
IODICE AND MIKOLAJCZYK: TAVD FOR PERSON SEARCH 1

Text Attribute Aggregation and Visual
Feature Decomposition for Person Search

Sara Iodice
iodice.sara@gmail.com

Krystian Mikolajczyk
k.mikolajczyk@imperial.ac.uk

Imperial College London
London
UK

Abstract

Person search is the task of retrieving a pedestrian image given a list of text attributes.
We investigate a novel mechanism that operates in feature embedding space for match-
ing data across visual and text modalities. We propose a framework (TAVD) with two
complementary modules: Text attribute feature aggregation (TA) that aggregates multi-
ple semantic attributes in a bimodal space for globally matching text descriptions with
images and Visual feature decomposition (VD) which performs feature embedding for
locally matching image regions with text attributes. The results and comparisons to the
state of the art on three standard benchmarks demonstrate that our solution is an effec-
tive strategy for retrieving person images while retaining the semantic of each query text
attribute.

1 Introduction

Research on person re-ID is mostly focused on the problem of matching pedestrian im-
ages across different cameras. Several effective solutions have been proposed such as atten-
tion [1, 2, 3] and GANs based methods [4, 5, 6, 7], however, these approaches can help only
if at least one image of the subject is available, i.e., query image. Unfortunately, this does not
occur in many practical scenarios, for example, when reporting a crime, witnesses typically
provide only a short textual description of the suspects. To address such cases, re-ID sys-
tems should include a more robust matching mechanism that operates across different input
modalities, i.e., text and images. There have been several works in the area of person search
which consider text input in the form of long and articulate text descriptions [22, 35, 36, 38]
or simple lists of text attributes [17, 18]. The second category has the advantage of more data
with annotation being available in many popular person or fashion focused benchmarks.
One of the main challenges in a frequent approach that considers person search as a multi-
label classification problem, is that multiple labels (attributes) must be predicted for each
person category. This leads to over-engineered solutions with a memory complexity grow-
ing with the number of training attributes, and limited capacity, as only a fixed number of
attributes can be effectively handled. For example, [18] allocates multiple fully connected
layers for each attribute, and groups them to handle a large number of attributes. This,
however, removes some important semantic differences within each group. In contrast, our
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2 IODICE AND MIKOLAJCZYK: TAVD FOR PERSON SEARCH

Figure 1: TAVD. Text attribute aggregation (TA) and Visual feature decomposition (VD).
During training, TA aggregates input text features in a global representation and learns a
common metric space; VD decomposes visual features and regresses each component to-
wards the corresponding text embedding. During inference, TA enables global matching
between semantic and visual features in a learnt common metric space; VD enables local
matching between the input image and the query text attributes. (Best viewed in color).

method preserves the semantic meaning of each single attribute by operating in text em-
bedding space into which visual features are decomposed and locally matched against text
attributes. As suggested by [17, 18], another crucial point is to preserve contextual infor-
mation among the text attributes. We, therefore, propose to also learn a bimodal embedding
space where attributes and visual features are holistically represented and matched.
A general overview of our TAVD frameworks is presented in figure 1. TA implements global
matching by aggregating input text into a global representation compared to visual features
in a common metric space. Concurrently, visual features are decomposed by VD into mul-
tiple components and regressed towards the corresponding text embeddings. This enables
local matching between image regions and each text attribute. Note that, similar to [18], we
consider n attribute categories related to different body parts, but our method can process
any number of text attributes by aggregating them in text embedding. Unlike learning visual
attribute categories, operating in the text embedding space has the advantage of preserving
the semantic differences and relations of attributes. The main contributions of our work are
the following: 1) we propose TAVD framework for person search task with novel match-
ing mechanism which operates both globally - leveraging joint representation and context in
learnt bimodal space - and locally - comparing image regions to text attributes. 2) in con-
trast to prior works [17, 18], our approach can handle any number of text attributes while
preserving subtle semantic differences between them; 3) to overcome the challenge of lim-
ited annotations in standard benchmarks with only a per-person annotation, we propose an
augmentation strategy based on synonyms which generates a per-frame annotation; 4) we
achieve state-of-the-art results on three person search benchmarks, i.e., Market-1501 [19],
DukeMTMC [20] and PA100K [8].

