionally, we use the Office-Caltech dataset with
2,533 images from 10 classes in the four domains Amazon, Caltech, DSLR and Webcam.
Finally, we also evaluate on the Syn2Real-C (VisDA 2017) dataset [26] with 152,397 syn-
thetic 3D renders as well as 55,388 (validation set) and 72,372 (test set) real-world images
from 12 classes. Examples from the three datasets are shown in Figure 3.
Hyperparameters. For our Office-Home and Office-Caltech experiments, we use ResNet-
50 [10] as feature extractor; for VisDA 2017 ResNet-101 is the common setup. In both
cases, networks are pretrained on ImageNet. We append one linear layer for classification
and jointly optimize all parameters using SGD with Nesterov momentum [24] of 0.95. When
generating p̃, we use NMC=20 iterations with MC dropout rate 85%. Features and p̂ are cal-
culated every 50 forward passes, p (and thus UFM) is resampled every five steps. For the
purpose of SBL evaluation, we train on 4 NVIDIA GTX 1080 Ti GPUs.
Our code is implemented in PyTorch [25] and available on the project website1. Please refer
to the supplementary material for further information about the training process.

4.2 Results

Ablation Study. We start by conducting an ablation study for every part of our proposed
method and show the results on the VisDA 2017 dataset in Table 1. Note that these results

1https://gitlab.com/tringwald/ufal

Citation
Citation
{Venkateswara, Eusebio, Chakraborty, and Panchanathan} 2017

Citation
Citation
{Peng, Usman, Kaushik, Hoffman, Wang, and Saenko} 2017

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Nesterov} 1983

Citation
Citation
{Paszke, Gross, Chintala, etprotect unhbox voidb@x protect penalty @M {}al.} 2017

https://gitlab.com/tringwald/ufal

8 RINGWALD ET AL.: UDA BY UNCERTAIN FEATURE ALIGNMENT

Method Accuracy Rel. Gain
Source only 58.3 +0.0
BIS + source first 63.0 +4.7
BIS + random 75.6 +17.3
BIS + SBL (random order) 76.4 +18.1
BIS + target first 76.5 +18.2
BIS + SBL 78.4 +20.1
BIS + SBL + UBF 78.0 +19.7
BIS + SBL + UFL 79.8 +21.5
BIS + SBL + UFL + UBF (no UFM) 78.8 +20.5
BIS + SBL + UFL + UBF (UFAL) 81.8 +23.5

Table 1: Ablation study for the different parts of our proposed method on the VisDA 2017
validation set. Note that these results are reported as standard accuracy (in %).

Set Method aero bicycle bus car horse knife motor person plant skate train truck Avg.

Val Source only 64.7 30.8 70.1 69.8 80.1 20.2 85.4 25.0 73.1 36.7 85.9 7.1 54.1
Val SimNet-152 [27] 94.3 82.3 73.5 47.2 87.9 49.2 75.1 79.7 85.3 68.5 81.1 50.3 72.9
Val ADR [15] 87.8 79.5 83.7 65.3 92.3 61.8 88.9 73.2 87.8 60.0 85.5 32.3 74.8
Val SAFN [37] 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
Val DSBN [3] 94.7 86.7 76.0 72.0 95.2 75.1 87.9 81.3 91.1 68.9 88.3 45.5 80.2
Val DTA [17] 93.7 82.8 85.6 83.8 93.0 81.0 90.7 82.1 95.1 78.1 86.4 32.1 81.5
Val SE-152 [4] 95.9 87.4 85.2 58.6 96.2 95.7 90.6 80.0 94.8 90.8 88.4 47.9 84.3
Val CAN [14] 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
Val UFAL (ours) 97.6 82.4 86.6 67.3 95.4 90.5 89.5 82.0 95.1 88.5 86.9 54.0 84.7
Test CAN [14] — — — — — — — — — — — — 87.4
Test SDAN [5] 94.3 86.5 86.9 95.1 91.1 90.0 82.1 77.9 96.4 77.2 86.6 88.0 87.7
Test UFAL (ours) 94.9 87.0 87.0 96.5 91.8 95.1 76.8 78.9 96.5 80.7 93.6 86.5 88.8

Table 2: Classification accuracy (in %) for different methods on the VisDA 2017 dataset.
ResNet-101 is used as a backbone if not denoted by a hyphenated suffix.

