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Abstract

RGB-based 3D hand pose estimation methods frequently produce physiologically
invalid gestures due to depth ambiguity and self-occlusion. Existing methods typically
adopt complex networks and a large amount of data to avoid invalid gestures by au-
tomatically mining the physical constraints of the hand. These networks exhibit high
computational complexity and thus are difficult to be deployed into mobile devices. In
consideration of this problem, a novel knowledge distillation framework, called Explicit
Knowledge Distillation, is proposed to enhance the performance of small pose estimation
networks. The proposed teacher network has interpretable knowledge, explicitly passing
the physical constraints to the student network. Experimental results on three benchmark
datasets with five different sized models demonstrate the potential of our approach.

1 Introduction

Gestures are among the most natural interactive movements. With the application of virtual
reality and augmented reality, 3D hand pose estimation technologies have been increasingly
applied to enhance the user experience. Existing methods can be divided into two categories,
depth based and RGB based. Depth-based methods have been studied extensively in recent
years and their performance has been improved considerably because of the development
of deep learning and the emergence of large training datasets. However, the popularization
of this technology is limited by the strict requirements for image acquisition equipment.
Therefore, an increasing number of studies are focusing on RGB-based 3D pose estimation.

However, 3D pose estimation from an RGB image poses a more challenging problem,
because several poses should be guessed on the basis of prior knowledge due to serious depth
ambiguity and inherent self-occlusion. Prior knowledge (e.g., physical constraints) requires
anetwork to be aware of the hand structure. Thus, existing methods have adopted multi-stage
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regression [12, 31] to predict a pose progressively or have applied a pre-defined hand model
[4, 15, 29] to obtain physical valid pose predictions. Unfortunately, considering the complex
relationship between the RGB images and poses, these methods utilize deep and sophis-
ticated networks to obtain valid results. For example, the number of multiply-accumulate
operations (MAC) of Igbal [10] reaches more than 120G, hindering the transformation of
most studies on mobile devices.

Small models are easy to deploy. However, they frequently fail to learn the prior knowl-
edge, such as physical constraints, due to their weak learning capability, resulting in a sig-
nificant decline in performance. A promising solution is to enable the small networks, also
called the student networks, to mimic a large, well-trained teacher network; this process is
known as knowledge distillation (KD). However, the majority of recent knowledge distilla-
tion studies have focused on image classification. Two major drawbacks exist when adapting
this solution to 3D hand pose estimation.

The first drawback is knowledge uncertainty. Inferencing the 3D pose from RGB images
is a complicated reasoning process due to the depth ambiguity. Consequently, the correla-
tions between features are considerably more complex than that of the classification models.
Although current knowledge distillation methods are reported to enhance the performance
of student networks by using strategies, such as similarity preserving [22], correlation con-
gruence [17] or relations [16], whether the knowledge transferred from a teacher network is
beneficial or comprehensive for the student networks to mimic remains unclear. The second
drawback is knowledge omission. Prior knowledge of hand structure is crucial to ensure the
validity of the poses. However, transferring such knowledge completely by learning only
the characteristics or relationships of certain layers is difficult. Hence, important knowledge
may be overlooked during the transferring process.

On the basis of the preceding considerations, we provide a solution from a novel perspec-
tive, where any pose estimation network can benefit from our approach. In practice, teachers
frequently teach by discovering the mistakes. First, teachers allow students give their own
answers; then, they teach students knowledge by correcting the mistakes in their answers.
Inspired by this real-life teaching activity, we propose an explicit knowledge distillation
(EKD) framework to introduce the physical constraints, passing the human knowledge to the
training process. The teacher network of EKD initially reviews the predictions of a student
and then points out the errors in them by artificially defined knowledge. Furthermore, the
teacher network provides the modification to help the student avoid similar mistakes in the
future. Conventional KD methods transfer knowledge from big networks, whose knowledge
is implicit. The proposed EKD passes the explicit knowledge defined by human, thus the
knowledge is definite and complete.

