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Abstract

The key to overcome class imbalance problems is to capture the distribution of mi-
nority class accurately. Generative Adversarial Networks (GANs) have shown some po-
tentials to tackle class imbalance problems due to their capability of reproducing data
distributions given ample training data samples. However, the scarce samples of one
or more classes still pose a great challenge for GANs to learn accurate distributions for
the minority classes. In this work, we propose an Annealing Genetic GAN (AGGAN)
method, which aims to reproduce the distributions closest to the ones of the minority
classes using only limited data samples. Our AGGAN renovates the training of GANs
as an evolutionary process that incorporates the mechanism of simulated annealing. In
particular, the generator uses different training strategies to generate multiple offspring
and retain the best. Then, we use the Metropolis criterion in the simulated annealing to
decide whether we should update the best offspring for the generator. As the Metropolis
criterion allows a certain chance to accept the worse solutions, it enables our AGGAN
steering away from the local optimum. According to both theoretical analysis and exper-
imental studies on multiple imbalanced image datasets, we prove that the proposed train-
ing strategy can enable our AGGAN to reproduce the distributions of minority classes
from scarce samples and provide an effective and robust solution for the class imbalance
problem.

1 Introduction

In machine learning applications, class imbalance problem, i.e., differences in prior class
probabilities, hinder the performance of many standard classifiers [8]. The key to improve
the classification performance with imbalanced data is to capture the distributions of minor-
ity classes precisely [11]. However, it is difficult to learn accurate distributions from scarce
samples of the minority classes. A common strategy to tackle class imbalance problem is
to increase the minority samples in order to have a better representation for the distributions
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Figure 1: (a) Schematic illustration of local optimum trapping for GANs. In this situation,
GANs will keep fluctuating around the local optimum until the end of training and cannot
learn a distribution that is close enough to the minority class. Consequently, the samples
GANs generated may have low quality. (b) Our method integrates the simulated annealing
genetic algorithm into the training of GANs. In doing so, GANs may update to a worse so-
lution with a decreasing probability, which enables GANs to escape from the local optimum.

of the minority classes. In particular, previous methods usually increased the size of minor-
ity classes by replicating or interpolating the samples from the minority classes. However,
repetition may cause the problem of over-fitting because the samples from minority classes
are overemphasised. On the other hand, because data are normally sitting in a high dimen-
sional space, interpolation is nontrivial and may generate low-quality samples due to the
complexity of the data manifold [2].

Recently, Generative Adversarial Networks (GANs) have shown some potentials to tackle
class imbalance problems because theoretically they are able to reproduce the distributions
of minority classes through adversarial learning. In the training process of GANs, the gener-
ator learns the mapping from a latent encoding space to the minority class distribution, and
the discriminator needs to determine whether an input sample is actually drawn from the
minority class or created by the generator [9]. As these two networks confront each other
constantly, the performances of the generator and discriminator are improved alternately. Fi-
nally, the generator reproduces the distributions of the minority classes that the discriminator
would not be able to distinguish from the actual minority classes.

There are many successful applications of using GANs. However, GANs can easily get
stuck at local optimum when they try to learn the distributions from scarce samples of the
minority classes that is also known as mode collapse [3] as shown in Figure 1 (a). A more
effective training strategy is highly in demand for GANs to avoid the trapping at the local
optimum. Previous attempts tried to avoid local optimum by improving adversarial learning
objectives [18] [27] [4]. However, these previous strategies still used a single adversarial
learning target in the training process that might still fail to fully overcome the local optimum
problem and might also have other limitations, e.g., Wasserstein distance has non-convergent
limit cycles near the equilibrium [20].

Considering the problems and limitations of those previously proposed methods, we pro-
pose a new model, namely Annealing Genetic GAN (AGGAN), to incorporate simulated
annealing genetic algorithm into the training process of GANs to avoid the local optimum
trapping problem (Figure 1 (b)). The primary contributions of the proposed method are
summarised as follows:

• We develop a strategy to incorporate simulated annealing genetic algorithm into the
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training process of GANs to avoid the local optimum trapping.

• Through theoretical analysis, we prove that the simulated annealing genetic algorithm
enables our proposed AGGAN to reproduce the distributions closest to the minority
classes.

• We also conduct comprehensive experimental studies and show that our proposed AG-
GAN method can solve the class imbalance problem efficiently and effectively.