2 Related works
The general goal of text-to-image retrieval is to retrieve an image from a gallery given a text
query. The term "person search" was introduced in [18] to define the task of retrieving a
person image by text attributes only. Existing approaches for matching image and text can
be divided into two main paradigms: category-level and attribute-level methods.
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Category-level methods learn a joint feature space where textual descriptions and visual rep-
resentations can be projected for matching; [28] increases the correlations of positive pairs
by minimizing the KL divergence between the normalized true matching probability and the
distribution of cross-modal positives; [41] learns to project semantic representation in the
visual features space; [43] aligns data from different modalities by minimizing the mean and
covariance of corresponding distributions. Inspired by [23, 24, 25] we incorporate a vari-
ant of the bi-rank loss [25] we named batch hard bi-triplet loss to enable the matching of
both image-to-text and text-to-image and takes advantage of the batch hard triplet configura-
tion [26]. Other methods [29, 30, 31, 32] use adversarial learning to reduce the discrepancy
between image and text features. [30, 31, 32] build upon the adversarial framework first
proposed by [29]. In [30] textual feature are optimized with the approach from [33] before
summarising them with bidirectional LSTM. Interestingly, [31, 32] show the effectiveness of
the adversarial strategy for food and recipes matching, although note that adversarial meth-
ods may suffer from instability during training.
Example person search methods in this category level group employ adversarial learning to
align image and attributes global descriptors [17] or combine the category-level and attribute-
level paradigms with a hierarchical approach [18]. Several works [22, 35, 36, 38] have at-
tempted to retrieve images by using natural language description, however, they suffer from
the extra challenge of mapping complex sentences with low resolution images. Unlike all
these methods, we combine the category-level paradigm with the text embedding paradigm,
where we jointly learn a bimodal space for globally matching the semantic text description
with visual features, and predict text embeddings for locally matching attributes with image
regions.

Attribute-level approaches [10, 11, 18, 34] typically adopt a fully connected layer and a
softmax activation to predict the likelihood a certain attribute is present. However, this ap-
proach may be inefficient as the number of neurons grows quadratically with the number
of attributes and ineffective in case of rare attributes. This has been partly addressed in [9]
by learning a disentangled representation for the part and appearance features. Unlike [9]
which helps in the case a certain attribute occurs rarely only in certain locations, our method
leverages the prior information of the attribute in the natural language model and works with
any rare attributes.
Attribute based person search methods [39, 40] focus on matching local attributes and image
regions and lack the ability to encode and compare holistic person information.

Vision based person Re-ID methods differ from person search in the final objective which
is retrieving a particular ID rather than a person category, i.e., a specific combination of
attributes. These methods also benefit from semantic attributes as they provide additional
descriptions that are robust against various factors, e.g, illumination condition, pose, and
camera view. Specific attributes are particularly useful to deal with ambiguous cases such
where persons have a similar appearance but some specific details are different, e.g, shirt
logo, hat, and shoe colour. Early works [12, 13] train sequentially the attribute recognition
and re-ID tasks by fine-tuning one based on the other. To calibrate the strength of each
individual attribute and incorporate dependencies/correlations among them, [14, 15] intro-
duce a re-weighting module which accordingly adjusts the final predictions. Recently, [16,
21] achieved state-of-the-art results on person re-ID and video re-ID benchmarks, respec-
tively. [16] proposes a multitask architecture combining attribute prediction and localiza-
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4 IODICE AND MIKOLAJCZYK: TAVD FOR PERSON SEARCH

tion; [21] presents an attribute-driven method for feature disentangling and re-weighting
based on the attribute recognition confidence.

3 Proposed method

Figure 2: TAVD framework. It takes as input a pair formed by a list of text attributes
and an image. TA learns a common metric space for comparing global semantic features h
and visual features g with the batch hard bi-triplet loss LbTri. VD regresses visual features
component { fGloVe}n

i=1 towards corresponding GloVe embeddings {yGloVe}n
i=1. During eval-

uation time, given the text attribute query, TAVD retrieves the matching image sample from
the gallery set evaluating the euclidean distances between the corresponding global and local
representations.

In this section, we present our approach for person search using text attributes. Fig-
ure 2 shows the processing pipeline. Given a list of text attributes and a gallery image, text
attributes encoder aggregates a set of individual attribute embeddings into a global repre-
sentation. VD implements the opposite flow from image to text and from global to local by
decomposing the image representation into local components that describe the text attribute
features. The text query is compared to a gallery image in these two spaces focused on local
and global representation from both image and text perspective.
We use GloVe model [27] for text embedding that proved successful in many applications
with natural language data and ResNet-50 [37] for extracting image features. GloVe model is
pre-trained on Wikipedia thus incorporates many synonyms and relations between attributes.

