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Abstract

Multi-label zero-shot classification aims to predict multiple unseen class labels for an
input image. It is more challenging than its single-label counterpart. On one hand, the un-
constrained number of labels assigned to each image makes the model more easily overfit
to those seen classes. On the other hand, there is a large semantic gap between seen and
unseen classes in the existing multi-label classification datasets. To address these diffi-
cult issues, this paper introduces a novel multi-label zero-shot classification framework
by learning to transfer from external knowledge. We observe that ImageNet is commonly
used to pretrain the feature extractor and has a large and fine-grained label space. This
motivates us to exploit it as external knowledge to bridge the seen and unseen classes and
promote generalization. Specifically, we construct a knowledge graph including not only
classes from the target dataset but also those from ImageNet. Since ImageNet labels are
not available in the target dataset, we propose a novel PosVAE module to infer their initial
states in the extended knowledge graph. Then we design a relational graph convolutional
network (RGCN) to propagate information among classes and achieve knowledge trans-
fer. Experimental results on two benchmark datasets demonstrate the effectiveness of the
proposed approach.

1 Introduction

Recent deep learning methods are able to outperform humans in image classification tasks
by leveraging supervised learning and large-scale datasets such as ImageNet [25]. However,
machines still cannot compete with humans when the task requires generalizing learned
concepts to novel concepts. For example, a person who has only seen horses but not zebras
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can still recognize a zebra if he/she is told that “a zebra is like a horse but has black and
white strips”. To evaluate a model’s ability to generalize what it has learned during training
to totally new concepts in testing, the task of zero-shot learning (ZSL) [1, 3, 12, 26, 33]
divides a set of classes into two disjoint sets: a set of seen classes and a set of unseen classes.
Images from seen classes are provided during training, while images of both seen and unseen
classes are used for testing.
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Figure 1: Illustration of combining ImageNet classes into multi-label zero-shot image classi-
fication on MS-COCO [18]. Without the yellow nodes from ImageNet [25], it would be hard
to predict the unseen class Sheep since other seen classes are not semantically related to it.
However, with the knowledge that the current image has a high probability on the ImageNet
class Bighorn Sheep and the word embeddings of both Sheep and Bighorn Sheep, the model
can better predict the unseen class by referring to the ImageNet classes.

Although zero-shot learning for single-label classification has been well studied [12, 22,
26, 28, 34, 35], multi-label zero-shot learning (ML-ZSL) [7, 16, 20, 37] is a less explored
area. An image is associated with potentially multiple seen and unseen classes, but only
labels of seen classes are provided during training. The multi-label zero-shot learning prob-
lem is more difficult than its single-label counterpart for two reasons. First, since there is
no constraint on the number of labels assigned to an image and only labels of seen classes
are provided during training, the model can easily bias towards the seen classes and ignore
the unseen ones. Second, the datasets used for multi-label zero-shot learning are generally
much more challenging than those used for traditional zero-shot learning. While the datasets
used for zero-shot learning (ZSL) usually consist of closely related classes such as different
kinds of birds (e.g., Baird Sparrow and Chipping Sparrow in CUB [29]), the datasets for
multi-label classification contain high-level concepts that are less related to each other (e.g.,
truck and sheep in MS-COCO [18]). The semantic gap between seen and unseen classes in
multi-label datasets makes it difficult for the model to generalize knowledge learned from
seen classes to predict unseen classes.

Some studies [7, 8, 16, 19, 20, 24, 37] try to solve the multi-label zero-shot learning prob-
lem by leveraging word embeddings [37] or constructing structured knowledge graphs [16].
Although these methods empirically work well, none of them utilizes external knowledge to
close the gap between semantically distinct seen and unseen classes. By contrast, humans
learn new concepts by connecting them with those that they have already learned before,
and thus can transfer knowledge from previous experience to solve new tasks. This ability is
called transfer learning. The most popular way to use transfer learning in various computer
vision tasks is to extract image features from classifiers (e.g., ResNet [10]) pretrained on Im-
ageNet [25]. However, this naive approach does not make use of the semantic information
of the 1K ImageNet classes, which can be helpful in recognizing unseen classes in zero-shot
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learning, especially when none of the seen classes is closely related to the unseen ones.

