
CHEN ET AL.: COHERENT MOTION AWARE TRAJECTORY PREDICTION 1

CoMoGCN: Coherent Motion Aware
Trajectory Prediction with Graph
Representation
Yuying Chen*
ychenco@connect.ust.hk

Congcong Liu*
cliubh@connect.ust.hk

Bertram E. Shi
eebert@ust.hk

Ming Liu
eelium@ust.hk

Robotics Institute
Hong Kong University of Science and
Technology
Hong Kong, China

Abstract
Forecasting human trajectories is critical for tasks such as robot crowd navigation

and autonomous driving. Modeling social interactions is of great importance for accurate
group-wise motion prediction. However, most existing methods do not consider infor-
mation about coherence within the crowd, but rather only pairwise interactions. In this
work, we propose a novel framework, coherent motion aware graph convolutional net-
work (CoMoGCN), for trajectory prediction in crowded scenes with group constraints.
First, we cluster pedestrian trajectories into groups according to motion coherence. Then,
we use graph convolutional networks to aggregate crowd information efficiently. The
CoMoGCN also takes advantage of variational inference to capture the variability in
human trajectories by modeling the distribution. Our method achieves state-of-the-art
performance on several different trajectory prediction benchmarks, and the best average
performance among all benchmarks considered.

1 Introduction
Forecasting human trajectories is of great importance for tasks, such as robot navigation
in crowds, autonomous driving, and crowd surveillance. For autonomous robot systems,
predicting the human motion enables feasible and efficient planning and control.

However, making accurate trajectory predictions is still a challenging task because pedes-
trian trajectories can be affected by many factors, such as the topology of the environment,
intended goals, and social relationships and interactions [20]. Furthermore, the highly dy-
namic and multimodal properties inherent in human motion must also be considered.

Multimodality in trajectory prediction has been studied recently [2, 7, 13, 14, 21]. Most
past work uses generative adversarial models (GANs) to generate multiple predictions. How-
ever, GANs suffer from the instability of adversarial training, which is sensitive to hyperpa-
rameters and structure [26]. As an alternative, variational autoencoder (VAE) is relatively
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more stable. Lee et al. present a CVAE based framework to predict future object locations
[14]. A recent work adopted CVAE for trajectory prediction [11]. This paper takes advantage
of a VAE-like model to capture the variability of human trajectories.

Recently, some works have proposed to model the dynamic interactions of pedestrians
by combining information from pairwise interactions, through pooling mechanisms such as
max-pooling [7] and self-attention pooling [21]. However, those works do not completely
capture important information about the geometric configuration of the crowd. Furthermore,
these works rely on ad-hoc rules to handle varying numbers of agents, such as setting a
maximum on the number of agents and using dummy values for non-existing agents [21]. To
avoid such ad-hoc assumptions, Chen et al. [5] proposed to use graph convolutional networks
(GCN) to aggregate information about neighboring humans for robot crowd navigation tasks.
The GCN can handle varying numbers of neighbors naturally, and can modulate interactions
by changing its adjacency matrix. In this paper, we use a similar graph structure for crowd
information aggregation in a different task: trajectory prediction.

Most previous work has focused only on the interactions between pairs of humans. Co-
herent motion patterns of pedestrian groups, which encode rich information about implicit
social rules, has rarely been considered. This lack of attention may be due in part to the lack
of information about social grouping in current benchmark datasets, such as the commonly
used ETH [19] and UCY [15] datasets, for trajectory prediction. To address this unavailabil-
ity, we add coherent motion cluster labels to trajectory prediction datasets using a coherent
filtering method [29], and leverage DBSCAN clustering to compensate for the drawbacks
of the coherent filtering method in the small group detection. These coherent motion labels
provide a mid-level representation of crowd dynamics, which is very useful for crowd anal-
ysis. We incorporated the coherent motion constraints into our model by using GCNs for
intergroup and intragroup relationship modeling.

There are several main contributions of our work:

• Unlike past work that considered pairwise interactions between individuals only, we
take into account coherent motion constraints inside crowds to better capture social
interactions.