3.1 Text attribute feature aggregation

Retrieving a person image in a gallery by looking for specific local attributes is straightfor-
ward for humans. However, rather than simply matching a list of unrelated characteristics, a
human also searcher for a global concept emerging from our contextual and prior informa-
tion regarding those attributes. This motivates our text attribute aggregation module, which
computes a holistic representation from local attributes. TA takes as input n attributes and
maps them into a semantic (50−D) space with a GloVe model. Each attribute describes a
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IODICE AND MIKOLAJCZYK: TAVD FOR PERSON SEARCH 5

body part {general,head,upperBody, lowerBody,attachment}. In case more than one at-
tribute is available for a specific part, the output descriptors are grouped by sum-pooling
operation. The n embeddings are then concatenated forming a feature vector of n×50 com-
ponents, passed through a first connected layers 50× n× 100 with a Tahn nonlinearity and
finally, a second fully connected layer of 50×50 that maps them into a global 100−D text
descriptor h. Concurrently, the image is processed by image encoder, which extracts a global
100−D image descriptor g thought ResNet-50 backbone and a successive 2048×100 fully
connection layer. During training, the proposed framework extracts g and h from a batch of
images and text attributes arranged in triplets.
One significant challenge to train the proposed architecture is the lack of annotations in stan-
dard benchmarks which provide only a per-person attribute annotation. Typically, there are
only a few hundreds of annotated samples and such a small number is insufficient to regress
towards 50−D text embeddings. Thus to overcome this difficulty, we augment the avail-
able annotation with various synonyms as described in section 4.1. To train the TA module
we derived the batch hard bi-triplet loss from the bi-rank [25] loss assuming the batch hard
triplet configuration [26]:

LbTri = ∑
g∈G

[m+

hard positive︷ ︸︸ ︷
max

hp
||ga−hp||2−

hard negative︷ ︸︸ ︷
min

hn
||ga−hn||2]++ ∑

h∈H
[m+

hard positive︷ ︸︸ ︷
max

gp
||ha−gp||2−

hard negative︷ ︸︸ ︷
min

gn
||ha−gn||2]+ (1)

where ga,hp and ha,gp are the pairs with the same identity and different modalities; ga,hn
and ha,gn are the pairs with different identities and modalities. Positives and negatives are
paired in a batch specifically designed to include C random person classes, with randomly
sampled K examples of each class, thus resulting in a batch of CK images. For each anchor
in the batch the hardest positive and the hardest negative sample is selected when forming
triplets.

3.2 Visual feature decomposition
VD module works concurrently to TA with the image encoder extracting visual features
f . These are then split into n components { fi}n

i=1 related to different body parts. Each
of these components is passed to a separate fully connected layer, which regresses the fea-
tures towards the corresponding GloVe embeddings of text attributes. This has not only the
advantage of preserving the semantic order of the attributes but also provides a bimodal rep-
resentation which is used during evaluation to retrieve a pedestrian image by a list of text
attributes. During the training, we freeze the weights of the GloVe backbone and use the
word embeddings yGloVei as labels. We train VD with the following loss:

LGloVe =
n

∑
i=1

L1( fGloVei ,yGloVei) (2)

which is the sum of L1 distances between the regressed embeddings { fGloVei}n
i=1 and the

corresponding GloVe labels {yGloVei}n
i=1.

The overall loss is computed for a mini-batch of samples X arranged in triplets:

L(X) = λbTri ·LbTri(X)+λGloVe ·LGloVe(X) (3)

Parameters λbTri and λGloVe control the contributions from the two modules. During infer-
ence, TAVD extracts both a global representation h and local representations {yGloVe}n

i=1
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6 IODICE AND MIKOLAJCZYK: TAVD FOR PERSON SEARCH

Market-1501 ( attributes) DukeMTMC (#attributes) PA100K (#attributes)
w/o k=1 k=3 k=5 k=6 w/o k=1 k=3 k=5 k=6 w/o k=1 k=3 k=5 k=6
41 73 118 149 161 29 51 85 112 125 30 52 73 82 86

Table 1: Number of training attributes. The overall number of binary attributes with and
without (k = 0) synonyms augmentation in different person search benchmarks. k is the
number of synonyms from which we randomly sample for each attribute.

from the text attribute query. It then compares these descriptors with the corresponding vi-
sual representations g and { fGloVe}n

i=1 for each image of the gallery set and evaluate the final
distance as the sum of euclidean distances between these pairs. The correct match corre-
sponds to the sample having minimum distance from the text attribute query.