In this paper, we propose to build a knowledge graph with not only the classes from the
target multi-label dataset (e.g., MS-COCO [18]) but also classes from the external single-
label dataset (e.g., ImageNet [25]). Then classification can be performed via graph reasoning
methods such as graph convolutional networks (GCNs) [15]. Our intuition is that the knowl-
edge of which ImageNet classes are more related to the image can help close the semantic
gap between the seen and unseen classes. For example, as illustrated in Figure 1, the unseen
class Sheep in the image is hard to predict since it is semantically very different from all
seen classes in the dataset. But if we include the 1K ImageNet classes into the knowledge
graph, there will be a class Bighorn Sheep which is semantically related to Sheep. Given the
predicted probability distribution on the ImageNet classes, if the Bighorn Sheep class has a
high probability, we can infer that the image contains the Sheep class.

After incorporating the ImageNet classes as nodes in the knowledge graph of the target
dataset, it is still nontrivial to infer their states. A simple solution is to use the predicted prob-
ability distribution on ImageNet classes as pseudo labels, and then we can treat the ImageNet
classes the same as those in the target multi-label dataset. However, this simple approach is
problematic. Since the ImageNet classes are not labeled in the multi-label dataset, treating
them the same as the real target labels may confuse the network and lead to inferior learning.
To address this issue, we propose a novel PosVAE module based on a conditional varia-
tional auto-encoder [27] to model the posterior probabilities of the ImageNet classes. Then
the states of ImageNet nodes are obtained via inference through the PosVAE network. The
states of nodes from the target dataset are obtained by another semantically conditioned en-
coder which takes as input the concatenation of the image features and the class embedding
of each node. The states of all nodes are passed into a relational graph convolutional net-
work (RGCN), which propagates information among classes and generates predictions for
each class in the target dataset.

Our contributions are summarized as follows:

e To the best of our knowledge, this is the first attempt to transfer the semantic knowledge
from the 1K ImageNet classes to help solve the multi-label zero-shot learning problem.
This is achieved by adding the ImageNet classes as additional nodes to extend the knowl-
edge graph constructed by labels in the target multi-label dataset. By contrast, previous
methods only utilize pretrained ImageNet classifiers as feature extractors.

e We design a PosVAE module, which is based on a conditional variational auto-encoder [27],
to infer the states of ImageNet nodes in the extended knowledge graph, and a relational
graph convolutional network (GCN) to generate predictions for seen and unseen classes.

e We conduct extensive experiments and demonstrate that the proposed approach can effec-
tively transfer knowledge from the ImageNet classes and improve the multi-label zero-shot
classification performance. We also show that it outperforms previous methods.

2 Related Work

Multi-label Classification. Recently, some work [4, 5, 19, 30, 31, 38] propose different
ways to learn the correlations among labels. Marino et al. [19] first detect one label and then
sequentially predict more related labels of the input image. Wang et al. [30] use a recurrent
neural network (RNN) to capture the dependencies between labels, while Zhu et al. [38] uti-
lize spatial attention to better capture spatial and semantic correlations of labels. Chen et al.
[5] construct a knowledge graph from labels and use the co-occurrence probabilities of labels
as weights of the edges in the graph, and apply a graph convolutional network (GCN) [15]
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to perform multi-label classification. Chen et al. [4] use the pretrained word embeddings
of labels as semantic queries on the image feature map and apply spatial attention to ob-
tain semantically attended features for each label. Although these methods consider label
dependencies and work well on traditional multi-label classification, they are not directly
applicable in the multi-label zero-shot setting because the label co-occurrence statistics is
not available for unseen classes, and only utilizing the statistics for seen labels can cause se-
vere bias towards seen classes. Thus we need a different way to learn the relations between
labels in the multi-label zero-shot setting.