are reported as standard accuracy instead of mean accuracy so that the class imbalance does
not influence the evaluation. Our baseline is a model trained only on the source domain data.
When adding our Binned Instance Sampling, this lower bound can already be improved by
up to 20.1%. However, we confirm that the multi-GPU batch-normalization (BN) is indeed
highly dependent on the batch order (see section 3.2): Keeping only source data on the first
replica leads to a degraded performance. This is expected as updates to µ and σ of the BN
layers are calculated purely over the source data, while the evaluation is on target data with
a highly different distribution. Moving all target data to the front of the batch solves this
and results in more than 13% improvement compared to the previous setup. A random batch
order is surprisingly competitive but worse than the target first setup. This is because a ran-
dom order does not avoid extreme constellations such as only source data on a replica. We
finally evaluate our proposed smart batch layout (SBL): Compared to other batch layouts,
SBL achieves the highest accuracy of 78.4%. We also show that it is necessary to keep sam-
ples from the same class together: The SBL (random order) setup is similar to SBL in terms
of the 50% split of source/target data per replica but uses randomly drawn source or target
examples. This control experiment shows similar performance as the target first setup and
reinforces the need for the SBL setup as proposed in section 3.2.
Based on the BIS+SBL setup, we now also show the effectiveness of our proposed uncertainty-
based loss and filtering in Table 1. Simply adding the UFL loss already results in a 1.4%
improvement. To control for the standalone effect of UBF, we also evaluate SBL+UBF,
which shows no significant improvement over SBL alone. However, combining UFL and
UFB into the Uncertainty-based Filtering and Feature Alignment (UFAL) leads to another

Citation
Citation
{Pinheiro} 2018

Citation
Citation
{Kuniakiprotect unhbox voidb@x protect penalty @M {}Saito and Saenko} 2018

Citation
Citation
{Xu, Li, Yang, and Lin} 2019

Citation
Citation
{Chang, You, Seo, Kwak, and Han} 2019

Citation
Citation
{Lee, Kim, Kim, and Jeong} 2019

Citation
Citation
{French, Mackiewicz, and Fisher} 2018

Citation
Citation
{Kang, Jiang, Yang, and Hauptmann} 2019

Citation
Citation
{Kang, Jiang, Yang, and Hauptmann} 2019

Citation
Citation
{G.protect unhbox voidb@x protect penalty @M {}Csurka and Clinchant} 2020

RINGWALD ET AL.: UDA BY UNCERTAIN FEATURE ALIGNMENT 9

Method A C D W Avg.C D W A D W A C W A C D
RTN [20] 88.1 95.5 95.2 93.7 94.2 96.9 93.8 84.6 99.2 92.5 86.6 100.0 93.4
Rahman et al. [28] 89.1 96.6 95.7 93.6 93.4 95.2 94.7 84.7 99.4 94.8 86.5 100.0 93.6
ADACT [18] 92.7 96.5 95.0 94.3 93.0 93.7 94.9 88.7 99.0 94.2 90.3 100.0 94.4
GTDA+LR [32] 91.5 98.7 94.2 95.4 98.7 89.8 95.2 89.0 99.3 95.2 90.4 100.0 94.8
RWA [31] 93.8 98.9 97.8 95.3 99.4 95.9 95.8 93.1 98.4 95.3 92.4 99.2 96.3
Rakshit et al. [29] 92.8 98.9 97.0 96.0 99.0 97.0 96.5 97.0 99.5 95.5 91.5 100.0 96.8
UFAL (ours) 95.1 99.4 99.7 96.0 96.8 99.7 95.8 95.0 99.7 96.3 95.0 99.4 97.3

Table 3: Classification accuracy (in %) for different methods on the Office-Caltech dataset
with domains Amazon, Caltech, DSLR and Webcam.

Method Ar Cl Pr Rw Avg.Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr
CDAN+E [21] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
MDDA [34] 54.9 75.9 77.2 58.1 73.3 71.5 59.0 52.6 77.8 67.9 57.6 81.8 67.3
TADA [36] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60 82.9 67.6
SymNets [38] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
CDAN+TransNorm [35] 50.2 71.4 77.4 59.3 72.7 73.1 61.0 53.1 79.5 71.9 59.0 82.9 67.6
CADA-P [16] 56.9 76.4 80.7 61.3 75.2 75.2 63.2 54.5 80.7 73.9 61.5 84.1 70.2
UFAL (ours) 58.5 75.4 77.8 65.2 74.7 75.0 64.9 58.0 79.9 71.6 62.3 81.0 70.4

Table 4: Classification accuracy (in %) for different methods on the Office-Home dataset
with domains Art, Clipart, Product and Real-world.

2% improvement on top, beating all other evaluated setups. Additionally, we also control for
the effect of the uncertain feature means (UFM) by not resampling from p but instead using
p̂ for class assignments. This decreases the accuracy and shows the need for UFM – static
feature means just encourage overfitting. Overall, our proposed UFAL method reaches the
best accuracy of 81.8%, improving the baseline by 23.5%.