Figure 3: Frequency of attribute annotations in the datasets. Note that with ID we refer
to a unique set of attributes that annotate a frame. The datasets are highly unbalanced as most
IDs have very few image examples, which highlights the importance of data augmentation
by adding synonyms to the list of attributes.

4 Experimental results
In this section, we first present the datasets and give more technical details. We then compare
our method to the state of the art on several benchmarks and provide a quantitative and
qualitative ablation study.

4.1 Datasets and implementation details.

We use three publicly available person search datasets, i.e., Market-1501 [19], DukeMTMC [20],
and PA100K [8] following the standard evaluation protocols [17, 18].
Attribute augmentation (synAug). Person search benchmarks provide a person-level at-
tribute annotation with a limited number of text attributes for training in Market-1501 and
DukeMTMC. This amount of data is insufficient to train our proposed model. In addition, it
is highly unbalanced which we visualize with the histogram of attributes with a given num-
ber of image samples in figure 3. We, therefore, propose an augmentation strategy based on
synonyms. During training, for each available attribute, we randomly select one of the k+1
possible synonyms and use it as an annotation. Consider the attribute "female" as an exam-
ple. When k = 5 we augment it with the synonyms {"maid","women","she","lady","girl"}
and during training we annotate each frame containing a female person with a randomly se-
lected synonym from this set. Note that this strategy leads to a frame-level annotation and
results in thousands of text attribute annotations that prevent from overfitting. We report the
number of binary attributes in table 1 for different values of k. Note that synonyms of an at-
tribute have the same visual representation in images. The full list of synonyms and training
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IODICE AND MIKOLAJCZYK: TAVD FOR PERSON SEARCH 7

annotations used in our experiments are available online1.
Implementation details. We used ResNet-50 as image encoder for learning visual fea-
tures and GloVe model pretrained on Wikipedia for learning text attributes features. We
adopt 50− d GloVe embeddings, which is the smallest GloVe embeddings pre-trained on
Wikipedia. We experimented with 100− d, 300− d, but performance deteriorates since
regressing toward higher-dimensional embeddings causes overfitting. Different dimension-
alities of the image descriptor have also been tried, but the best performance is achieved with
100− d. We set a batch size of P ·M = 64 with P = 16 randomly sampled person IDs and
M = 4 instances for each person.

Market-1501 DukeMTMC PA100K
Method r1 r5 r10 mAP r1 r5 r10 mAP r1 r5 r10 mAP

category-level
DEM [41] 34.0 48.1 57.5 17.0 22.7 43.9 54.5 12.9 20.8 38.7 44.2 14.8
MMD [42] 34.1 47.9 57.2 18.9 41.7 62.3 68.6 14.2 25.8 38.9 46.2 14.4

DeepCoral [43] 36.5 47.6 55.9 20 46.1 61.0 68.1 17.1 22.0 39.8 48.1 14.1
AAIPR [17] 40.2 49.2 58.6 20.6 46.6 59.6 69.0 15.6 27.3 40.5 49.8 15.2
attribute-level

GNA-RNN [38] 30.4 38.7 44.4 15.4 34.6 52.7 65.8 14.2 20.3 30.8 38.2 9.3
CMCE [36] 35.0 50.9 56.4 22.8 39.7 56.3 62.7 15.4 25.8 34.9 45.4 13.1

attribute+category
AIHM [18] 43.3 56.7 64.5 24.3 50.5 65.2 75.3 17.4 31.3 45.1 51.0 17.0

TAVD (ours) 46.1 66.7 74.7 34.4 54.0 78.7 84.6 25.9 33.8 58.4 71.6 18.2
Table 2: Comparison with state-of-the-art methods in Market-1501 [19], DukeMTMC [20],
and PA100K [8]. Our approach outperforms all the other methods in terms of rank metrics
as well as mAP scores.

We train the network with Adam optimizer, with a learning rate of 0.0003, linear decay
to zero over 120 epochs, and λbTri = 0.9 λGloVe = 0.1. As common practice during the
training, we perform image augmentation by using random horizontal flips and re-scaling
input images to 256×128 pixels. In addition we adopt synonyms augmentation with k = 5
in Market-1501 and k = 3 in DukeMTMC and PA100K. Implementation details are also
provided in section 3.