To summarize, our contributions are as follows: (1) We introduce a constraints-enforcing
framework for pose estimation networks that can improve the accuracy without changing
the size of the original network. (2) We design a physical constraints regularizer for the
keypoints-based 3D hand pose estimation method. (3) We propose a teacher network with
interpretable knowledge, explicitly passing human knowledge to the student network.

Extensive experiments on three benchmark datasets using different sized networks are
conducted to demonstrate the effectiveness of EKD in transferring interpretable knowledge.
The EKD method is compared with state-of-the-art hand pose estimation algorithms. The
results show that the proposed method achieves the best accuracy among the compared al-
gorithms.
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2 Related Work

2.1 Hand Pose Estimation

Depth-based 3D hand pose estimation has recently achieved rapid development. By contrast,
studies on RGB-based 3D pose estimation remain few. Although differences exist between
these types of images, methods for extracting 3D poses have much in common. Thus, a brief
review of 3D hand pose estimation methods is provided from a unified perspective. The
two major strategies in this field are summarized as: 1) model-based and 2) joint-based pose
estimation.

1) Model-based pose estimation Model-based methods define a hand model using spe-
cific parameters obtained in advance. Physical constraints are reflected within the range of
these parameters; thus, constraints can be easily embed into the algorithm to ensure the va-
lidity of the results. Previous methods such as [14, 21] obtain the optimal model parameters
by minimizing the handcrafted energy functions. However, the optimization process is in-
tricate making it difficult to be adopted in resource-limited applications. Several researchers
[2, 26] have recently proposed the use of deep learning methods to regress these parameters.
For example, Mueller et al. [11] obtained the parameters of a hand model via a post process
of the network. Zhang et al. [26] introduced an end-to-end method for recovering the hand
parameters. However, considering the complex relations between input image and these pa-
rameters, the sophisticated networks should be used in their methods. Such requirement
becomes an obstacle to transform their research into practice.

2) Joint-based pose estimation Joint-based methods learn the mapping between im-
ages and the 3D joint positions. A recent study by Zimmermann and Brox [31] used the
PoseNet and PosePrior networks to predict 3D poses in canonical coordinates. Thereafter,
a two-stack hourglass with latent 2.5D heatmaps was introduced by Igbal et al. [10]. Their
approach enhanced the performance of the joint-based methods by a considerable margin.
Then, Zhang et al. [27] improved the performance by learning an adaptive latent space of
synthetic and real-world datasets. More recently, Zhao et al. [28] proposed a knowledge
distillation and generalization framework for RGB based pose estimation. They distilled
knowledge from depth images and then transferred this cross-modal knowledge to those
datasets without depth images. However, whether this knowledge is beneficial or complete
for students to mimic is unclear. Thus, the physiologically invalid predictions may not be
reduced. Keypoint position is not as abstract as hand parameters; thus, joint-based meth-
ods can achieve relatively higher accuracy with small networks than model-based methods.
However, joint-based methods do not utilize hand geometry, such as physical constraints;
hence, they produce many physiologically incorrect hand poses when predicting with small
networks.

2.2 Knowledge Distillation

Knowledge distillation [1, 8, 16] refers to use a complex and superior teacher network to
guide the training of low-complexity student networks. Hinton et al. [7] used the soft la-
bels from the teacher network as part of the optimization goals of the student network to
provide the interclass information for the first time. Then, Tung et al. [22] suggested that
the knowledge transferring process benefited from a similarity metric. At the same time,
Peng et al. [17] discovered that the correlation between instances is also crucial to boost the
performance of the student. Zhang et al. [24] proposed a knowledge distillation strategy in
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Figure 1: The overview of our method. A small pose estimation network (grey box) are
regarded as the student network. The proposed teacher (brown box) analyzes the pose pre-
dictions of a student network and gives a demonstration to correct the angle-invalid pose.
The information is passed to the student network by the back propagation of Loss%’sd. Note
that the teacher network is only used during the training, thus it would not change the size of

the student network during the inference.