Comparison to SOTA. We now compare our proposed method to recent state-of-the-
art approaches. Results for the VisDA 2017 datasets are shown in Table 2 and reported as
average class accuracy, in accordance with the VisDA challenge evaluation metric. The test
set labels were private up until recently due to being part of a challenge – prior research
thus focused on the validation set. On this subset, UFAL surpasses recent methods such
as SimNet [27], SAFN [37], DSBN [3] and even SE [4] – the winner of the VisDA 2017
challenge. While CAN [14] is slightly better on the validation set, this does not transfer to
the real test set where UFAL leads with 88.8%. On the test set, UFAL also outperforms
SDAN [5], which uses an ensemble of four different network architectures and multiple
runs for domain adaptation. Given the current VisDA 2017 leaderboard, UFAL would rank
2nd place – only behind a 5× ResNet-152 ensemble with results averaged over 16 test time
augmentation runs. However, this is not a fair comparison to our single ResNet-101 setup.

Additionally, Table 3 compares UFAL to SOTA methods on the Office-Caltech dataset.
Again, we surpass recently proposed methods such as GTDA+LR [32] and RWA [31]. UFAL
even outperforms the ensemble based algorithm of Rakshit et al. [29] by 0.5%.

Finally, we also report results on the challenging Office-Home dataset in Table 4. Yet
again, our proposed UFAL approach outperforms recent SOTA methods such as CADA-
P [16], TADA [36] and SymNets [38]. Overall, our experiments show that UFAL can achieve
state-of-the-art results on a wide variety of tasks and perform unsupervised domain adapta-
tion even in complex setups such as learning from synthetic, product or clipart images.

Visualizations. In Figure 4a, we show the number of target domain samples filtered by
UBF as training progresses. Expectedly, the amount of filtered samples starts at a high per-
centage due to the initial uncertainty that eventually declines as training converges. We note

Citation
Citation
{Long, Zhu, Wang, and Jordan} 2016

Citation
Citation
{Rahman, Fookes, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Li, He, Li, and Yang} 2019

Citation
Citation
{Vascon, Aslan, Torcinovich, van Laarhoven, Marchiori, and Pelillo} 2019

Citation
Citation
{van Laarhoven and Marchiori} 2017

Citation
Citation
{Rakshit, Chaudhuri, Banerjee, and Chaudhuri} 2019

Citation
Citation
{Long, Cao, Wang, and Jordan} 2018

Citation
Citation
{Wang, Chen, Feng, Yu, Huang, and Yang} 2020

Citation
Citation
{Wang, Li, Ye, Long, and Wang} 2019{}

Citation
Citation
{Zhang, Tang, Jia, and Tan} 2019

Citation
Citation
{Wang, Jin, Long, Wang, and Jordan} 2019{}

Citation
Citation
{Kurmi, Kumar, and Namboodiri} 2019

Citation
Citation
{Pinheiro} 2018

Citation
Citation
{Xu, Li, Yang, and Lin} 2019

Citation
Citation
{Chang, You, Seo, Kwak, and Han} 2019

Citation
Citation
{French, Mackiewicz, and Fisher} 2018

Citation
Citation
{Kang, Jiang, Yang, and Hauptmann} 2019

Citation
Citation
{G.protect unhbox voidb@x protect penalty @M {}Csurka and Clinchant} 2020

Citation
Citation
{Vascon, Aslan, Torcinovich, van Laarhoven, Marchiori, and Pelillo} 2019

Citation
Citation
{van Laarhoven and Marchiori} 2017

Citation
Citation
{Rakshit, Chaudhuri, Banerjee, and Chaudhuri} 2019

Citation
Citation
{Kurmi, Kumar, and Namboodiri} 2019

Citation
Citation
{Wang, Li, Ye, Long, and Wang} 2019{}

Citation
Citation
{Zhang, Tang, Jia, and Tan} 2019

10 RINGWALD ET AL.: UDA BY UNCERTAIN FEATURE ALIGNMENT

0 20 40 60 80 100
Training progress (in %)

0

10

20

30

40

50

60

70

F
ilt

er
ed

 (
in

 %
)

Dataset

VisDA 2017

Office-Home (Rw-Ar)

Office-Home (Cl-Rw)

Office-Home (Ar-Pr)

Office-Home (Pr-Cl)