4.2 Comparison to the State-of-The-Art Methods
We compare our approach to various solutions for person search, which can be classified
into: 1) category-level methods with the goal of learning a joint space for comparing a
list of text attributes to images; 2) attribute-level methods focusing on matching of local
attributes to image regions. Category-level methods include visual semantic embedding
DEM [41], DeepCoral [43], cross-modal matching MMD [42], and GAN based alignment
AAIP [17]. Attribute-level methods include GNA-RNN [38] and CMCE [36] which can
also handle natural language queries. AIHM [18] combines both strategies to find both
global and local correspondences. Our approach extends this idea with a bimodal matching
mechanism that jointly operates in a holistic and local space while preserving the seman-
tic relations of the attributes. We achieve state-of-the-art performance in all three bench-
marks with Rank1 = 46.1% in Market-1501 [19], Rank1 = 54.0% DukeMTMC [20], and
Rank1 = 33.8% PA100K [8]. In the respective benchmarks, we obtain a large margin im-
provement of 10.1%,8.5%,1.2% in mAP over the second best AIHM [18]. Note that AIHM
has a far more complex hierarchical architecture with multiple branches of fully connected

1https://github.com/iodicesara/Text-Attribute-Aggregation-and-Visual-Feature-Decomposition-for-Person-
Search
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8 IODICE AND MIKOLAJCZYK: TAVD FOR PERSON SEARCH

layers for learning semantic and visual features, where the number of branches depends on
the number of training attributes/attribute-categories.

4.3 Ablation study

In this analysis, we first demonstrate the importance of learning a bimodal space for match-
ing holistic visual and semantic representations; we then evaluate the effectiveness of the
synonyms augmentation strategy (synAug) to cope with the issue of limited attribute anno-
tations in the datasets. We finally demonstrate that learning human attributes in the format
of GloVe embedding is a better approach than using a binary representation. We report our
evaluation in tables 3 and 4.

Market1501 DukeMTMC PA100K
synAug LbTri LGloVe r1 mAP r1 mAP r1 mAP

X 0.6 0.3 0.9 1.1 9.2 5.0
X X 0.4 0.5 0.8 1.7 0.0 0.8
X X 45.1 34.4 45.7 25.4 28.7 17.2
X X X 46.1 34.4 54 25.9 33.8 18.2

Table 3: Ablation study on Market-1501, DukeMTMC and PA100K. This analysis shows the
importance of the loss termsLbTri andLGloVe as well as the effectiveness of the augmentation
strategy synAug. We report performances in terms of Rank1(r1) and mAP score.

Person category learning with Bimodal Triplet Loss (TA). Table 3 shows that learning
a holistic representation for text attributes in a joint metric space with the image features
is essential for person search task. Specifically, removing LbTri loss leads to performance
degradation in all the benchmarks since essential contextual information among the attributes
is not exploited. The global loss LbTri acts as a regulariser and enables the VD to converge.
GloVe embeddings learning (VD). To demonstrate that learning from text attributes in the
GloVe space, which incorporates synonyms and semantic relations, is beneficial for person
search task we train our TAVD framework with and withoutLGloVe loss and compare the final
results. When incorporating LGloVe, we note a significant boost of Rank1 in all three bench-
marks, i.e., 1%, 8.3%, and 5.1% in Market1501 [19], DukeMTMC [20] and PA100K [8],
respectively.
Synonyms augmentation. Existing datasets due to a per-person annotation provide a lim-
ited number of semantic samples, e.g., only 508 in Market1501, and 300 in DukeMTCM.
These are insufficient for TAVD to converge. Instead, the proposed synonym augmentation
strategy realises a per-sample annotation and increases the number of semantic samples up
to 12,936, 16,522 in Market1501 and DukeMTCM, respectively. Augmenting the data with
a number of synonym annotation shows to be essential for our system to learn. In particu-
lar, w/o synAug the model quickly overfits and performances deteriorate in Market1501 and
DukeMTMC. This issue has less impact on large scale dataset PA100K where w/o synAug
Rank1 = 9.2%, however with synAug we improve Rank1 to 19.5%. Note that w/o synAug
all the images of the same person share the same text attribute annotation as well as the
same yGloVe descriptor. Thus the hard positive terms in the bimodal triplet loss (equation 1)
quickly converge to zero and lead to overfitting. We have observed in our evaluation that it
is sufficient to add k = 1 synonyms for each attribute to significantly improve the model. We
report final evaluation in table 3.
GloVe vs Binary attribute representations. To demonstrate the benefit of learning from
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IODICE AND MIKOLAJCZYK: TAVD FOR PERSON SEARCH 9