human pose estimation, which aims to reduce the computational cost of Stacked Hourglass
[12]. Although these approaches have achieved success in certain areas, we cannot identify
what knowledge has transferred to the student due to uninterpretability of neural network.
Thus, we have no idea if the physical constraints are passed to the student network. In view
of this problem, we design a teacher model with explicit knowledge of physical constraints
to help the student networks obtain valid hand poses.

3 Method

Given a cropped RGB image, the network predicts K=21 joint locations in the camera co-
ordinate system. The physical prior knowledge is important to obtain physiologically valid
poses and it mainly consists of two constraints, bone length and joint angle constraints. Ow-
ing to the powerful deep learning methods, bone length constraint can be easily satisfied
as it directly associates with the accuracy of joint positions. However, the joint angle con-
straint may be neglected by the small networks, as it has complex nonlinear relationship with
more than two joint positions. Therefore, we propose the EKD to help them recognize the
validness of hand poses and avoid incorrect predictions.

The overview of our algorithm is shown in the Figure 1. The teacher of EKD consists of
the angle regularizer and the offset network. The two parts are designed to mimic the behav-
ior of a real teacher. In reality, the teacher helps students learn the knowledge by discovering
errors in the behavior of students and giving them the right demonstration. Similarly, the
angle regularizer recognizes the invalid pose predictions of student network and the offset
network corrects them. Note that the teacher network is only adopted during training and the
performance of the student can be improved with the guidance of the teacher. Next, we will
introduce these modules in detail.
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Figure 2: The illustration of the hand model and joint angles. TH, FF, MF, RF and LF are
the abbreviation of thumb, forefinger, middle finger, ring finger and little finger. TIP, DIP,
PIP, MCP and ROOT represent different knuckles.

3.1 Student Network

Small pose estimation networks are also called the student networks in knowledge distillation
framework. In theory, the students can be networks of any arbitrary size, but usually those
small and streamlined networks need the guidance of a teacher network. In this paper, we
adopt modified networks of [10], which achieved optimal results in several datasets among
joint-based methods, and some general networks, such as resnet [6] and squeezenet [9], as
the student networks to prove the effectiveness of our algorithm.

3.2 Teacher Network

The proposed teacher network is to pass physical constraints to the student network. For
better understanding of our method, we first introduce the definitions of joint angles and
then the key modules of EKD—angle regularizer and offset network.

3.2.1 Angle Definition

The hand model has K=21 keypoints and 20 joint angles are defined with them. Each finger
involves 4 angles {6y,0;,6,,0s}, and a diagram of them is shown in Figure 2. Take the
angles of MF as an example. The angle 6,, 05 can be easily calculated by the spatial angle
of adjacent bones. MCP joints are more flexible than other joints, thus we define two angles
that represent the movements on all sides to better measure the motion constraints of MCP
joints. We assume the line between the MCP joint of LF, FF as the reference line L1. The
plane formed by the root joint and reference line are regarded as the reference plane P1. [}
is a vector that points from a MCP joint to its corresponding PIP joint. 6 is defined by the
angle between [, and the reference plane, while 6y are defined by the angle between /1, and
the perpendicular line of L1. The perpendicular line of L1 is the one in the plane determined
by /12 and L1 (or a line parallel to L1). Note that the MCP joints of LF, RF, MF and FF
in Figure 2 are considered to be in a straight line, in order to show the definition of 6y, 6;
more clearly. Claudia et al. [13] have illustrated the angle constraints of hands. However,
this definition is not task specific. For example, when a hand pose dataset only contains the
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directional gesture, the keypoints of FF are in a straight line. Therefore, we define the angle
constraints based on the statistics of the datasets. The max value 6 and min value 0 of each
defined angle in the labeled datasets are calculated as the upper and lower bounds.