50 0 50 100 150
x

80

60

40

20

0

20

40

60

80

y

label

plant

horse

motorcycle

aeroplane

knife

car

bicycle

train

person

bus

truck

skateboard

(a) Uncertainty-based Filtering (b) Feature visualization
Figure 4: (a): Percentage of target domain samples filtered by the UBF process as the adap-
tation phase progresses. (b): t-SNE visualization of features extracted from the VisDA 2017
target domain before the adaptation process (top) and after the adaptation process (bottom).
Best viewed in the digital version.

that the number of filtered samples that remain at the end of the adaptation phase correlates
with the final accuracy of the considered datasets as well as their number of classes. This is
also expected, because the difficulty of the transfer task and the number of classes increase
the uncertainty of any given prediction and thus the filtering process. For the VisDA 2017
dataset, the filtered percentage drops to almost 0% due to its distinguishable 12 classes, while
the filtered percentage remains at ~17% for Office-Home’s hardest transfer task (Pr-Cl) with
65 classes.

Furthermore, we provide t-SNE visualizations for the VisDA 2017 validation set features
in Figure 4b. Evidently, the model has not learned discriminative target representations after
the source domain training: Almost all features are densely packed into a single cluster. After
the adaptation process with UFAL, the features are separated into clearly distinct clusters.
Due to UFAL’s alignment properties, related classes are also kept close in feature space (e.g.
car, truck and bus), therefore also providing a semantical interpretation. Further discussion
on these topics is provided in the supplementary material.

5 Conclusion
In this paper, we explore the usage of a model’s predictive uncertainty for unsupervised do-
main adaptation. Our proposed Uncertainty-based Filtering and Feature Alignment (UFAL)
method exploits uncertainty for filtering of training data and alignment of features in Eu-
clidean space. Additionally, we extend the concept of ghost batch-normalization to UDA
tasks and uncover the importance of a smart batch layout for multi-GPU training. We eval-
uate UFAL’s efficacy on three commonly used UDA benchmark datasets and achieve state-
of-the art results even when compared to strong baselines. Our code will be made available
to the community for reproduction of our results and to encourage further research.

RINGWALD ET AL.: UDA BY UNCERTAIN FEATURE ALIGNMENT 11

References
[1] Amir Atapour-Abarghouei and Toby P Breckon. Real-time monocular depth estimation

using synthetic data with domain adaptation via image style transfer. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 2800–2810,
2018.

[2] Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip
Krishnan. Unsupervised pixel-level domain adaptation with generative adversarial net-
works. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 3722–3731, 2017.

[3] Woong-Gi Chang, Tackgeun You, Seonguk Seo, Suha Kwak, and Bohyung Han.
Domain-specific batch normalization for unsupervised domain adaptation. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
7354–7362, 2019.

[4] Geoff French, Michal Mackiewicz, and Mark Fisher. Self-ensembling for visual do-
main adaptation. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=rkpoTaxA-.

[5] B. Chidlovskii G. Csurka and S. Clinchant. VisDA Classification Challenge:Runner-
Up Talk. https://ai.bu.edu/visda-2017/assets/attachments/
VisDA_NaverLabs.pdf, 2020. Accessed: 2020-03-31.

[6] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning. In international conference on machine
learning, pages 1050–1059, 2016.

[7] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropa-
gation. In Proceedings of the 32Nd International Conference on International Confer-
ence on Machine Learning - Volume 37, ICML’15, pages 1180–1189. JMLR.org, 2015.
URL http://dl.acm.org/citation.cfm?id=3045118.3045244.

[8] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for
unsupervised domain adaptation. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 2066–2073. IEEE, 2012.

[9] Ligong Han, Yang Zou, Ruijiang Gao, Lezi Wang, and Dimitris Metaxas. Unsupervised
domain adaptation via calibrating uncertainties. In CVPR Workshops, volume 9, 2019.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[11] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing
the generalization gap in large batch training of neural networks. In Advances in Neural
Information Processing Systems, pages 1731–1741, 2017.

[12] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,
Alexei A. Efros, and Trevor Darrell. Cycada: Cycle consistent adversarial domain
adaptation. In International Conference on Machine Learning (ICML), 2018.

https://openreview.net/forum?id=rkpoTaxA-
https://ai.bu.edu/visda-2017/assets/attachments/VisDA_NaverLabs.pdf
https://ai.bu.edu/visda-2017/assets/attachments/VisDA_NaverLabs.pdf
http://dl.acm.org/citation.cfm?id=3045118.3045244

12 RINGWALD ET AL.: UDA BY UNCERTAIN FEATURE ALIGNMENT

[13] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on Machine
Learning, pages 448–456, 2015.

[14] Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Hauptmann. Contrastive adapta-
tion network for unsupervised domain adaptation. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 4893–4902, 2019.