• We developed a hybrid labeling method to add coherent motion labels to trajectory
prediction datasets. We have released the re-labelled dataset publicly for use by other
researchers1.

• Incorporating the coherent motion into GCN for interaction modeling, the CoMoGCN
achieves state-of-the-art performance on several different trajectory prediction bench-
marks, and the best average performance across all datasets considered.

2 Related works

2.1 Crowd Interaction
A pioneering work for crowd interaction modeling, the Social Force Model (SFM) proposed
by [9], has been applied successfully to many applications such as abnormal crowd behavior
detection [17] and multi-object tracking [19]. However, as discussed in [1], the social force
model can model simple interactions, but fails to model complex crowd interactions. There

1https://comogcn.ram-lab.com
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are also other hand crafted feature based models, such as continuum dynamics [23], discrete
choice [3] and Gaussian Process models [24]. However, all the above methods are based on
hand-crafted energy functions and specific rules, which limit their performance.

2.2 RNN for Trajectory Prediction
Recently, Recurrent Neural Networks (RNN), such as the Long Short Term Memory (LSTM),
have achieved many successes in trajectory prediction tasks [1, 8, 16, 22, 27, 28]. Alahi et
al. proposed a social pooling layer to model neighboring humans [1]. Gupta et al. proposed
a pooling module, which consists of an MLP followed by max-pooling to aggregate infor-
mation from all other humans [7]. Sadeghian et al. [21] adopted a soft attention module to
aggregate information across agents. More recent work uses GCNs to aggregate information
by treating humans as nodes and modeling interaction through edge strength for robot nav-
igation [5]. Similarly, a variant of the GCN, the Graph Attention Network (GAT), has been
used to model the social interactions [10, 13]. However, the use of multi-head attention in the
GAT increases the number of parameters and the computational complexity of the GAT in
comparison to the GCN. In this work, we integrate information across humans using GCNs,
which enables our method to handle varying crowd sizes.

2.3 Coherent Motion Information for Motion Prediction
Most previous work only pay attention to interactions among pairs of pedestrians. However,
the pedestrian trajectories are also influenced by more complex group-wise social relations.
Coherent motion patterns inside crowds, which encode implicit social information, have been
shown to be useful in many applications, such as crowd activity recognition[25]. Bisagno et
al. [4] considered intragroup interactions for trajectory predictions, but neglected intergroup
interactions. Current benchmark datasets for trajectory prediction do not provide coherent
motion labels.

Several works have been addressed detecting coherent motion [29] and measuring the
collectiveness of crowds [18]. Zhou et al. [29] proposed coherent filtering, which detects
invariant neighbors of every individual, and measures the velocity correlations, for motion
clustering. It shows good performance on a collective motion benchmark and can detect
coherent motions given the crowd trajectories in a short time window. In this paper, we use
the coherent filtering method to label trajectory prediction datasets. In addition, we leverage
DBSCAN clustering to compensate for the disadvantages of the coherent filtering method in
small group detection. Based on the labels, we incorporate coherent motion information into
our model for better interaction modeling.

3 Method

3.1 Problem Definition
The goal of this work is to generate the future trajectories of all humans in a scene at the
same time. The trajectory of a person i is defined using xt

reli = (xt
i ,y

t
i) which denotes the

relative position of human i at time step t to the position at t− 1. Consistent with previous
works [7, 21], the observed trajectory of all humans in a scene is defined as x(1:tobs)

rel1,...,N
for time

steps t = 1, ..., tobs; the future trajectory to be predicted is defined as x(tobs+1:tobs+T )
rel1,...,N

for time
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Figure 1: System overview. There are three procedures: 1. We obtain coherent motion labels
for each human in an offline data pre-processing procedure. 2. Based on the coherent motion
labels for each human, we establish graphs capturing intergroup and intragroup relationships.
3. The encoder LSTM takes past trajectories as input and feeds the encoded features into two
GCNs. The embeddings from the two GCNs are concatenated and forwarded to an MLP to
create a distribution with mean µz and variance Σz. Then, features are sampled from the
distribution and fed into a decoder LSTM for trajectory prediction.

step t = tobs +1, ..., tobs +T , where the number of humans N may change dynamically. The
model aims to generate trajectories x̂(tobs+1:tobs+T )

rel1,...,N
whose distribution matches that of ground

truth future trajectories of all humans x(tobs+1:tobs+T )
rel1,...,N

.