2 Related Work
Class Imbalance Problem Class imbalance is a common problem in practical classifica-
tion tasks. The scarce samples of a minority class make it difficult for the classifier to find
the boundaries between the distributions of different classes correctly. Therefore, the key to
solve class imbalance is to learn an accurate distribution of the minority classes with limited
samples. Oversampling can improve the accuracy of the learning on the distributions of mi-
nority classes by increasing minority samples, which is a common method to tackle the class
imbalance problem [11]. Random oversampling, Synthetic Minority Over-Sampling Tech-
nique (SMOTE) [6] and Border-line SMOTE[10] are commonly used oversampling methods
in classic imbalance problems. However, when dealing with data in high dimensional space,
the quality of the synthesised new data points could still be compromised due to noise and
poor distance measurement in the high dimensional space [5].

Generative Adversarial Networks Recently, GANs have achieved great success in image
generation [26][17], image-to-image synthesis [12], image super-resolution [15] and other
applications due to its excellent capability of learning the data distributions by providing
abundant training samples. In addition, GANs have also shown some potentials to solve
class imbalance problems by learning the distributions of minority classes. Although GANs
have been successfully applied in many tasks, due to the limited number of samples in the
minority class, GANs may only be able to learn part of the minority class distribution at the
end of training, and therefore could be trapped by the local optimum. Some studies have been
done to enable GANs to learn a more accurate distribution during training process by utilis-
ing improved adversarial learning objectives (e.g. LSGAN [18], energy-based GAN [27] and
WGAN [4]. Nevertheless, there still exist limitations when using fixed adversarial training
objectives in the training of GANs. More recently, Evolutionary-GAN (E-GAN) [23] was
proposed and multiple generators were created by different adversarial objectives to over-
come the limitations of the fix adversarial objectives, and always kept the well-performed
generator in the training process. However, local optimum trapping problem has yet been
addressed.

3 Annealing Genetic GAN (AGGAN)
In this paper, we propose AGGAN that aims to learn the accurate distribution from the mi-
nority class. First, our AGGAN uses different adversarial learning objectives to improve
performance of the generator. Second, our AGGAN incorporates the mechanism of simu-
lated annealing into the training so that the model can converge to the distribution that is
closest to the minority class. In particular, in lieu of normal training of GANs, our AGGAN
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Figure 2: We illustrate the training process of the generator here. This training process can
be divided into two steps, which are described in Section 3 with more details.

is trained as an evolutionary process, with the discriminator D as the environment and the
generator G as the individual. Each iteration of the individual is divided into two steps in-
cluding (1) generating the best-fit offspring and (2) updating the generator as illustrated in
Figure 2.

3.1 Generating the Best-Fit Offspring

In each iteration, G gives birth to different offspring Gc by various adversarial learning ob-
jectives. Each Gc represents a solution in the parameter space of the generator network.
The individual fitness of offspring Gc is evaluated based on the diversity and quality of
the generated samples. Then the best-fit offspring GcBest is retained while other offspring
are eliminated. This process of generating the best-fit offspring GcBest reflects the concept
of ‘survival of the fittest’ in the GA. The strategy of using different adversarial objectives
overcomes the limitations of using a fixed objective and helps the final learned generator to
achieve a better performance.

3.2 Updating the Generator

In our study, we propose to use the mechanism of Simulated Annealing algorithm to update
the generator. If the individual fitness of GcBest was higher than G, GcBest will be updated to
Gnew with a probability of 1. If the individual fitness of GcBest was lower than the previous
generation G, GcBest will be updated to Gnew with a probability of P. The probability P is
determined based on the current temperature Tc and the difference between the two individual
fitness. The temperature Tc gradually decreases from the initial temperature T conditioning
on the annealing coefficient α . In doing so, updating G with a decreasing probability in a
worse direction enables AGGAN to asymptotically converge to the global optimum.

Finally, after updating the individual, the environment (i.e., the discriminator) D is up-
dated and the training loop of our AGGAN starts the next evolutionary iteration. As the
training progresses, the data generated by G gradually close to the true distribution, which
helps D to continuously improve classification accuracy. Algorithm 1 summarises the whole
training procedure of the AGGAN.
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Algorithm 1 Annealing Genetic GAN (AGGAN)
Input: The minority class X in the imbalanced dataset.
Parameter: the number of mutations nm, different training strategies Mc(c = 0, ..nm),
initial temperature T , annealing coefficient α .
Output: The generated samples for the minority class.

