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Abstract

In this paper, we address the problem of human activity detection in temporally
untrimmed long video sequences, where the goal is to classify and temporally localize
each activity instance in the input video. Inspired by the recent success of the single-
stage object detection methods, we propose an end-to-end trainable framework capable
of learning task-specific spatio-temporal features of a video sequence for direct classi-
fication and localization of the activities. We, further, systematically investigate how
and where to fuse multi-stream feature representations of a video and propose a new fu-
sion strategy for temporal activity detection. Together with the proposed fusion strategy,
the novel architecture sets new state-of-the-art on the highly challenging THUMOS’ 14
benchmark — up from 44.2% to 53.9% mAP (an absolute 9.7 % improvement).

1 Introduction

With the rapid proliferation of cheap and accessible cameras (e.g., smartphone, surveillance
cameras etc.), the amount of video data amassed daily is enormous. No surprise, the most
prevalent and interesting contents of these videos are humans. Therefore, human activity
analysis plays a central role in automatic video understanding. Though impressive success
has been achieved in video activity recognition [5, 15, 29, 31, 33, 36, 37], many real-world
applications, such as surveillance video analysis, semantic video search etc. require ana-
lyzing videos that are long, and temporally untrimmed. This leads to the task of Temporal
Activity Detection (TAD) which requires not only classifying each activity, but also deter-
mining the temporal bounds of the activities. TAD is a much more challenging problem than
video activity recognition, for the activities of interest are buried in a long video sequence
which is mostly dominated by temporally cluttered backgrounds and may contain zero, one
or multiple activity instances of the same class or of different classes.

The state-of-the-art approaches to TAD have been directly inspired by the advances in
object detection and are broadly categorized into two-stage and single-stage methods. The
two-stage methods require two separate phases of proposal generation and classification,
thus performing significantly slower compared to their single-stage counterparts which can
combine both phases into a single step. However, irrespective of being two-stage or single-
stage, most of the existing state-of-the-art methods for TAD (e.g., [4, 6, 17, 22, 25]) do not
learn spatio-temporal feature representations of a video end-to-end, but rather extract deep
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features from short snippets either using 2D Convolutional Neural Networks (CNNs) (e.g.,
[29, 36]), or 3D CNNs (e.g., [5, 34]), followed by complex feature aggregation to provide the
temporal modeling. Since these feature extractors are specifically optimized for image/video
classification task, such off-the-shelf representations may not be optimal for localization of
activities in diverse video domains. The handful of attempts towards providing an end-to-end
TAD framework (e.g., [2, 28, 38]) are all based on the two-stage approach, thereby inheriting
the drawbacks as mentioned above. Besides, their reliance on relatively shallow 3D CNNs
(e.g., [34]) having limited temporal footprint essentially leads to unsatisfactory performance
[5].

Moreover, recent state-of-the-art methods to TAD (e.g., [6, 17]) mostly rely on a two-
stream architecture [29] to capture the appearance and motion information of a video which
are usually integrated very late in the network at the predictions level. The limited body of
research that suggested mid-Ilevel fusion (e.g., [10, 12, 20]) are all based on simple fusion
strategies (e.g., sum, max, or convolution) making them inferior to temporal relationship
modeling [19]. Besides, these methods mainly address the video activity recognition prob-
lem. Therefore, further research is warranted into exploring how best to fuse such multi-
stream information while investigating where in the feature abstractions level such fusion
would be appropriate in the context of temporal activity detection.

Realizing the above limitations, this paper attempts to fill in the gaps by proposing a
single-stage end-to-end trainable framework for TAD that leverages multi-stream cues of a
video based on sophisticated feature fusion strategies. Drawing inspiration from the leading
single-stage object detector called SSD [24], we build a multi-scale temporal feature hierar-
chy atop a two-stream 3D CNN that learns task-specific appearance and motion features of
a video in an end-to-end manner. With the two-stream feature representations, we system-
atically investigate different sophisticated fusion methods at different levels in the feature
abstractions with a view to finding the optimal strategy (i.e., how and where to fuse). This
leads us to propose a new fusion method based on efficient bilinear pooling [32] operation.

Contributions. Our contributions are three fold: (1) we propose a single-stage end-
to-end approach to TAD; (2) we demonstrate effective ways to fuse multi-stream feature
representations of a video and propose a new mid-level fusion strategy for TAD; (3) finally,
we set new state-of-the-art on THUMOS’ 14 and MEXaction2 benchmarks.

