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Abstract

Anomaly detection aims at identifying abnormal samples from the normal ones. Ex-
isting methods are usually supervised or detect anomalies at the instance level without
localization. In this work, we propose an unsupervised method called Superpixel Mask-
ing And Inpainting (SMAI) to identify and locate anomalies in images. Specifically,
superpixel segmentation is first performed on the images. Then an inpainting module is
trained to learn the spatial and texture information of the normal samples through random
superpixel masking and restoration. Therefore, the model can reconstruct the superpixel
mask with normal content. At the inference stage, we mask the image using superpixels
and restore them one by one. By comparing the mask areas of the original image and its
reconstruction, we can identify and locate the abnormal regions. We conducted a com-
prehensive evaluation of SMAI on the latest MVTec anomaly detection dataset, and it
shows that SMAI plays favorably against state-of-the-art methods.

1 Introduction
Abnormal detection is a critical problem, especially in industrial manufacturing in recent
years. Automatic abnormal detection using machine vision techniques for industrial defect
detection plays a more and more important role in modern industry since it could signifi-
cantly improve production efficiency while reducing the cost. Inspired by the fact that deep
learning has achieved remarkable performances on image recognition, several abnormal de-
tection methods based on object detection [5] and semantic segmentation [8, 13] are pro-
posed. For example, Liu et al. [15] use Faster R-CNN [19] for fabric defect detection;
YOLO [18] is used for the detection of insulator defects [9] and Wang et al. [25] apply Mask
R-CNN [10] to the surface defects detection of paper dish. However, such discriminative
models used in object detection or semantic segmentation have the limitation that they re-
quire all the types of defects in the training data. Moreover, building a large-scale training
dataset with bounding-box or pixel-level annotations is costly and labor-intensive. A few
approaches, on the other side, adopt generative models for defect detection. Typically, they
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use AutoEncoder or Generative Adversarial Network (GAN) to generate an intermediate
output (ideally, the defect-free image), which is further processed to classify or localize the
defects. For example, Niu et al. [17] employ CycleGAN [6] to learn the mapping between
the normal image and defect image domains via cycle consistency. These methods also need
a large amount of training data, including normal images and a few abnormal images. In
other words, they are weakly supervised approaches.

To address these shortcomings, we propose an unsupervised anomaly detection method
called superpixel masking and inpainting (SMAI). The basic idea is that given a set of normal
training samples, an image inpainting model can be trained in a self-supervised manner to
restore a damaged image into a normal one. Thus we can leverage such a model to detect
abnormal regions by comparing the original and restored images. With the development of
deep learning, image inpainting methods have been able to restore the spatial and texture
information of the image very well. Leveraging high-level semantic feature learning, image
inpainting methods can generate semantically-coherent results for the missing regions. The
purpose of superpixel segmentation [24] is to divide a pixel-level image into a district-level
image. It can segment images based on factors such as borders, content similarity, semantic
information, etc. The superpixel algorithm is widely used in computer vision. For example,
Yang et al. [28] employ superpixel to object tracking [29]. They use the superpixel method
to capture the structural information from the perspective of mid-level vision. Tian et al.
[23] use superpixel results as the basic units instead of operating at the pixel level to extract
moving objects better.

In this paper, we focus on unsupervised abnormal detection which only needs the normal
training data. Specifically, we first perform superpixel segmentation on the dataset and train
an image inpainting model to learn how to recover the missing region masked by a random
mask on the superpixel results through a deep convolutional network. When the model has
the ability to encode the spatial context information of normal data, it can fill in any damaged
region with normal image content. During the inference procedure, we traverse the entire
image on the superpixel result. At each location, we mask and reconstruct the image content
using the well-trained inpainting model. By calculating the SSIM (structure similarity [26])
or L2 value of the original image area and its corresponding reconstruction region, we can
easily obtain the final abnormal map. The main contribution of this paper is we proposed an
unsupervised deep method SMAI for abnormal detection. Our approach can not only give
an accuracy classification but also locate the detail defect region accurately.

2 Related Work
In this section, we review the supervised and unsupervised methods which have been pro-
posed for anomaly detection.

2.1 Supervised Methods
Supervised methods for anomaly detection usually use object detection or semantic segmen-
tation algorithms. These methods use a large amount of labeled data to train the model. For
example, Faster R-CNN and YOLO are used for fabric defect detection[15] and the detec-
tion of insulator defects [9]. [25] applies Mask R-CNN to the surface defects detection of
the paper dish. They mark different anomalous areas as different categories to be detected
and then use the supervised method to detect them.
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This type of method requires a lot of well-labeled data, and it can only detect defects that
have occurred in the training data, which means that it has poor generalization ability and
requires a lot of labor costs.