[15] Tatsuya Harada Kuniaki Saito, Yoshitaka Ushiku and Kate Saenko. Adversarial dropout
regularization. In International Conference on Learning Representations (ICLR), 2018.

[16] Vinod Kumar Kurmi, Shanu Kumar, and Vinay P Namboodiri. Attending to discrim-
inative certainty for domain adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 491–500, 2019.

[17] Seungmin Lee, Dongwan Kim, Namil Kim, and Seong-Gyun Jeong. Drop to adapt:
Learning discriminative features for unsupervised domain adaptation. In Proceedings
of the IEEE International Conference on Computer Vision, pages 91–100, 2019.

[18] Lusi Li, Haibo He, Jie Li, and Guang Yang. Adversarial domain adaptation via category
transfer. In 2019 International Joint Conference on Neural Networks (IJCNN), pages
1–8. IEEE, 2019.

[19] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S Yu.
Transfer feature learning with joint distribution adaptation. In Proceedings of the IEEE
international conference on computer vision, pages 2200–2207, 2013.

[20] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Unsupervised do-
main adaptation with residual transfer networks. In Advances in Neural Information
Processing Systems, pages 136–144, 2016.

[21] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional
adversarial domain adaptation. In Advances in Neural Information Processing Systems,
pages 1640–1650, 2018.

[22] Jeroen Manders, Twan van Laarhoven, and Elena Marchiori. Adversarial alignment of
class prediction uncertainties for domain adaptation. arXiv preprint arXiv:1804.04448,
2018.

[23] Zhong Meng, Jinyu Li, Yifan Gong, and Biing-Hwang Juang. Adversarial teacher-
student learning for unsupervised domain adaptation. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5949–5953.
IEEE, 2018.

[24] Yurii E Nesterov. A method for solving the convex programming problem with con-
vergence rate o (1/kˆ 2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.

[25] Adam Paszke, Sam Gross, Soumith Chintala, et al. Automatic differentiation in Py-
Torch. In NIPS Autodiff Workshop, 2017.

[26] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and Kate
Saenko. Visda: The visual domain adaptation challenge, 2017.

RINGWALD ET AL.: UDA BY UNCERTAIN FEATURE ALIGNMENT 13

[27] Pedro O Pinheiro. Unsupervised domain adaptation with similarity learning. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
8004–8013, 2018.

[28] Mohammad Mahfujur Rahman, Clinton Fookes, et al. On minimum discrepancy es-
timation for deep domain adaptation. CoRR, abs/1901.00282, 2019. URL http:
//arxiv.org/abs/1901.00282.

[29] Sayan Rakshit, Ushasi Chaudhuri, Biplab Banerjee, and Subhasis Chaudhuri. Class
consistency driven unsupervised deep adversarial domain adaptation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages
0–0, 2019.

[30] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[31] Twan van Laarhoven and Elena Marchiori. Unsupervised domain adaptation with ran-
dom walks on target labelings, 2017.

[32] Sebastiano Vascon, Sinem Aslan, Alessandro Torcinovich, Twan van Laarhoven, Elena
Marchiori, and Marcello Pelillo. Unsupervised domain adaptation using graph trans-
duction games. In 2019 International Joint Conference on Neural Networks (IJCNN),
pages 1–8. IEEE, 2019.

[33] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Pan-
chanathan. Deep hashing network for unsupervised domain adaptation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5018–
5027, 2017.

[34] Jindong Wang, Yiqiang Chen, Wenjie Feng, Han Yu, Meiyu Huang, and Qiang Yang.
Transfer learning with dynamic distribution adaptation. ACM Transactions on Intelli-
gent Systems and Technology (TIST), 11(1):1–25, 2020.

[35] Ximei Wang, Ying Jin, Mingsheng Long, Jianmin Wang, and Michael I Jordan. Trans-
ferable normalization: Towards improving transferability of deep neural networks. In
Advances in Neural Information Processing Systems, pages 1951–1961, 2019.

[36] Ximei Wang, Liang Li, Weirui Ye, Mingsheng Long, and Jianmin Wang. Transferable
attention for domain adaptation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 5345–5352, 2019.

[37] Ruijia Xu, Guanbin Li, Jihan Yang, and Liang Lin. Larger norm more transferable: An
adaptive feature norm approach for unsupervised domain adaptation. In Proceedings
of the IEEE International Conference on Computer Vision, pages 1426–1435, 2019.

[38] Yabin Zhang, Hui Tang, Kui Jia, and Mingkui Tan. Domain-symmetric networks for
adversarial domain adaptation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5031–5040, 2019.

http://arxiv.org/abs/1901.00282
http://arxiv.org/abs/1901.00282