2 Related Work

Temporal Activity Detection: The early two-stage approaches to TAD [3, 16, 27, 35, 41]
could not afford end-to-end training either on the proposal or the classification phase. In-
spired by the leading two-stage object detector called Faster-RCNN [26], some recent works
(e.g., [7, 13, 14, 38]) offered end-to-end training by directly applying Faster-RCNN architec-
ture to TAD. Most notably, R-C3D [38] closely followed this architecture by building upon
C3D [34] to learn spatio-temporal feature representations end-to-end, while CMS-RC3D [2]
extended R-C3D by incorporating a temporal feature pyramid. However, the performance of
these methods is limited by the short temporal footprint of C3D, which has been addressed
by a recent work called TAL-net [6] that leveraged longer temporal contexts by capitalizing
on a 3D ConvNet called I3D [5] as the feature extractor network.

However, the impressive speed and accuracy of the single-stage object detectors such
as SSD [24] led to the development of the recent TAD approaches that generate a multi-
scale temporal feature pyramid based on a set of anchors of predefined (e.g., SSAD [22]) or
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learnable scales (e.g., GTAN [25]). Decouple-SSAD [17] improves upon SSAD by having
two separate branches for classification and localization and achieves state-of-the-art per-
formance on THUMOS’ 14 benchmark. However, none of these approaches could afford
end-to-end feature learning as they are based on feature extraction and aggregation from
multiple different 2D/3D CNNs. Our proposed approach is also based on SSD, but performs
activity detection on top of task-specific spatio-temporal features that are learned end-to-end.
Multi-stream Feature Fusion: The two-stream network [29] is the pioneering work to
propose late fusion by integrating the individual predictions of the appearance and motion
streams for video activity recognition. Most state-of-the art approaches to video activity
recognition (e.g., [5, 19, 33, 36, 37]) and temporal activity detection (e.g., [6, 17]) mainly
follow this work. There have been only a handful of works that demonstrated optimal re-
sults using mid-level fusion. For example, Feichtenhofer et al. proposed mid-level fusion
via concatenation of the two streams followed by convolution [10], or element-wise multi-
plication followed by residual connections [12]. EPIC-Fusion [20] fused audio, appearance,
and motion information via concatenation followed by fully-connected layer for ego-centric
action recognition. However, none of these works explored any sophisticated fusion strate-
gies. In this work, we explore more sophisticated mid-level fusion strategies for TAD, while
investigating where in the feature abstractions level such fusion would be appropriate.

3 Proposed Approach

Our primary goal is to design a single-stage end-to-end trainable TAD framework. To this
end, we build on a two-stream architecture [29] — a spatial stream to model the appearance
information from RGB frames, and a temporal stream to capture the motion contexts from
pre-computed optical flow. This leads to the second goal which is to find the optimal strategy
to fuse such multi-stream information in the context of TAD. We first explain our baseline
architecture that uses late fusion in Sec. 3.1. We then explore different sophisticated fusion
strategies and explain our proposed fusion method in Sec. 3.2 and 3.3.

3.1 Baseline Architecture

Analogous to SSD [24], we start with an activity recognition 3D CNN and transform it into
an activity detection framework. Fig. 1 shows the overall architecture of the baseline TAD
framework that consists of two separate but similar branches, one for each stream.

3D CNN Feature Extractor: The input to our network is a pair of video sequences
(Zigv, Zaiow) € RT*H *WxC each consisting of 7 RGB and FLOW frames respectively. Each
frame has height, width and channel dimensions of H, W, and C (3 for RGB, 2 for flow).
(Zrgb, Thow) are first passed through a two-stream 3D CNN to learn rich spatio-temporal
feature representations end-to-end. The architecture of the 3D CNN is adopted from the
state-of-the-art video activity recognition network S-3DG [37]. We extract feature maps
(Frebs Fitow) € R¥* 32521024 from the Mixed_5c block of S-3DG, pass them through aver-
age pooling to collapse the spatial dimensions, finally, apply 1D convolutions (kernel size 3,
strides 1) to further extend the temporal receptive field to produce temporal-only two-stream
feature maps (]:;gb, f,;ow) € R 1024 tha serve as the base feature maps to perform activity
detection. The feature extractor 3D CNN being fully-convolutional, the length of the video
sequence T can be arbitrarily long.
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Figure 1: Adopting a two-stream architecture, we perform activity detection on clips of RGB
and FLOW frames of length 7' which are first passed through a feature extractor 3D CNN,
followed by a temporal feature hierarchy to generate multi-scale temporal feature maps. A
set of 1D temporal convolutional filters are learned to generate activity predictions. Predic-
tions from both streams are fused via element-wise averaging in the baseline approach. Final
predictions are generated via Non-Maximum Suppression (NMS) of the fused predictions.