Multi-label Zero-shot Learning is a less explored problem compared to single-label
zero-shot learning [12, 22, 26, 28, 34]. Fu et al. [7] enumerate all possible combinations
of labels and thus transform the problem into single-label zero-shot learning. However, as
the number of labels increases, the number of label combinations will increase exponen-
tially, which makes this method inapplicable. Mensink et al. [20] learn classifiers for unseen
classes as weighted combinations of seen classifiers learned with co-occurrence statistics of
seen labels. Zhang er al. [37] consider the projected image features as a projection vec-
tor which ranks relevant labels higher than irrelevant ones by calculating the inner product
between the projected image features and label word embeddings. Gaure et al. [8] further
assume that the co-occurrence statistics of both seen and unseen labels are available and
design a probabilistic model to solve the problem. Ren et al. [24] cast the problem into a
multi-instance learning [36] framework and learn a joint latent space for both image features
and label embeddings. Lee et al. [16] construct a knowledge graph for both seen and unseen
labels, and learn a gated graph neural network (GGNN) [17] to propagate predictions among
labels. To our knowledge, none of the previous work considers the large semantic gap be-
tween seen and unseen labels, and we are the first to exploit the label space of a single-label
image classification dataset as external knowledge and transfer it for zero-shot multi-label
image classification.

3 Approach

3.1 Problem Definition and Notations

The multi-label zero-shot classification problem is defined as follows. Given a multi-label
classification dataset, the label space ) is split into seen labels J* and unseen labels " such
that Y = Y*UY" and Y* N Y* = 0. During training, a set of image-label pairs is available,
where the labels y of an image x come from only the seen classes: {x,y|ly C J*}. During
testing, the images may have labels from both seen and unseen classes: {x,y|y C V}. The
goal is to learn a model f : x — Y U V", given only seen classes )* during training. In this
work, we propose to use an external set of labels * from ImageNet [25] where Y*NY = 0.
For an arbitrary class y, its pretrained GloVe [23] embedding is denoted by s, and all class
embeddings are aggregated into a single matrix S € RIYIH*)*ds 'wyhere dj is the dimension
of embeddings.

3.2 Overview of the Proposed Method

The overall pipeline of the proposed model is illustrated in Figure 2. An input image is first
fed into a pretrained ImageNet classifier to extract its image feature and a probability distri-
bution p* over the ImageNet classes }“. We first construct a graph whose nodes are classes
from the target dataset. We calculate the pair-wise Wu-Palmer (WUP) [32] similarities on
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Figure 2: Pipeline of the proposed model. When constructing the graph, we calculate the
WUP [32] similarity between each pair of nodes (one node per class) and use a threshold to
decide whether there is an edge between the two nodes. Since WUP similarity is invariant to
the order of nodes, edges are bidirectional. We hide the self-connections here for clarity.

WordNet [21] and then use a threshold to determine whether an edge exists between a pair of
nodes. Self-connections are also included. During training, only seen classes )* are included
into the training graph, while during testing both seen and unseen classes () = Y* U V") are
included in the testing graph. The classes }* from ImageNet [25] are also added to the
training and testing graphs, and edges are added in the same way as described above. The
overlapping classes between ImageNet and the target dataset have been removed from ).
All aggregated edges form an adjacency matrix A € RIY* HYDxUY’ 413N for training, and
an adjacency matrix A € RIVHPDVHY) for testing (with little abuse of notation).

Since the target dataset does not have ground-truth labels of the ImageNet classes )*,
we need to treat ) and )¢ differently when inferring their states in the graph. For nodes in
YV U Y*, we infer their initial states by concatenating their corresponding word embeddings
and the extracted image features. Then a multi-layer perceptron (MLP) network is applied
to obtain the node features HY € R!Y’ %4 for training and HY € RIY/*4 for testing, where d},
is the dimension of node features. Meanwhile, for nodes corresponding to )“, we design a
PosVAE module to estimate the posterior P(hy|p§,s,) for each y € J, where hy is the node
state of class y and p§ is predicted probability of the class y € Y. Then we sample from
this posterior distribution to infer the initial node states for all classes in Y denoted as H* €
RY“I%di We will discuss the detailed design of PosVAE in Section 3.3. Then we can obtain
the initial node states for all the nodes in the graph by concatenation: H € RUY*HYDxdn for
training and H € RIVI+PD>dn for testing.