GloVe embeddings we compare the results to a binary representation of text attributes in
table 4. GloVe is our framework incorporating both LbTri and LGloVe. Binary is the setting
with the following modifications: 1) LGloVe is replaced with the sum of binary cross-entropy
loss computed for each attribute; 2) the last fully connected layer followed by a sigmoid
nonlinearity outputs a binary vector with a size corresponding to the total number of binary
attributes.
We augment the training set annotations and report results in table 4. One can observe that
GloVe strategy leads to significantly better results than the Binary representation. In the
binary setting, person search is formulated as a multi-category classification problem and
it becomes increasingly more challenging when the number of attribute categories to learn
grows with limited number of training samples for each attribute. Instead, in "GloVe", we
can leverage the prior semantic relations of the text attributes to learn less recurrent attributes
in the training set. Without augmentation both learning strategies collapse as in these settings
with only few hundreds of semantic inputs. This amount of data is insufficient for the system
to learn the bimodal space for globally comparing semantic and visual features, regardless of
the type of annotation (GloVe or Binary) used to learn local correspondences between image
regions and attributes.
Comparison of VD with attribute-level SOTA methods. Attribute-level methods in Ta-
ble 2 show superior results as they incorporate other regularisers, e.g., LSTM [38] and co-
attention [36]. When LbTri is included, the gap is reduced. Local features only from VD,
which refer to the last row of Table 3 by deactivating TA during evaluation, achieve Rank 1
scores of 12.9,10.2, and 20.1, in Market1501, DukeMTCM, and Pa100K.

Market-1501 DukeMTMC
GloVe Binary GloVe Binary

r1 mAP r1 mAP r1 mAP r1 mAP
w/o synAug 0.6 0.3 0.5 0.4 0.9 1.1 0 1.3

synAug 46.1 34.4 34.6 27.9 54 25.9 32.5 22.9
Table 4: GloVe vs Binary attribute representations. This evaluation compares two training
strategies for learning attributes: 1) GloVe (in form of GloVe embeddings); 2) Binary (in
form of binary vectors).

Figure 4: Text attribute queries in a),b),c) and d) and their top-9 ranked frame results. We
indicate with green/red boxes the correct/false matches and highlight in red text the attributes
that are not present in the retrieved frames.
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10 IODICE AND MIKOLAJCZYK: TAVD FOR PERSON SEARCH

4.4 Qualitative results
To further demonstrate the performance of our method, we visually analyse top ranked re-
sults output by our method and show in figure 4. Most of top-9 ranked results match the
attributes of the corresponding queries. For example, one can observe that our framework
succeeds in retrieving persons with the "hood" in the Rank1 frame (d) where more than half
of the image occluded and the “backpack” in the Rank1 frame (a) where only the straps are
visible. We found that false retrievals occur: 1) when attributes are not visible due to occlu-
sions or camouflages; 2) due to ambiguity in the semantic meaning of certain attributes; 3)
in the case different attributes have similar visual appearance. For example, in examples c
and d, one can observe the model can not distinguish subtle differences between violet, blue,
and lavender color. An example with a semantic ambiguity is d) where the umbrella may be
confused with the hat. This is due to the fact that the training data has no umbrella label.

5 Conclusion
We propose a novel approach (TAVD) which addresses the task of retrieving a pedestrian
image from a list of text attributes. We extend the idea of combining category-level and
attribute-level paradigms leveraging jointly holistic/contextual information in a learnt bi-
modal space with the TA module, and the prior information of the attributes in the text
embedding space with the VD module.

The proposed method brings the following advantages. 1) It is straightforward as it learns
text embedding for each body part in contrast to allocating multiple fully connected layers
for each attribute. 2) It is effective as it can handle any number of attributes while preserving
the subtle meaning of each attribute. 3) Our TAVD and synonym augmentation overcome
the challenge underlined by [18], i.e., learning a rich text embedding from a limited number
of semantic samples. 4) In the global space, the batch hard bi-triplet loss with the batch hard
triplet configuration is superior to the pairs schema in [18].

We have demonstrated that learning attributes in a local text embedding space better
preserves semantic relations than the frequent approach of considering person search as
multilabel classification problem, as well as, learning person categories in a global image
embedding space is essential for matching holistic visual and semantic representations. Fur-
thermore, we have evaluated the effectiveness of the synonyms augmentation strategy that
addresses the issue of limited attribute annotation in person search datasets. We evaluated
our proposed methods on three benchmarks (Market-1501, DukeMTMC and PA100K) and
achieve an improvement in mAP over the state-of-the-art of up to 10%.
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