Two-stream Multi-scale Feature Hierarchy: Following [22], we build a two-stream
feature hierarchy on top of the 3D CNN feature extractor. Starting with (F, ]—Jﬂow) €

rgb
T . . . .
Rs*1924 " we cascade four 1D convolutional layers with kernel size of 3 and strides of
2 to produce four two-stream feature maps with decreasing temporal resolution, namely,

(A ”b,]-Jﬂ/ ) € RT6 1024, ... (]—J o ]-'gg:v) R15 <1024 These feature maps together form a
two-stream multi-scale feature hierarchy F, rgb —{F. [ Fo ), FMS — (70 ot

rgb? "0V g ﬁow ow? "’ flow
Prediction Layers: In the baseline approach, predlctlons are made on each feature map
belonging to the two-stream feature hierarchy (]-' ]-"ﬂow) Each prediction layer consists of
1D convolutional filters (kernel size 3, strides 1). F0110W1ng [22], we associate K default tem-
poral segments with each temporal location in a feature map, each having the same default

center but different scale ratios sg € {s1,82,--,5k }- For example, each temporal location
i e [0, ) in 7' € R§*1924 hag 2 base temporal scale of / Therefore, the default temporal

i +0.5
T/8

dy = sy~ TL/8’ respectively. Each prediction layer, therefore, employs K(C + 3) filters at each

segment with scale ratio s at i has the default center and default width as d. = and

temporal location to generate the following predictions: 1) class scores { p,}rC:1 over C activ-
ity classes including the background class; ii) the center and width offsets A. and A,, relative
to d. and d,,, respectively; and iii) an overlap score p,, indicating the overlap of the default
activity segment with the closest ground-truth segment, which is passed through sigmoid
function to produce a confidence value in the range [0, 1]. A; and A,, are used to compute the
actual center ¢, and actual width ¢,, which are in turn used to compute the activity start time
Ostars and end time ¢,,,4 as follows —

¢ =d.+aidyA. and ¢, =d,exp(mA,) €))

(Pstart (Pc - @ and ¢end - ¢c ¢w (2)

where o and a; are hyper-parameters used to control the effect of A. and A,,, respectively.
Late Fusion: The baseline approach generates the final predictions by averaging the two
streams’ individual predictions followed by Non-Maximum Suppression (NMS).
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3.2 ‘How’ to Fuse the Two Streams

As aptly reasoned in [11], to discriminate between activities having similar motion or appear-
ance pattern (e.g., ‘brushing teeth’ vs. ‘brushing hair’), it is necessary for the appearance and
motion streams to interact earlier in the network. We, therefore, propose mid-level fusion.
However, the existing works employ simple straightforward methods (e.g., sum, max, or
convolution) for mid-level fusion that fail to capture the full correspondence between the dif-
ferent modalities, thereby leading to poor performance as demonstrated by our experiments.
To this end, we are inspired by the latest advancement in Visual Question Answering (VQA)
that makes efficient use of bilinear pooling [32] based methods to allow for high-level inter-
actions between the different modalities. Below we discuss the traditional mid-level fusion
methods followed by the efficient bilinear pooling based methods. Afterwards, we pro-
pose a new fusion method. For the purpose of the following discussions, we assume that

!
Freb € RT*C, Fow € RT*C represent two input feature maps that need to be fused, where T

and C,C’ represent the temporal and channel dimensions respectively.
Sum, Max, and Convolution Fusion: These methods can be formulated as follows:

Fsum = -Frgb @]:ﬂow 3
Finax = maX(‘Frgba]:ﬂow) “4)
Feonw = («Frgb | Fiiow) * f +b )]

ceonv

where Fum, Fmax € RT*C; Feony € RTXC™; f e RI(C+C)xC™™ 4o o filter bank of CoOM
filters; b € RE™ are biases. Here, @, ||, and * represent element-wise addition, channel-
wise concatenation and cahnnel-wise convolutions respectively. We set C<°™ = C = c.
Multi-modal Low-rank Bilinear Pooling (MLB) [21]: MLB tries to reduce the compu-
tational complexity of the bilinear pooling operation by factoring a three-dimensional weight
tensor of bilinear pooling into three two-dimensional weight tensors. MLB first non-linearly
projects the input feature maps into a common embedding space where they are fused via
element-wise multiplication, which is then followed by a linear projection as follows:

]:MLB = (G(frgbU) ® G(fﬂowV))P (6)

where Fap € RT<C"?, U € RO,y ¢ RC/XD, P e RP*C™® are the weight tensors, D =
min(C,Cl) is the dimensionality of the common embedding space. Here, ® and o represent
element-wise multiplication and non-linear activation respectively. We set CMIB = C = c.

Multi-modal Factorized Bilinear Pooling (MFB) [39]: MFB provides an improvement
over MLB. As shown in Fig. 2(a), MFB first projects the input feature maps into a higher
dimensional space, then fuses them via element-wise multiplication followed by Dropout
and SumPooling as follows:

Fwmrs = SumPooling(Dropout(FghU @ FhiowV),J) @)

where Furg € RT*C™": U ¢ ROy ¢ RE*D are the weight tensors, D = J x CMFB s the
dimensionality of the embedding space. Here, J is the window-size for sum-pooling and ©®
represents element-wise multiplication. We set CMFB = C = C. As explained in [39], the
output of the MFB fusion are passed through power normalization (z < sign(z)| z |*°) fol-
lowed by /,-normalization (z < z/||z||) to avoid unsatisfactory local minima during training.
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Figure 2: (H)ow and ‘Where’ to fgls)e: (a) MFB [39]; (b) l\éF}S _new; (c) Fusion at(bgse feature

maps (F, ]-'é o) (d) Fusion at feature hierarchies (F™5, 75 ). Legends from Fig. 1.

rgb ’ rg

Proposed Fusion Method: We build on the MFB fusion. However, unlike MFB, we
non-linearly project the input feature maps into the higher dimensional space. We, further,
boost the fused feature map by having it convolved with the element-wise summation of
the original feature maps as shown in Fig. 2(b). This essentially serves as a residual con-
nection as it allows the original input feature maps to directly interact with the transformed
fused feature map, thereby providing better representation capacity than MFB. We denote
the proposed fusion approach as MFB_new which is formulated as follows:

z = SumPooling(Dropout(c (FiepU) ® 6 (FhiowV)),J) (8)
]:MFB_new = ((]:rgb @]:ﬂow) || Z) *f+b (9)

where FMFB_new € RT*C"™™. and U, V, and J represent the same as in MFB, whereas, f €
RIX(CHC)XC™™ ¢ filter bank of C™V filters and b € RC"" are biases. For the proposed
fusion, we set C"" = C = C'. Similar to MFB, we pass the output of MFB_new through the
normalization steps as explained above.

3.3 ‘Where’ to Fuse the Two Streams:

We consider mid-level fusion at different feature abstraction levels with a view to finding

the optimal level to fuse such multi-stream information in the context of TAD. In particular,
/ . . .

we explore the base feature maps (frgb,ﬁﬂow), as well as the multi-scale feature hierarchies

(Frh > Filow) s the potential candidates for fusion.

Fusion at Base Feature Map F: Fig. 2(c) shows how to integrate the two-streams at
/ / . .
the base feature map level (}"r/gb, Fhiow) to produce a fused base feature map F, .4 Which is
then used to generate the multi-scale feature hierarchy, the input to the prediction layers.
Fusion at Multi-scale Feature Hierarchy 7"5: Fig. 2(d) shows how to integrate the

two-streams at the multi-scale feature hierarchy level (.7-'rgb ,]—'ﬂow) to produce a fused multi-

scale feature hierarchy ]-'fuqed Predictions are performed on each feature map in ffl‘;’id.

3.4 Training and Inference:

Ground-truth Matching and Hard-negative Mining: During training, each of the K pre-
dictions at a temporal location is labeled as positive if its tloU overlap with any of the ground-
truth segments is greater than 0.5, otherwise negative. Following [22], we also adopt hard
negative mining to keep the ratio of positive to negative samples as 1:1.
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Loss Function: We use a multi-task loss £ including a classification loss L (Softmax
loss), a localization loss L. (Smooth-L1 loss), and tloU overlap loss L,y (Smooth-L1 loss):

L= £cls + ﬁﬁloc + YEOV (10)

where 8 and 7y are hyper-parameters used to trade-off among the three different losses.
Inference: A prediction instance is made up as ¥ = {yarr, ena, R, pr}, Where, R =

argmax ({p,}<_,) denotes the final class prediction, and py = max({p,}<_,) - pov is the final

confidence score which is used to conduct NMS to remove any redundant predictions.