3.2 Overall Framework
The upper half of Fig. 1 shows the overall framework of our method for trajectory prediction.
Data pre-processing is applied offline to obtain the coherent motion pattern of the pedestri-
ans. Based on the labels of coherent motion clusters, we establish intergroup and intragroup
graphs for each pedestrian. These graphs are utilized in the following trajectory prediction
as an efficient way of information aggregation.

3.3 Trajectory Prediction
The lower half of Fig. 1 shows our trajectory prediction model. For simplicity, we show the
prediction process for person i’s trajectory. The prediction process for others is similar.

For feature extraction, we first use a single layer MLP (FC) to encode each pedestrian’s
relative displacements as a fixed-length embedding. These embeddings are fed to an LSTM
as shown below:

ei = LST Men(MLPenc(xreli ;Wenc),henci ,Wen) (1)

where Wenc contains the weights of the FC layer, and Wen contains the weights of the encod-
ing LSTM. The positions of humans 1, ...,N relative to person i, p(1:N)

reli
, are calculated given
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the coordinates of all the pedestrians at tobs in the world coordinate system. These are fed
into an FC layer which is similar to the pooling module in Social GAN [7], to obtain the
social information pi.

The features from all pedestrians e1,...,N and the social information for person i, pi, are
concatenated together as the input to two GCNs: one for intragroup and one for intergroup
interaction aggregation:

Vintrai =GCNintra([e1,...,N , pi],Aintra,Wintra) (2)
Vinteri =GCNinter([e1,...,N , pi],Ainter,Winter) (3)

where Aintra and Ainter denote the adjacency matrices as described in more detail in Section
3.5. Wintra and Winter are weight matrices. We extract the features of node i after the final
graph convolutional layer as the features Vintrai and Vinteri .

The features computed by the outputs of the two GCNs are then concatenated together
and input to an MLP, which computes the mean and variance of a distribution over the feature
vectors to be input to the decoder:

µz,Σz = MLPva([Vintrai ,Vinteri ],Wva) (4)

where Wva is the weight matrix. We sample an input feature vector to the decoder stage, z,
from this distribution z ∼N (µz,Σz) and concatenate it with the embedding computed from
an embedding of the last predicted state. The resulting features c are fed into the decoder
LSTM cell for trajectory prediction:

x̂reli = MLPdec(LST Mde(c,hdei ;Wde);Wdec) (5)

where Wde is the weight matrix for the decoder LSTM and Wdec is the weight matrix for the
decoder MLP.

We minimize the loss for the trajectory prediction:

Lpred = ||xreli − x̂reli ||
2
2 +αKL(z,q). (6)

where q∼N (0,1) is a prior distribution and α is a weighting factor. The KL loss forces the
distribution of the mean and covariance matrix of (4) close to a normal distribution.

3.4 Coherent Motion Clustering for Pedestrian Groups
For coherent motion detection, we use the coherent filtering proposed by [29]. The process
takes the positions of humans from consecutive frames t1 to tk and generates a clustering
index for each human and for each frame. Humans sharing the same index are considered
to have coherent motion. The process of coherent filtering mainly includes three steps: a)
finding K nearest neighbors b) finding the invariant neighbors of an individual c) measuring
the average velocity correlations over time between the invariant neighbors and the individ-
ual. Individual-neighbor pairs with correlation intensity above a threshold are marked as
coherent pairs.