1: θD,θG← initialise network parameters
2: repeat
3: Calculate individual fitness of G and expressed in FG
4: for c = 0, ..nm do
5: Z← samples from N (0,1)
6: Individual G generate offspring Gc with different adversarial objectives:
7: θGc← ∇θGcMc(Z)
8: Calculate individual fitness of Gc and expressed in Fc
9: end for

10: {Fcbest ,Fc2, ...}← sort({Fc})
11: if Fcbest > FG then
12: Update Gcbest to Gnew.
13: else
14: ∆ = Fcbest −FG
15: P = e−∆/T

16: Update Gcbest to Gnew with probability P
17: end if
18: T = α ∗T
19: Z← samples from N (0,1)
20: θD← ∇θD [logD(X)+ log(1−D(G(Z))]
21: until Convergence

4 Theoretical Analysis

In this section, we perform a theoretical analysis of the proposed AGGAN. We will prove
that incorporating simulated annealing genetic algorithm into the training process of GANs
can reinforce our AGGAN to learn the distribution closest to the minority class, that is, the
AGGAN can converge to the global optimum solution with a probability of 1.

For elaboration purpose, we consider the training of GANs as a combinatorial optimi-
sation problem. We consider this combinatorial optimisation problem as a pair of (G, f ),
where G is a finite set of the solution space of the generator g and f is the object function.
The aim is to find a global optimum to minimise f . It is of note that the finiteness of G
implies that f has at least one minimum over G.

Below we provide the definitions of generating the best-fit offspring and updating the
generator in AGGAN from a mathematical perspective and prove that the simulated anneal-
ing genetic algorithm will make AGGAN to converge to the optimum solution as the training
progressing.
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Symbol Definition Symbol Definition
ggg Individual gggccc Offspring of g
gggcbest The best offspring of g gggbbb The best g so far
GGG Solution space of g GGGnnn Solution space for the nth iteration
{GGGnnn|||nnn ∈∈∈ NNN}ggg The solution space sequence with initial state g

Table 1: Definition of symbols.

4.1 Definition

For readability, we first define the symbols we used in Table 1. Then we give the mathemat-
ical definition of ‘generating the best-fit offspring’ and ‘updating the generator’ in AGGAN.
In addition, in order to obtain the monotonicity without changing the training mechanism,
we add a second element gb to each individual, which represents the best g so far.

Generating the best-fit offspring Fgen First, we use a choice function to find the parent
g from [g,gb]. Then g generates offspring gc under the production function. Finally, we
retain the best-fit offspring gcbest from an individual fitness function. All the steps above
describe the whole process of ‘generating the best-fit offspring’. Since the choice function,
production function and individual fitness function will not be mentioned in the analysis
below, we collectively denote the above process using Fgen

Fgen(g,gb) = gcbest . (1)

As the parameters of the choice function, production function and individual fitness func-
tion do not depend on the number of iterations, Fgen will follow the same distribution with
different number of iterations.

Updating the generator Fupd The process of ‘updating the generator’ uses the mechanism
of SA. We define it as follows

Fupd(g,gb,gcbest) =

{
[g,g′b], if e−

∆
T < γ

[gcbest ,g′b],otherwise
(2)

where

g′b =

{
gb, if f (gcbest)> f (gb)

gcbest , if f (gb)> f (gcbest)
(3)

and ∆ is the difference between the individual fitness of g and gcbest , γ is a random variable
between 0 and 1, and T denotes the temperature parameter for our AGGAN.

We combine Fupd and Fgen to obtain F for the representation of the iterative process of
the generator

F(g,gb) = Fupd(g,gb,Fgen(g,gb)), (4)

and we use Fn to denote the F in the nth iteration.
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4.2 Proof of Convergence
In this section, according to Corollary 1, we will prove that {Gn|n∈N}g satisfies the follow-
ing properties, which can ensure that our AGGAN will converge to the global optimum with
a probability of 1.