4 Experiments

4.1 Experimental Setup

Datasets: We conducted experiments on two activity detection benchmarks - THUMOS’ 14
[18] and MEXaction2 [1]. THUMOS’14 contains over 22 hours of video from different
sports activities and is very challenging, for each video is more than 3 minutes long and
has 15 activity instances on average. The validation set and test set contain 200 and 213
temporally untrimmed videos, respectively with annotations for 20 different activity classes.
Following the standard practice, we perform training on the validation set (with a 90-10 split
for hyperparameter tuning) and report results on the test set.

The MEXaction2 [1] dataset, on the other hand, consists of approximately 77 hours of
untrimmed videos from The Institut national de 1’audiovisuel (abbreviated as INA), plus
some trimmed video clips from YouTube and UCF101 [30]. There are only two activity
categories — "HorseRiding" and "BullChargeCape".

Data Preparation Following [22], we perform activity detection on clips of length T
by densely sampling frames from each untrimmed video. During training, neighboring clips
are generated with a 75% overlap to handle activity instances located near the boundary and
to increase the amount of training data. During inference, the overlap is limited to 50% for
faster processing. We set =512 as approximately 99% activity instances in both datasets
are shorter than 512 frames.

Implementation Details: We initialize RGB and FLOW branches of the 3D CNN fea-
ture extractor with the pre-trained weights of D3D [31] and S-3DG [37] respectively. Optical
flow is computed using TV-L1 algorithm [40]. We set K =5 with scale ratios {0.5, 0.75, 1.0,
1.5, 2.0}, sum-pooling window-size J = 2, dropout ratio = 0.2 (for MFB and MFB_new), o
and ap t0 0.1, 8 and 7y to 10, and tloU threshold for NMS to 0.2 via cross-validation.

Evaluation Metrics: Apart from TAD, we also evaluate our approach on another rele-
vant task called Temporal Activity Proposal (TAP). We use the standard performance mea-
sure called mean Average Precision (mAP) for TAD, while for TAP, we use the standard
metric called AR-AN. AR-AN is computed as Average Recall (AR) at different average
number of proposals per video (AN). AR is defined to be the average of the recall values
computed at tloU’s from 0.5 to 1.0 with a step size of 0.05.

4.2 Results

Evaluation on ‘How’ and ‘Where’ to Fuse: In order to evaluate the different mid-level
fusion strategies as discussed in Sec. 3.2 and 3.3, we trained models on THUMOS’ 14 by

extracting two-stream features (]-Jrgb,f},ow) from the fixed 3D CNN, followed by fusion of
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How to Fuse| Where to Fuse

Mid-level | Late

F ‘]:MS ’Model ‘Fixed‘ S5c ‘5b_5c‘
Averaging 46.42] |Baseline |46.42|47.48|48.97
Sum 47.08/48.48 MFB 49.85|51.39|52.60
Max 46.09147.53 MFB_new|50.88|52.08|53.95 ’Model
Convolution [46.86(47.45 RGB - - 147.84| |[17] 44.20
MLB 46.65\47.77 FLOW - - |48.56| |[17]+MFB 47.25
MFB 38.29/49.85 ) [17]+MFB_new|48.27
MFB_new |37.47/50.88 Table 2: mAP(%) for End-

to-End Training on THU- Table 3: mAP(%) Com-
Table 1: mAP(%) for Mid-level MOS’14. Top: Fused models. parisons of Decouple-
and Late fusion strategies on Bottom: Single-stream mod- SSAD [17] with its vari-
THUMOS’ 14. els. ants on THUMOS’ 14.

the two streams using the network architectures shown in Fig. 2(c)-(d). As Tab. 1 shows, the
mid-level fusion strategies perform better than /ate fusion. This can be explained by the fact
that mid-level fusion utilizes the correlation between features from different modalities, thus
making them more discriminative in the common feature space than their individual feature
space [8]. Furthermore, the proposed fusion methods outperform the conventional methods
(e.g., sum, max, convolution), while fusion at the F™5 level produces better results than
F . However, performance gain is more strongly pronounced for MFB and MFB_new with
the latter outperforming the other methods, thereby attesting to its superior representation
capacity. Subsequent discussions refer to MFB and MFB_new models fused at the FMS
level.