3.2.2 Angle Regularizer

Angle regularizer can recognize the invalid hand poses and enforce angle constraints through
the loss function. This module first calculates the defined angles in Figure 2 from predic-
tions of the pose estimation network, and then computes the angular loss Lossg for each
finger, which is shown in Equation (1). The validity of hand poses can be improved by back
propagation of the Lossg.

3
Lossg = Z[max(@,- —6,,0) + max(6; — 6;,0)] (1)
i=0

However, Lossg is not conducive to the back propagation of the networks because of the
complex relationship between the angles and keypoint positions. Thus, we use the cosine and
sine of the joint angles in the loss function to simplify the optimization process. The new
loss is shown in Equation (2). As 8y and 6, are defined with perpendicular of the reference
line and reference plane, the sine function is used to calculate the loss. The 8, and 65 are

defined as the angle between two vectors, thus using the cosine is more effective.

3

Lossg = Y [max(f(8;) — f(8:),0) +max(f(6;) — f(6;),0)] @)

i=0 o

where f(-) is sine when i = 0,1, and f(-) is cosine when i = 2,3.

3.2.3 Offset Network

Small pose estimation networks could square up the angle errors in the predictions by the
angle regularizer and try to correct these errors by themselves. However, the students may
not find a universal way to correct them due to the weak learning ability. Therefore, a further
guidance is needed. In view of this consideration, an offset network is proposed to inform
the small pose estimation networks the way to correct the mistakes. The samples with invalid
angles are sent to the offset network to get the offset vectors of keypoints. The offset vectors
represent the difference between the ground truth and predictions. Formally speaking, the
input of offset network is the features f which contain the image and prediction information,
and a weight vector w that represents whether a sample has at least one invalid angle. Note
that EKD is a framework, it can be applied to various network architectures. The features
sent to the offset network can be selected according to the specific network architecture, as
long as the features contain the information of the input image and the student predictions.
f is usually obtained by the latent feature maps and the predictions {C/ }IK= | of the student
network. w is calculated by the angle regularizer. The output is the offset vector {M? },K: |
of those physiologically invalid predictions {C/}X | to the ground truth {C?}X |. The offset
network has been illustrated in Figure 1. Given the j;; sample in the dataset, the loss function
of offset network is defined as:

K
Lossopp =Y, [MP —w;(Cf —CP)] 3)

i=1
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where w; € {0,1} and w; is set to 1 when the predicted pose of the j;, sample has at
least one invalid angle. The Loss,sy makes the teacher give precise corrections of those
physiologically invalid predictions of students. The original prediction and corresponding
offset are added up to obtain a modification and then a keypoint location loss Loss;,"(‘,’;’ is
applied to pass this modification to the student network.

Therefore, with the regression loss of the student network Loss

tion of proposed method is

s> the overall loss func-

LosSorar = Loss}ia, + A1Losse + Ay Loss + AsLosser )

pos pos

4 Experiments

4.1 Datasets and Evaluation Metrics

Three benchmark datasets are used in evaluation: Large-scale Multiview 3D Hand Pose
Dataset (LM) [5], Stereo Hand Pose Tracking Benchmark (STB) [25] and Rendered Hand
Pose Dataset (RHP) [31].

LM is a real-world hand pose dataset, which is structured in 21 sequences. The 2D and
3D annotations of 21 keypoints are provided. We use the first 20% samples for testing and
the rest 80% samples for training.

STB is another real-world dataset. It contains 12 sequences with six difference back-
grounds. Stereo and depth images were captured from a Point Grey Bumblebee2 stereo
camera and an Intel Real Sense F200 active depth camera simultaneously. 2D and 3D anno-
tations of 21 keypoints are provided. Following the same setting in [3, 10], 10 sequences are
adopted for training and the other two for testing.