With the initial node states H, the adjacency matrix A, and the embedding matrix S,
we design a Relational Graph Convolutional Network (RGCN) to propagate information
among the nodes and refine their features, which will be discussed in Section 3.4. The
output features of RGCN are fed into another MLP network followed by Sigmoid functions
to predict the existence of each label in the target dataset ()’ for training and ) for testing).

3.3 Variational Inference for Node States of )“

For each ImageNet class y, we aim to estimate its corresponding initial node state hy, in the
graph from its probability p{ predicted by pretrained ImageNet classifier and its embedding
sy. The objective is to estimate the posterior P(hy|p,sy). Since we do not have the exact
form of the posterior, we resort to variational inference and use another learned distribution
Q(hy|p§,sy) to approximate the true posterior P(hy|p§,sy). In order to ensure a good approx-
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imation, we aim to minimize the KL-divergence between Q(h,|pj,s,) and P(hy|p{,s,):

Lyag = |ya\ Zy Dir[Q(hy|p{,s,)[|P(hy|p{.sy)] (M
yey¢
1
= W Z Eh).NP(hy\p;%,sy)[IOg Q(hy|p§lasy) —IOgP(hy\Pﬁ,Sy)] @
yeye

Similar to the conditional variational auto-encoder [27], the above objective can be fur-
ther derived as:

Lyag = \ya\ Z Eh)NP (hy|pg s\)[IOgP(Py|hy7Sv) logQ(hy\p;,sy)+10gP(hy)} —P(P;)]
yey

(3)

= ‘ya‘ Y. [Enyp(npe.s,) [log P(P§ Ny, 8y)] — Dx [O(hy [pS,sy)[[P(hy)]], “4)
yey¢

where the term P(p;’) is neglected since it does not depend on h, during optimization.

We assume h,, follows an isotropic Gaussian distribution Q(hy[p%,s,) ~ N (u,6>I) and
P(hy) ~ N (0,1). By using the reparameterization trick [14], the initial node states hy, can be
derived as:

z~N(0,1); (u,logo) = Encoder(py,sy); hy = p +exp(logo/2) Oz, 5)

where the Encoder network is a stack of MLP layers and ® is element-wise multiplication.
The Encoder first projects pj into the same dimension space as s,. Then the two vectors are
concatenated and fed into subsequent MLP layers to generate the mean . € R% and log stan-
dard deviation log ¢ € R% In order to calculate the log-likelihood term log P(py|hy,sy), we
assume a Gaussian distribution on p{, and use the Decoder network to project the concate-
nation of hy and sy back to p§. Then maximizing the log-likelihood term is approximately
equal to minimizing the mean-square error (MSE) between the reconstructed probability and
the real one.

3.4 Relational Graph Convolutional Network

The Graph Convolutional Network (GCN) [15] was first introduced as a method to perform
semi-supervised classification. Its core idea is to design a message passing mechanism for
graph data so that the node features can be updated recursively and become more suitable to
the desired task. Different from the conventional convolution that operates in the Euclidean
space like images, a GCN works on graph-structure data that contain nodes and edges but
without fixed geometric layout. Given the states H' of the current layer / and the adjacency
matrix A, the states of the (I + 1)-th layer can be calculated as:

H! = §(AH'W!), (6)

where W/ is the learnable weight matrix of the /-th layer, A is the normalized version of A
[15], and &(+) is a non-linear activation function such as ReLU.