Evaluation on End-to-End Feature Learning: To demonstrate the effect of end-to-
end feature learning, we consider three different training configurations on THUMOS’ 14: 1)
Fixed does not train the feature extractor 3D CNN just like the models shown in Tab. 1; ii)
Sc trains only the last convolutional layer of the 3D CNN (i.e., ‘Mixed_5c’); and, iii) 5b_5c
trains the last two convolutional layers (i.e.; ‘Mixed_5b’, ‘Mixed_5c’). The top part of Tab.
2 shows the performance of the baseline model that uses late fusion, as well as the models
based on MFB and MFB_new fusion under these training configurations. As evidenced
from the table, end-to-end feature learning improves performance by a noticeable margin
for all 3 models, thus validating our design choice for end-to-end learning, something the
existing state-of-the-art single-stage approaches (e.g., [17, 22, 25]) could not afford. It is
noteworthy to mention that we did not find any performance improvement by training more
layers which could be attributed to the fact that the amount of training data for THUMOS’ 14
is not sufficient to train all layers of a 3D CNN as also reported in [34]. All subsequent
comparisons are based on the models trained using 5b_5c¢ configuration.

Ablation Study: To validate our design choice for using both RGB and FLOW streams,
we train models on THUMOS’ 14 based on the individual streams and compare the results
with the fused models. As shown at the bottom part of Tab. 2, the FLOW-only model per-
forms better than the RGB-only, whereas, the fused models outperform the single-stream
models. These results are in agreement with common observation in video activity recogni-
tion (e.g., [5, 11, 29, 36]), thus validate our design choice for a fused two-stream network.

We, further, investigate the effects of the proposed fusion strategies across other methods
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1.0

— SST
= DAPS
Decouple-SSAD
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== MFB_new
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mAP @tloU (%)
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Two-Stage

SCNN [27]
DAPs [9]
SST [3]
TCN [7]
R-C3D [38]
SSN [41]
CBR[14]
BSN [23]
TAL-net [6]

47.7 435 36.3 28.7 19.0 10.3 5.3
139 - -
41.2 31.5 20.0 109 4.7
- - - 333256159 9.0
54.5 51.5 44.8 35.6 289 19.1 9.3
66.0 59.4 51.9 41.0 29.8 19.6 10.7
60.1 56.7 50.1 41.3 31.0 19.1 9.9
53.5 45.0 36.9 28.4 20.0
59.8 57.1 53.2 48.5 42.8 33.8 20.8

SSAD [22]

50.1 47.8 43.0 35.0 24.6 15.4 7.7

— SST
me= DAPs
Decouple-SSAD
+ Baseline
* MFB
== MFB_new

SSTAD[4] | - - 457 - 292 - 96
G-TAN [25] [69.1 63.7 57.8 47.2 388 - -

DSSAD[17]| - - 60.2 54.1 44.2 32.3 19.1
Baseline  |69.5 68.4 66.1 61.1 49.0 32.9 16.7
MFB 70.7 69.6 67.1 61.9 52.6 35.5 18.0
MFB_new |73.0 71.9 69.2 65.0 53.9 38.1 19.8

Single-Stage

Recall@100 proposals

02 Table 4: State-of-the-Art mAP(%) Comparisons

on THUMOS’ 14

08 0.9

tloU

06 07 1.0

[SCNN [27] SSAD [22] MFB_new |
[ 74 11.0 164 |

Figure 3: AR-AN curve (top) and Re-
call@100 vs. tloU curve (bottom) on
THUMOS’ 14.

Table 5: State-of-the-Art mAP(%) Comparisons
on MEXaction?2 at tloU=0.5.

for TAD. To this end, we choose Decouple-SSAD [17], the existing state-of-the-art on THU-
MOS’ 14, which is also based on a multi-scale feature hierarchy. Using the author-provided
code, we train Decouple-SSAD by replacing its late fusion strategy with mid-level fusion
based on MFB and MFB_new. Table 3 compares the performance of the original Decouple-
SSAD with its variants. As evidenced from the table, the proposed fusion strategies are able
to provide performance boost across other methods, thus proving themselves to be generic
enough.