RHP is a synthetic hand pose dataset. It contains 41,258 training images and 2,728 test
images. Precise 2D and 3D annotations of 21 keypoints are provided, as well as the mask of
hands and depth images.

The Area Under the Curve (AUC) on Percentage of Correct Keypoints (PCK) and angle
violation frequency are used in evaluation. The definitions of these metrics can be found in
the supplementary document. The global hand scale and the root depth are assumed to be
known in order to report the PCK curve. This is the same condition used in [3].

4.2 Network Architecture

Five different sized networks are constructed as students with different learning capabilities.
The first network is a two-stack network proposed by [10], whose multiply-accumulate op-
erations (MAC) are about 120G. Then a stack and the intermediate layers of the first network
are removed to obtain the second network, which has around 20G MAC. The next network is
obtained by lessening the number of channels per layer of the second network and the MAC
is reduced to S00M. Another two networks are constructed with resnet50 [6] and squeezenet
[9], and the final fully connected layer is replaced with 2.5D representations [10], which are
used to restore the 3D positions of 21 hand joints. For easier representation, the five net-
works are recorded as TS120G, TS20G, TS500M, Resnet50 and Squeezenet. The detail of
these networks and corresponding training setup can be found in supplementary document.
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Methods  baseline  w/Lossg w/Loss,, W/Lossg +W/Loss,p

3D AUC  79.3% 82.0% 83.1% 85.1%
V.E 4.83% 2.83% 3.25% 1.74%

Table 1: The ablation study of different loss functions of the proposed method. The Loss,,
represents Loss,yf +L0s51”fgfl in the offset network. V.F. is the shorthand of Violation Fre-
quency. The dataset used in this experiment is LM. The backbone is TSS00M. 3DAUC is

the area under 3D PCK curve between 20-50mm.

4.3 Ablation Study
4.3.1 Different Loss Functions

Several ablation studies with the TSS500M model on the LM dataset are conducted to evaluate
the role of Lossg, Loss,p = Loss,ff + Loss;,"(ff. Results in Table 1 show that adding Lossg
provides a 2.7% improvement over the baseline. The proportion of invalid poses has also
been reduced. The loss of the offset module Loss,, enhances the performance by 3.8% while
the angle violation frequency is higher than that of the model with Lossg. The advantage of
our teacher network is that it not only introduces angle constraints, but also informs the
student network the way to correct the invalid poses. Introducing only Lossy is like a teacher
only tells the students that the results are wrong, but does not provide the solutions to correct
them. An excellent student is capable of recognizing how to fix it, while a student with
insufficient ability finds it difficult to correct it by itself. This phenomenon is shown in
Figure 3. After adding both Lossg and Loss,, during the training, the 3D AUC is increased
by 5.80% over the baseline and the violation frequency is 3.09% less than the baseline.

(a) Input image (b) Ground truth (c) Wo Lossg (d) With Lossg

Figure 3: The schematic diagram of the role of Lossg. (a) the input image and its 2D an-
notations. (b) the 3D annotations of input image. (c) the predictions of the network trained
without Lossg, where the thumb is in an abnormal state. (d) the predictions after adding the
Lossg, which are physiologically valid. There is still a gap between (d) and (b).

4.3.2 Different Architectures

For the convenience of presentation, the pose estimation network without EKD are defined
as the baselines: a) TS120G + wo/EKD; b) TS20G + wo/EKD; c¢) TS500M + wo/EKD;
d) Resnet50 + wo/EKD; e) Squeezenet + wo/EKD. Those with EKD are recorded as: a)
TS120G + w/EKD; b) TS20G + w/EKD; c¢) TS500M + w/EKD; d) Resnet50 + w/EKD; e)
Squeezenet + w/EKD. The algorithm is comprehensively evaluated on the LM [5], STB [25]
and RHP [31] datasets. The results are shown in Table 2. Through the experimental results,
the 3DAUC of all the models has been improved after adding the proposed teacher network.
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3D AUC/V.E. LM STB RHP