In traditional multi-label classification models, the A matrix is often represented by the
co-occurrence probabilities between labels [4, 5]. However, in the zero-shot learning setting,
we do not have this information. Thus we set A € RUY’[+¥Dx(3*1+1%) a5 binary adjacency
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matrix and learn a new matrix W € RIY 1D (17 [+13D) to indicate the weight of each edge
(AW e RIVHIVDXVIHY) for testing). In order to learn the weight matrix, we propose
the relational graph convolutional network (RGCN) as follows. Specifically, the weight
of the edge between a pair of classes (u,v) is calculated by first concatenating their word
embeddings (s,,s,) together and feeding them into an MLP network to generate a scalar
which represents the weight. In this way, we are able to calculate the weight between seen
and unseen classes. An entry wy, of the weight matrix W is derived by:

Wyuy = MLP(s,,s,), @)

where wy, € [0,1], and (s,,s,) € R%. Elements on the diagonal of W are set to 1 to include
self-connections. After obtaining the weight matrix W, we calculate A = normalize(W ©A),
where © is element-wise multiplication. After obtaining the new matrix A, the rest of RGCN
is the same as the traditional GCN [15]. After obtaining the node states H® € RIY’ %4 of
each node corresponding to the seen classes ), we apply a final MLP layer to the node
states to calculate the probability of each label, i.e., p* = MLP(H®),p* € RIY S', and L is
the last layer of RGCN. We train the relational graph convolutional network (RGCN) with
class-wise binary cross-entropy loss:

—ﬁ X (01109 loa(1 ~B5) 10 g ®)
yeys

LrGen =
where I(y) is an indicator function that outputs 1 if the input image contains label y, other-
wise 0. The whole model is trained by minimizing the joint loss function:

Lai = Lreen +ALvAE, )

where A is a hyper-parameter to balance the two terms.
4 Experiments

4.1 Datasets and Setting

Datasets. In our experiments, we use two multi-label datasets, i.e., MS-COCO [18] and
NUS-WIDE [6]. MS-COCO [18] is a large-scale dataset commonly used for multi-label im-
age classification, object detection, instance segmentation and image captioning. We adopt
the 2014 challenge which contains 79,465 training images and 40,137 testing images respec-
tively (after removing images without labels). Among its 80 classes, we randomly select 16
unseen classes and make sure that the unseen classes do not overlap with the ImageNet
classes [25]. The 16 unseen classes are (’bicycle’, ’boat’, ’stop sign’, 'bird’, ’backpack’,
‘frisbee’, 'snowboard’, 'surfboard’, 'cup’, 'fork’, ’spoon’, ’broccoli’, 'chair’, ’keyboard’,
‘microwave’, 'vase’). NUS-WIDE [6] is a web-crawled dataset with 54,334 training images
and 42,486 testing images (after removing images without labels). Among the 81 classes
of NUS-WIDE [6], we randomly select 16 unseen classes and make sure that the unseen
classes do not overlap with the ImageNet classes [25]. The 16 unseen classes are (’air-
port’, ’cars’, food’, 'fox’, 'frost’, 'garden’, 'mountain’, ’police’, ’protest’, ‘rainbow’, ’sun’,
‘tattoo’, train’, ‘water’, 'waterfall’, "'window’).

Graph construction. We calculate the WUP [32] similarity between each pair of classes,
and an edge is added to the graph if the corresponding WUP similarity is greater than a
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Table 1: Performance comparison on MS-COCO [18] and NUS-WIDE [6]

MS-COCO NUS-WIDE
Seen Unseen Seen Unseen
Model mAP | miAP | mAP | miAP | mAP | miAP | mAP | miAP
visual-semantic | 58.30 | 59.87 | 18.60 | 28.08 | 25.79 | 34.64 | 12.73 | 29.01
fastOtag 44.60 | 60.20 | 19.10 | 3290 | 25.10 | 36.09 | 10.41 | 34.58
SKG 64.02 | 64.22 | 18.03 | 33.68 | 22.89 | 3295 | 8.89 | 33.77
RGCN 53.67 | 60.43 | 18.97 | 33.65 | 24.95 | 31.23 | 9.98 | 33.61
RGCN-XL 34.10 | 49.18 | 17.32 | 3543 | 23.66 | 3095 | 9.86 | 34.31
RGCN-PosVAE | 51.54 | 57.13 | 20.52 | 37.14 | 24.67 | 32.09 | 11.09 | 36.78

specified threshold (0.5 in all of our experiments). When adding the ImageNet [25] classes
into either the MS-COCO [18] or NUS-WIDE [6] graph, we exclude any class existing in
the target dataset from ImageNet to ensure the additional nodes are distinct from the nodes
in the two target datasets.