Although this method is effective for crowds with large crowd densities, it performs
poorly for sparse crowds and fails to detect small groups (as illustrated in Fig. 2(a)). To
compensate, we apply an extra clustering step, the DBSCAN method [6], to the unlabeled
humans. As a density based clustering method, it relies on the distance to find the neighbors.
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(b) Coherent filtering + DBSCAN(a) Coherent filtering

Figure 2: A representative example of coherent motion clustering. Circles show the current
position. Dots show the trajectory history used for clustering. Circles with the same color
belong to the same group. Black circles have no detected coherence. Compared with the
coherent filtering, the hybrid labeling method detects small groups (shown in purple and
green) and corrects incorrect labels of static pedestrians (shown in yellow and red). Best
viewed in color.

We account for moving direction and calculate the angular distance of each pair of humans.
These differences are used to classify humans into clusters.

As shown in Fig. 2, our hybrid labeling method improves the labeling yield and generates
better labels than the coherent filtering alone. We also evaluated these two labeling methods
quantitatively and obtained consistent results. More details are in the supplementary file,
where Table 1 lists the parameter settings of the two methods, Table 2 and 3 shows the
quantitative results, and Fig. 1 and Fig. 2 give more clustering examples.

3.5 Intragroup and Intergroup Graph Convolutional Networks
Dealing with the large and varied numbers of humans in a scene is one of the main challenges
for multi-human trajectory prediction. Previous works adopted ad-hoc solutions such as
setting a maximum number of humans [21]. In this work, we address this problem in a
simpler and more principled way through graph representations. Nodes in the graph denote
humans in the crowd. In the following, we denote the number of humans in the crowd by N.

We adopt a two-layer graph convolutional networks (GCNs) [12] to aggregate informa-
tion in crowds. To each node in the network, we associate a feature vector. The graph
convolutional layer takes input feature vectors for each node and converts them to output
feature vectors for each node by integrating information both within and across nodes. We
use I to denote the dimension of the input feature vectors and O to denote the dimension
of the output feature vectors The input feature vectors of layer l are represented by matrix
H l ∈ RN×I . The input feature matrix is converted to output vectors represented by a matrix
H l+1 ∈ RN×O based on the layer-wise forward rule:

H l+1 = σ

(
AH lW l

)
(7)

W l ∈ RI×O is a trainable weight matrix for layer l. A ∈ RN×N is the adjacency matrix of the
graph, whose values determine how information from different nodes is aggregated. Each
row of A is normalized to sum to one. σ(·) is ReLU activation function.

The adjacency matrix reflects the connections between nodes of the graph. A single
vanilla GCN assumes that the influence of each human on another (as determined by W l)
is the same. Only the strength of that influence can be modulated (through the adjacency
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Adjacency matrix Coherency mask Modulated adjacency matrix 

1

N

N1

(a) Graph level (b) Adjacency matrix level 

Coherency labels

3
1 2

4
5

6 7

cluster #1
cluster #2

Original graph

Intragroup graph Intergroup graph

Figure 3: An example of how the adjacency matrices of the GCNs for crowd information
aggregation are determined. The example considers the adjacency matrix for the GCNs of
human i = 3, who is in the same cluster as humans 1,2 and 4, but not humans 5, 6 and 7. The
coherency masks are generated from the coherency labels. A, Aintra and Ainter correspond to
the original graph, intragroup graph and intergroup graph, respectively.

matrix). However, we think that different humans will have different influences on each
other, depending on whether the humans are in the same group or not. Thus, we propose to
use two GCNs.

As shown in Fig. 3, for each human, we create two adjacency matrices, Aintra and Ainter
using with two coherence masks Mintra(i, j) and Minter(i, j) which encode the intragroup and
intergroup labels (the coherency labels in (a)). Here, i and j are the row and column index,
respectively. Each person has his/her own adjacency matrix A, corresponding to a complete
star-topology graph with the person at the center (the orginal graph in (a)). If person i and
person j share the same (different) label, then Mintra(i, j) will be 1 (0) and Minter(i, j) will
be 0 (1). If i equals j, Mintra(i, j) and Minter(i, j) equal to 1 to keep the self connection. We
obtain the two adjacency matrices by pixelwise multiplying the adjacency matrix (A) with
the masks. The resulting Aintra and Ainter correspond to two star-topology subgraphs (the
intragroup and intergroup graph in (a)) with edges selected by the masks. We set the value
in the adjacency matrix by first constructing a binary matrix specifying connections between
nodes, and then normalizing each row.