TS120G + wo/EKD 90.8%/1.45%  98.3%/13.5%  86.9%/1.74%
TS120G + w/EKD 91.5%/1.34% 99.1%/14.6%  87.0%/1.48%
TS20G + wo/EKD 852%/3.06%  84.9%/17.7%  82.5%/2.33%
TS20G + w/EKD 87.5%/2.40% 87.1%/16.7% 83.7%/1.82%
TS500M + wo/EKD 79.3%/4.83%  82.8%/172%  61.6%/6.22%
TS500M + w/EKD 85.1%/1.74% 87.8%/13.6% 64.3%/4.74%
Resnet50 + wo/EKD  86.6%/1.48%  95.1%/2.35%  86.4%/1.08%
Resnet50 + w/EKD 90.0%/0.85% 98.8%/1.02% 87.5%/0.98%
Squeezenet + wo/EKD  82.6%/6.94%  82.3%/6.47%  59.6%/2.71%
Squeezenet + wW/EKD  88.5%/2.88% 85.9%/3.93% 62.1%/1.17%

Table 2: Comparisons of different baselines with our method on LM, STB and RHP.

And we achieved comparable results to TS120G [10] with a far smaller resnet50 architec-
ture (resnet50+w/EKD). At the same time, the joint angle violation frequency is calculated
to verify whether the angle constraints knowledge is passed to the student network. The an-
gle violation frequencies of all the models except the TS120G model trained on STB dataset
have been reduced to varying degrees. The STB dataset has more violated samples than
others, since the labels of STB dataset are relatively noisy due to the self-occlusion problem
and uncontrollable human factors. Therefore, we argue that our algorithm can further im-
prove the performance of STB dataset when the labeling becomes more accurate. Note that
our method is a model-agnostic algorithm, in the sense that it is compatible with almost any
model for 3D hand pose estimation. Although different networks presents different perfor-
mance, e.g. TS120G model achieves best 3DAUC and resnet50 model gives lowest violation
frequency, the proposed method can always enhance their performance.

4.4 Comparisons with State-of-the-arts

In this section, the proposed method is compared with state-of-the-art (SOTA) hand pose
estimation methods, Zhao et al. [28], Zhou et al. [30], Yang et al. [23], Spurr et al. [19],
GANHANDS [11], Z&B [31], CHPR [20], ICPPSO [18] and PSO [14]. Following the same
criterion of [28], those methods [4, 26] that aim to predict hand shapes, which are with
different research targets compared with ours, are not included here. For sake of fairness,
we adopt resnet50 network as the backbone, where [11, 28, 30] all used resnet50 network.
In addition, LM dataset does not provide depth images, while many SOTA methods rely on
depth images during training. Thus, few papers report the results of this dataset and we only
compare our method with the method of Igbal et al. [10] on LM dataset. The results are
shown in Figure 4. Our method achieves best results among these SOTA methods. In Figure
4(b), the proposed method achieves comparable performance to the model of Igbal et al.
with a far smaller resnet50 network. As for comparisons with Zhao et al. [28] in Figure 4(a)
and Figure 4(c), they used depth images when training on RHP and a additional synthetic
dataset when training on STB. Our method does not utilize any extra data during training and
achieves comparable performance to their method. We also compare with SOTA knowledge
distillation methods and the results are shown in the supplementary document.
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(a) RHP (b) LM (c) STB

Figure 4: Comparisons with SOTA methods on three datasets.

5 Conclusion

In this paper, we propose an explicit knowledge distillation method to simulate the teaching
process of students in real world. The proposed teacher network helps students generate
physiologically valid gestures as well as boost the performance. The effectiveness of the
proposed EKD method is validated with different networks on three datasets. We will focus
on designing a pose-related network architecture in future studies to further enhance the
performance of small networks.
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