Evaluation protocol. We adopt two evaluation metrics, i.e., mean average precision
(mAP) which evaluates the model performance on the class level, and mean image average
precision (miAP) which evaluates the model performance on the image level. We calculate
the mAP and miAP for two sets of labels, i.e., seen classes ) and unseen classes V“.

Baselines. We use three models from previous work and some variants of our proposed
method as baselines. Visual-semantic [1] was proposed for single-label zero-shot classi-
fication, which projects the visual features of images to the semantic space of classes and
use the class embeddings as classifiers. Here we change the loss function from multi-class
cross-entropy to binary cross-entropy applied to each class individually. Fast0Tag [37] uses
class embeddings as projection vectors to rank the closeness between images and classes,
and applies a triplet-based ranking loss to train the model. SKG [16] constructs a structural
knowledge graph from labels and applies GGNN [17] to infer the existence of each label. It
also uses WUP simiarities on WordNet [21] to construct the graph as we do. RGCN is a basic
version of our proposed model which does not include external nodes from ImageNet [25].
RGCN-XL is another variant of our proposed model, where the ImageNet [25] nodes are
also included in the graph but treated the same as the other nodes in the target dataset. For
ImageNet nodes, we predict their probabilities in the same way as the other classes in the
target dataset, but train them with MSE to reconstruct the probability distribution of the pre-
trained ImageNet classifier. RGCN-PosVAE is our full model which uses PosVAE to infer
the hidden states of ImageNet classes and applies RGCN to propagate information among
different classes.

Implementation details. For SKG [16] we use the code provided by the authors and
modify it to fit our pipeline, and we implement all other baselines. We use ResNet-101 [10]
pretrained on ImageNet [25] as the feature extractor. We use the 300-dimension pretrained
GloVe [23] vectors to represent class embeddings. We implement the encoder and decoder
of PosVAE as MLP networks with a hidden layer of size 256, while the relation network that
computes wy, is implemented as a two-layer MLP network with a hidden size 256. We use
two layers of RGCN with the feature dimension 256. We use an Adam [13] optimizer and
set the initial learning rate as Se~* and decay it by 0.1 when the loss plateaus. A is set to 1
for our model. The random seed for all experiments are fixed as 42.


Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Chua, Tang, Hong, Li, Luo, and Zheng} 2009

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Chua, Tang, Hong, Li, Luo, and Zheng} 2009

Citation
Citation
{Akata, Perronnin, Harchaoui, and Schmid} 2013

Citation
Citation
{Zhang, Gong, and Shah} 2016

Citation
Citation
{Lee, Fang, Yeh, and Frankprotect unhbox voidb@x protect penalty @M  {}Wang} 2018

Citation
Citation
{Li, Tarlow, Brockschmidt, and Zemel} 2015

Citation
Citation
{Miller} 1995

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

Citation
Citation
{Lee, Fang, Yeh, and Frankprotect unhbox voidb@x protect penalty @M  {}Wang} 2018

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

Citation
Citation
{Pennington, Socher, and Manning} 2014

Citation
Citation
{Kingma and Ba} 2014


HUANG ET AL.: MULTI-LABEL ZERO-SHOT CLASSIFICATION 9
4.2 Results

The main results are shown in Table 1. As we can see from the last row of the table, our pro-
posed method achieves the highest miAP on unseen classes in both datasets. We achieve the
highest unseen mAP on MS-COCO and second highest unseen mAP on NUS-WIDE [6]. Al-
though our model has 1.64% lower unseen mAP than visual-semantic [1] on NUS-WIDE [6],
our unseen miAP is 7.77% higher than visual-semantic [1]. For the MS-COCO [18] dataset,
our model performs better than SKG [2] with an obvious margin of about 3.5% unseen miAP
and 2.5% unseen mAP. On NUS-WIDE [6], our RGCN-PosVAE outperforms the second best
FastOTag [37] by around 2% unseen miAP and 0.6% unseen mAP.