By modulating the adjacency matrix of GCNs with coherent motion information, we
incorporate implicit social relations into our network for better interaction modeling.

3.6 Implementation Details

We trained the network with Adam optimizer. The mini-batch size is 64 and the learning
rate is 1e-4. The models were trained for 200 epochs. MLPenc had a single layer with output
dimension 16. The hidden dimension of LST Men was 32. The two GCNs had two layers with
dimensions 72 and 8. MLPva generated the mean and variance of an 8 dimensional random
variable z. LST Mde had hidden dimension 32. MLPdec had output dimension 2.
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4 Experiments
We evaluated our method on two public datasets ETH [19] and UCY [15]. The ETH dataset
contain two scenes (ETH and Hotel). The UCY dataset contain three scenes (Zara1, Zara2,
and Univ). There are five sets of data with four different scenarios and 1536 pedestrians
in total. We follow the S-GAN’s data loader and predict trajectories for persons that exist
persistently in the observation and prediction time windows.

4.1 Evaluation Methodology
Following the setting in [7], we adopt the leave-one-out approach, i.e. train with four sets
and test on the remaining set. We take trajectories of 8 time steps as the observations and
evaluate trajectory predictions over the next 12 time steps.

4.1.1 Metrics

Similar to previous works [7, 13, 21], we adopt two standard metrics including Average
Displacement Error (ADE) and Final Displacement Error (FDE) in meter. We use the same
best-of-N metric as in S-GAN[7].

ADE: Mean L2 distance between the ground truth and the predictions of all time steps.
FDE: Mean L2 distance between the ground truth and the prediction at the final time

step.

4.1.2 Baselines

We compare our work with following several recent works based on generative models:
Social GAN (S-GAN) [7]: A generative model using GAN to generate multimodal predic-

tions. It utilizes a global pooling module to combine crowd interactions by an MLP followed
by a max-pooling layer.

SoPhie [21]: A improved GAN based model which considers both social interactions
and physical interaction with scene context.

Trajectron [11]: A generative model based on CVAE for multimodal predictions with
spatiotemporal graphs.

Social-BiGAT [13]: A generative model using Bicycle-GAN for multimodal prediction
and GAT for crowd interaction modeling.

4.2 Quantitative results
4.2.1 Comparison to state-of-the-art methods

As shown in Table 1, we compare our models with various baselines. The average displace-
ment error (ADE) and final displacement error (FDE) were reported across five datasets. We
ran 20 samples for evaluation.

Our model with GCN and coherent motion constraints outperforms all baselines, with
consistently lower values of both ADE and FDE. Compared to Social GAN, we achieve
22.4% improvement in ADE and 22.9% improvement in FDE on average. Compared to
SoPhie, which uses additional scene context information, we achieve 16.7% improvement in
ADE and 20.9% improvement in FDE on average. Compared to Trajectron, which uses VAE
as backbone network, we achieve 15.1% improvement in ADE and 14.2% improvement
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Baselines Ours

Dataset S-GAN SoPhie Trajectron Social-BiGAT MLP GCN
GCN+group

(CF)
GCN+group

(Hybrid)
ETH 0.81/1.52 0.70/1.43 0.59/1.17 0.69/1.29 0.73/1.40 0.72/1.31 0.71/1.28 0.70/1.26
HOTEL 0.72/1.61 0.76/1.67 0.42/0.80 0.49/1.01 0.45/0.93 0.41/0.81 0.37/0.76 0.37/0.75
UNIV 0.60/1.26 0.54/1.24 0.59/1.21 0.55/1.32 0.61/1.31 0.55/1.18 0.55/1.19 0.53/1.16
ZARA1 0.34/0.69 0.30/0.63 0.55/1.09 0.30/0.62 0.34/0.72 0.35/0.74 0.34/0.72 0.34/0.71
ZARA2 0.42/0.84 0.38/0.78 0.52/1.04 0.36/0.75 0.33/0.71 0.32/0.68 0.32/0.68 0.31/0.67
AVG 0.58/1.18 0.54/1.15 0.53/1.06 0.48/1.00 0.49/1.01 0.47/0.94 0.46/0.93 0.45/0.91