1 Monotonicity The minimum value of Gn on f decreases as n becomes larger.

2 Homogeneity If {Gn|n∈N}g is a Markov chain, and the Fn have the same distribution
then the chain is homogeneous.

First, we discuss the monotonicity of {Gn|n ∈ N}g. Since Fupd always keeps the best f
value, for any g we have

min{ f (s)|s ∈ g} ≥min{ f (s)|s ∈ [g,gb,gcbest ]} (5)
≥min{ f (s)|s ∈ fupd(g,gb,gcbest)}

holds.
Hence by Eq. 4, Eq. 5 and

Gn+1 = Fn(Gn,gb) (6)

we have that

min{ f (s)|s ∈ Gn+1}= min{ f (s)|s ∈ Fn(Gn,gb)}
= min{ f (s)|s ∈ Fupd(Gn,gb,Fgen(Gn,gb))}
≤ min{ f (s)|s ∈ Gn}, (7)

so that {Gn|n ∈ N}g is monotone.
Then we discuss the homogeneity. Due to the memory-less property of GANs, for any n,

the conditional probability distribution of Gn+1 (conditional on both past and present states)
depends only upon the Gn, not on the sequence of G that preceded it. Then we have

P(Gn+1 = gn+1|(Gn = gn)∧ ...∧ (G0 = g))

=P(Gn+1 = gn+1|Gn = gn), (8)

so that {Gn|n ∈ N}g has Markov property. Since Fn have the same distribution then

P(Gm = y|Gm−1 = z) = P(Gn = y|Gn−1 = z) (9)

for any y,z ∈ G and m,n ∈ N. So that {Gn|n ∈ N}g is homogeneous.
The following Corollary 1 is derived from the Theorem 2 in the paper of Aartset al. [1].

Corollary 1. Let g ∈ G and the following conditions be satisfied:
(a) {Gn|n ∈ N}g is monotone
(b) {Gn|n ∈ N}g is homogeneous
(c) for every h ∈ succ(g) there exists at least one accessible optimum.
Then {Gn|n ∈ N}g surely reaches an optimum.

As shown above, we can prove that our AGGAN can converge to the global optimum,
which is the closest solution to the minority class distribution with a probability of 1.
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Dataset MNIST Fashion-MNIST SVHN

IR 10 50 100 10 50 100 10 50 100

CN 97.93 94.80 90.27 93.53 86.73 80.00 74.65 58.15 52.00
Os+CN 98.60 96.33 95.53 94.67 92.07 88.13 87.60 66.50 58.90
ACGAN 99.53 98.13 96.60 97.80 96.20 94.13 90.50 74.65 70.55
E-GAN 99.53 98.33 97.00 97.67 96.13 94.40 90.85 74.90 75.50

AGGAN 99.60 98.47 97.53 97.80 96.53 95.07 90.95 81.60 77.70

Dataset CIFAR CELEBA LSUN

IR 10 50 100 10 50 100 10 50 100

CN 72.00 58.85 57.65 71.10 64.40 60.80 81.20 74.60 52.00
Os+CN 90.60 82.75 80.55 86.70 78.85 77.65 92.05 89.95 64.00
ACGAN 92.00 84.70 83.65 91.65 81.40 78.60 95.05 91.10 89.50
E-GAN 92.10 86.55 85.75 91.65 81.75 80.80 95.20 92.40 91.00

AGGAN 94.00 89.25 86.25 92.05 84.20 81.40 95.35 93.10 91.70
Table 2: Accuracy(%) on imbalanced binary classification with various imbalance ratio.

5 Experimental Studies and Discussion

We have used a collection of 6 image datasets for our experiments, namely MNIST [14],
Fashion-MNIST [24], SVHN [21], CIFAR-10 [13], CelebA[16], and LSUN[25]. We eval-
uate our method in two imbalanced environments: two-class and multi-class. In binary
classification, because all the selected datasets are multi-class datasets, we randomly se-
lect two classes from each dataset. Choose Digit 5 (positive) and Digit 6 (negative) from
MNIST, Sandal (positive) and Sneaker (negative) from Fashion-MNIST, and Airplane (pos-
itive) and Automobile (negative) from CIFAR-10, Digit 8 (positive) and Digit 9 (negative)
from SVHN, Eyeglasses (positive) and No-eyeglasses (negative) from CelebA, and choose
Church(positive) and Classroom (negative) from LSUN. In multi-classification, we trans-
form the original balanced training in the same way as the paper of Mullick et al. [19]. And
we define the Imbalance Ratio (IR) as the number of training samples in the largest class
divided by the smallest one.