FastOtag [37] achieves higher seen and unseen miAP on both datasets than visual-semantic [1]
while visual-semantic [1] performs better on seen mAP than FastOtag [37] on both datasets.
SKG [16] performs better than the previous two baselines on MS-COCO [18], but is slightly
worse than FastOtag [37] on the NUS-WIDE [6]. The RGCN baseline, which is the same as
our full model but without incorporating ImageNet nodes into the graph, still outperforms
FastOTag [37] on MS-COCO, and have comparable result with SKG [16] on NUS-WIDE.
By comparing the seen and unseen class performance of each model, we can see that other
baselines generally achieve better performance on seen classes than our proposed model, but
have lower performance on unseen classes, which indicates that our proposed model is less
likely to overfit seen classes and better able to generalize to unseen classes than others.

The basic RGCN model achieves higher unseen mAP than SKG [16] on MS-COCO and
slightly lower unseen miAP on NUS-WIDE [6]. But their results are still comparable, which
shows that our proposed RGCN itself is already a very strong baseline. RGCN-XL, which is
an extended RGCN with ImageNet nodes, achieves higher unseen miAP than RGCN, which
shows the potential of utilizing the semantic information of ImageNet classes, although in
a simple fashion. It can also be noted that RGCN-XL has much lower performance on
seen classes on MS-COCO. The reason may be that the brute-force way of incorporating
ImageNet classes will make the predictions on seen classes harder, since the input images do
not actually have those ImageNet classes while the model is trying to treat them the same as
the classes in the target dataset when initializing their node states. Meanwhile, the proposed
RGCN-PosVAE model, which infers the initial states of ImageNet classes using variational
inference, achieves higher scores on both seen and unseen classes than RGCN-XL, which
demonstrates the advantages of using the proposed method to initialize the hidden states of
ImageNet classes.

4.3 Ablation Study
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Figure 3: Ablation study

Effect of the number of GCN layers. We first investigate how the number of RGCN
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layers affects our model’s performance on the MS-COCO dataset [18]. We try different
numbers of layers from 1 up to 6, and plot the seen and unseen classes miAP in Figure 3(a).
As we can see, the miAP performance on seen classes does not vary a lot with different
numbers of RGCN layers. On the other hand, two or three layers of RGCN have similar
performance on unseen classes, while the version with only one layer has miAP about 2%
lower than the highest. After increasing the number of layers to 4, 5 and 6, the model’s
performance on unseen classes drops, which indicates that the model starts to become more
overfitted to seen classes.

Effect of the WUP similarity threshold. We also investigate how the threshold of WUP
similarity can affect our model’s performance. We tune the threshold from 0.1 to 0.8, and
show the result as well as the number of edges generated by each threshold in Figure 3(b).
As we can see, although setting a low threshold will include some noisy edges that may be
misleading, our model still achieves a good performance on unseen miAP, with less than
1% decrease from the best one. As the threshold becomes larger than 0.5, we can see that
there is an obvious drop of performance on unseen miAP. This is because the number of
edges is much smaller when the threshold is too large, and thus the model cannot make good
reference to seen classes when predicting unseen classes. Overall, our model’s performance
on seen and unseen classes is still relatively robust with respect to the WUP [32] similarity
threshold when the threshold is less than 0.6.

5 Conclusion

In this paper, we tackle the multi-label zero-shot learning (ML-ZSL) problem by first point-
ing out the potential semantic gap between seen and unseen classes, and propose to in-
corporate external ImageNet classes to help predict the seen can unseen classes. Specifi-
cally, we construct a knowledge graph consisting both clases from ImageNet and the target
dataset (e.g., MS-COCO [18] and NUS-WIDE [6]), and design a PosVAE network to in-
fer the node states of ImageNet classes, and learn a relational graph convolutional network
(RGCN) which calculates the propagation weights between each pair of classes given their
GloVe [23] embeddings. Experiments show that our proposed method has a clear advantage
of predicting unseen classes. For future research, it will be interesting to apply generative
adversarial nets [9, 11] to generate images of unseen classes.
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