Table 1: Quantitative results. We adopted two metrics Average Displacement Error (ADE)
and Final Displacement Error (FED) for evaluation over five different datasets (ADE/FDE
in meters). Our full model (GCN +group (hybrid)) achieves state-of-the-art results outper-
forming all baseline methods (lower value denotes better performance).

in FDE on average. Compare to Social-BiGAT, which also considers graph structure for
interaction modeling, we achieve 6.3% improvement in ADE and 9.0% improvement in
FDE on average.

4.2.2 Ablation study

We conducted several ablation studies to validate the benefits of the use of GCN and coherent
motion information. We report average results over multiple runs in Table 1.

To show the benefit of the use of GCN, we investigated a model that replaces the GCN
with an MLP (followed by max-pooling, similar to the pooling module in social GAN [7]).
The model with GCN achieves 4.1% improvement in ADE and 6.9% improvement in FDE
on average.

When comparing the full model with the one using GCN only, the full model with coher-
ent motion information achieves 4.3% improvement in ADE and 3.2% improvement in FDE
on average.

The above ablation studies clearly demonstrate the benefits of the use of GCN and the
introduction of coherent motion information. We observe consistent improvements over
most datasets.

We further investigated trajectory prediction performance of models with different co-
herent detection methods: the Coherent Filtering method (CF) [29] vs. our hybrid labeling
method (hybrid). The model with our hybrid labeling method outperforms the model with
only the Coherent Filtering method by 2.2 % in ADE and 2.2 % in FDE on average. The
improvements are consistent over all five datasets.

4.3 Qualitative results
To provide better understanding the benefits of our model in capturing social interactions
between humans, Fig. 4 shows several examples of the generated trajectories from the testing
sets.

From (a) and (b), we can see that in narrow or crowded environments, where interactions
is unavoidable, the predictions of our model generally have lower variance than S-GAN. This
is expected as the introduction of social interaction models introduces additional constraints,
which lower the variance within modes. For those cases where social interactions have little
influence (the orange trajectories in (c) and green trajectories in (d)), predictions of our model
have large variance, similar to S-GAN. This suggests that our model captures the multi-
modal nature of pedestrian trajectories by predicting many possible ways that people could
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0 5m

Proposed

S-GAN

(a) (b) (c) (d)

Figure 4: Examples for generated human trajectories visualization for S-GAN and our model
across several scenes. The observed trajectories are shown in solid lines, ground truth future
trajectories are shown in wide dashed lines, generated 20 samples per model are shown in
thin dashed lines. The dot-dashed lines denote the "average" predictions of our model by
applying the mean value (µz) of the distribution. Different humans are denoted by different
colors.

move in the future. Also, the examples show that our model better captures the interactions
between pedestrians walking in the crowds which obtain more accurate predictions (as shown
in (d)). We also observe that S-GAN tends to predict slower motion in the HOTEL dataset
(as shown in (c)).

For qualitative results from the ablation study, please refer to Fig. 3 in supplementary
file. We observe results consistent with the quantitative evaluation. Our proposed full model
makes more accurate and realistic predictions.

5 Conclusion

In this paper, we proposed a novel VAE-like generative model for trajectory prediction which
outperforms state-of-the-art methods. We use graph convolutional networks (GCNs) for effi-
cient crowd interaction aggregation. Furthermore, we have provided coherent motion infor-
mation for commonly used trajectory prediction datasets (ETH and UCY). These coherent
motion labels significantly enrich the social information, and have been released to the re-
search community. Our results show that the introduction of GCNs and coherent motion
information significantly improve the performance and accuracy of trajectory prediction.
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