5.1 Implementation Details

In the binary experiment, we have compared AGGAN, against baseline classifier network
(CN), Os+CN (training set is random oversampled), ACGAN[22] and Evolutionary-GAN[23]
(the version of the discriminator with classifier) to prove the effectiveness of our method. The
same network structures are used for these different methods to achieve a fair comparison.
In particular, our AGGAN and E-GAN use the same adversarial learning objectives to gener-
ate multiple offspring generators in the experiment, including the minimax loss, the modified
minimax loss and the least-squares loss. The same evaluation function has been used to mea-
sure the individual fitness of generators. In the multi-classification, we compare the proposed
method with three the state-of-the-art algorithms which are Class-Balanced[7], DOS[2] and
GAMO[19] respectively. All our experiments have been repeated 5 times to mitigate any
bias generated due to randomization and the means of the index values are reported.
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MNIST Fashion-MNIST SVHN CIFAR-10 CelebA LSUN

Figure 3: Precision, recall, F1-score of majority and minority classes.

Dataset CN ACGAN EGAN AGGAN CB-loss DOS GAMO
MNIST 89.87 90.60 91.41 92.41 92.24 90.60 91.01

Fashion-MNIST 79.64 80.51 82.50 83.20 82.84 82.74 83.00

Table 3: Accuracy (%) of imbalanced multi-classification in MNIST and Fashion-MNIST.

5.2 Classification Performance

Table 2 shows the accuracy in binary classification under different imbalance ratios. The
experimental results of the original imbalance data and the random oversampled data indicate
that data imbalance can significantly affect the performance of the classifier, and simply
repeating the minority data could not lead to better performance. The experimental results
using GANs for oversampling indecate that GANs can mitigate class imbalance problem.
Meanwhile, we can observe that when the IR is low, e.g. 10, different GANs perform equally
well. However, as the degree of imbalance increasing, the advantages of AGGAN become
obvious. When the IR reaches 100, the proposed AGGAN outperforms all other GANs
significantly. Figure 3 shows the three indicators (precision, recall, and F1-score) of the
majority and minority classes in the testing dataset under different methods. We can see that
for imbalanced data, the recall of the minority class and the precision of the majority class
are low. This is because the classifier will judge the data as the majority class as much as
possible to improve the accuracy. The proposed method outperforms the other three methods,
which is particularly evident in the recalls of minority class. This provides solid evidence
that the ability of AGGAN to reconstruct the distribution of the minority class can make
more minority data be classified correctly and improve the performance of the classifier
significantly. Table 3 shows the experimental results on multi-classification. It indicates
that AGGAN can still perform well on more complex imbalanced datasets and achieve the
state-of-the-art level. Compared with ACGAN, E-GAN uses the idea of evolution, and our
method further combines the methods of genetic and simulated annealing. The experimental
results of these three methods fully indicate the effectiveness of the modules of genetic and
simulated annealing in AGGAN.

5.3 Visualization

Figure 4 (a) we visualize the features of MNIST and Fashion-MNIST datasets before and
after using AGGAN to balance the data, respectively. We obtain features by forwarding
images to a classifier pre-trained on the original training set, and features with a specific
category in each figure are represented in the same color. The test set of each category is
represented by translucent dots of corresponding colors. The first column shows the original
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Figure 4: (a) Feature visualization for MNIST and Fashion-MNIST. (b) Simulated annealing
hyper-parameter analysis.

imbalanced training datasets, in which the training samples of minority class can only cover
part of the minority distribution of the test set (which is balanced). As a result, many samples
belong to minority class will be misclassified. However, in the second column of Figure 4
(a), we can see that after using AGGAN for over-sampling, the minority samples in the
training set can almost cover the complete distribution of the minority class in the test set, so
the performance of the classifier can be significantly improved. These results indicate that
AGGAN can learn realistic distribution from scarce minority samples, and in turn prove the
superior performance of AGGAN from the perspective of data distribution.

5.4 Hyper-parameters analysis

For a better understanding of the role of the initial temperature T and the annealing coeffi-
cient α proposed in AGGAN, we use the CIFAR-10 dataset with IR 10 to show the accuracy
and training epochs of the proposed method in Figure 4 (b). The search for hyper-parameters
are T ∈ {100,1000,10000}, α ∈ {0.99,0.999}. We have the following observations that at
the beginning of training, smaller value of T and α make the model converge faster, while the
larger T and α (e.g. T = 10000,α = 0.999) make the model converge more slowly. However,
with an increasing training epoches, the model can achieve higher accuracy finally. These
results can indicate that AGGAN is robust to the different values of hyper-parameters.

6 Conclusion

In this work, we propose a novel training strategy for GANs, dubbed AGGAN, which aims
to reproduce the distributions closest to the ones of the minority classes using limited data
samples. Both theoretical analysis and comprehensive experimental studies have shown the
robustness and efficacy of our AGGAN.
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