State-of-the-Art Comparisons — Temporal Activity Proposal: We compare our pro-
posed models with two state-of-the-art activity proposal generation methods on THUMOS’ 14
called DAPs [9] and SST [3], along with the current state-of-the-art TAD method on THU-
MOS’ 14 called Decouple-SSAD [17]. As Fig. 3 (top) depicts, at low AN values, our pro-
posed models (Baseline, MFB, and MFB_new) outperform the other methods, with MFB_new
delivering the best performance. This clearly suggests that our top predictions are much more
likely to contain activity segments. However, just like Decouple-SSAD [17], our AR satu-
rates more quickly than the two proposal generation methods, which is mainly due to the low
average number of predictions generated per video by our method.

To further zoom into the boundary quality of the predicted activity segments, we plot AR
values for the top 100 predictions against higher tloU thresholds as shown in Fig. 3 (bottom).
MFB_new outperforms all other methods for most of the thresholds.

State-of-the-Art Comparisons — Temporal Activity Detection: As Tab. 4 shows, our
proposed models (Baseline, MFB, and MFB_new) consistently and significantly outperform
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| s | |

46.17s Ground-Truth 46.87s 61.93s Ground-Truth 62.63s
45.90s Prediction 46.90s 61.70s Prediction 62.53s

AR [ 2 1 |

504.43s Ground-Truth 510.43s 513.07s Ground-Truth 517.63s
504.88s Prediction 510.23s 513.29s Prediction 518.28s

Figure 4: Visualization of the top predicted activity instances on two test videos from THU-
MOS’ 14. For each video, the first row shows some representative frames from two consec-
utive ground-truth activity segments, while the second and third rows represent the ground-
truth (in red) and the predictions (in blue) of our model MFB_new, respectively.
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Method 2|2 8|2z |flglelslzlzl=l2l2 1% |25z

13|85 |s 2|28 2|5 |22 /5|2 2|58 |2|¢8|%

il 215 |2 |5 g8 | E|lx| 5|3 ¢~ g la8 | e |2

a | & o 5 = K] S| & 3
K] 332 [ 283 | 7.6 | 48.0 | 56.9 | 14.0 | 5.5 | 58.8 | 119 | 42.1 | 75.2 | 766 | 83.8 | 94.6 | 84.0 | 40.8 | 15.1 | 93 | 71.4 | 168
MFB_new | 43.0 | 54.6 | 8.0 | 44.6 | 759 | 43.7 | 28.7 | 76.7 | 34.9 | 57.8 | 73.0 | 79.9 | 76.1 | 82.5 | 84.6 | 41.6 | 32.9 | 24.4 | 805 | 355

Table 6: Class-wise AP(%) comparisons between Decouple-SSAD [17] and MFB_new at
tloU=0.5 on THUMOS’14. MFB_new outperforms Decouple-SSAD in 16 out of 20 cate-
gories.

the other methods across different tloU thresholds for the temporal activity detection task on
THUMOS’ 14. Of particular interest is tloU=0.5, MFB_new outperforms the current state-
of-the-art Decouple-SSAD [17] by an absolute 9.7% mAP (53.9% vs. 44.2%). Class-wise
AP comparisons between MFB_new and Decouple-SSAD [17] is shown in Tab. 6.

Results on MEXaction2: Table 5 reports results on MEXaction2. We compare MFB_new
with SCNN [27] and SSAD [22], as these are the state-of-the-art methods on this dataset. We
outperform both of these methods pushing the current state-of-the-art from 11% to 16.4%
mAP.

Qualitative Results: Figure 4 shows some qualitative results of our proposed model on
THUMOS’14. As we can see, MFB_new can accurately classify and localize the activity
segments and is able to handle moderate variations in activity duration (e.g.; short and long
activity instances).

Inference Speed: Being end-to-end and single-stage in nature, our proposed approach
runs at a moderate speed. With pre-computed optical flow frames, we find that MFB_new
operates at 758 frames per second on Nvidia Titan Xp GPU. It is noteworthy to mention that
in our current implementation, the post-processing step (i.e.; NMS) does not run on GPU,
thus leaving further room for improvement.

5 Conclusion

In conclusion, we have presented an end-to-end trainable activity detection framework. We
have also demonstrated effective ways to fuse multi-stream feature representations of a video
and proposed a new fusion method for temporal activity detection. Our proposed approach
achieves state-of-the-art results on THUMOS’ 14 and MEXaction2 benchmarks.
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