2.2 Unsupervised Methods
Unsupervised methods require only normal samples during training. These methods are
usually based on reconstruction, such as AutoEncoder or Generative Adversarial Network
(GAN). They reconstruct an abnormal image to obtain a normal image and perform anomaly
detection by comparing before and after reconstruction. Such methods can capture any type
of abnormal area.

Generative adversarial network (GAN) consists of two neural networks, one is called a
generator and the other is called a discriminator. The generator attempts to capture the data
distribution, and the discriminator estimates the probability that the samples come from train-
ing data rather than a generator. During training, the generator tries to fool the discriminator
better and the discriminator tries to catch fakes generated by the generator, so the training
process is called adversarial training. Therefore, GAN can be used to obtain the distribution
of the normal samples. For example, in [21], the GAN called AnoGAN is used to learn the
manifold of normal anatomical variability and perform anomaly detection based on these.
[22] greatly speeds up anomaly detection by introducing encoder into AnoGAN. The GAN
called MAD-GAN [14] is used to do the multivariate anomaly detection for time series data.
In [7], ADGAN is proposed for anomaly detection by searching for a good representation of
the normal samples.

AutoEncoder is also a network that used for reconstructing. It reconstructs the input
image through the encoder and decoder. The AutoEncoder can be trained on the normal
samples. Then anomaly detection can be performed by comparing before and after recon-
struction of abnormal samples. For instance, [2] use the reconstruction probability from the
variational AutoEncoder [12] to perform anomaly detection. Sakurada and Yairi [20] use
AutoEncoder with nonlinear dimensionality reduction in the anomaly detection task.

Based on the unsupervised learning paradigm, we only need normal samples during train-
ing, which greatly reduces the labor costs. At the same time, based on these methods, we
can detect any kind of anomalies without being limited to the training set.

3 The Proposed Method
We propose the SMAI to perform anomaly detection and localization, and only normal im-
ages are required during training. We will introduce the three parts of SMAI. They are the
image inpainting module, the training module, and the test module.

3.1 Image Inpainting Module
We employ the image inpainting method called PEN-Net [30]. This algorithm can restore
the input masked image to the normal image. The algorithm uses the U-Net network as the
backbone structure and uses a pyramid context to improve the effectiveness of encoding. It
applies the rich semantic information of the high-level features to guide the inpainting of the
low-level features layer by layer through the attention mechanism. The reconstructed image
is semantically reasonable and the restoration content has clear and rich texture details.
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Figure 1: The training flowchart of SMAI. We randomly mask the superpixel results and
then reconstruct it to train the image inpainting module.

3.2 Training Module

We assume that the distribution of the anomaly area is inconsistent with other areas in the
image. If we mask the normal area, the restoration content should be highly similar to the
corresponding area in the input image. If the abnormal area is masked, on the other hand,
the restoration content should be generated based on the normal sample distribution and has
a low similarity with the corresponding area.

First, we use the superpixel methods [1, 27] to divide the image into multiple superpixel
blocks and randomly mask these superpixel blocks on normal images when training. Sup-
pose the normal image set is X = {x1,x2, · · · ,xn}. Divide the image into m superpixel blocks
and mask k superpixel blocks randomly at a time. The masked image set is recorded as Xmask
and Xmask =

{
x1

mask,x
2
mask, . . . ,x

n
mask

}
. We input the masked image set Xmask into the Image

Inpainting Module. The purpose of the inpainting module is to restore the masked area and
generate an image that is similar to the normal image X. That is, make the reconstruction of
the masked image approach to X. We use the structural similarity index for measurement.
The training objective J can be described as Equation 1.

J = min(SSIM ( fip (Xmask) ,X)) , (1)

where fip(·) denotes the image inpainting module, X and Xmask represent the original and
masked image set, respectively. During the training process, the ability of the inpainting
module that restores the masked area to a normal area is trained. The training process is
shown in Figure 1.

Figure 2: The testing flowchart of SMAI. We mask the superpixel blocks one by one on the
superpixel results and reconstruct them, then obtain the anomaly map according to the SSIM
or L2 value before and after reconstruction of the mask area.
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3.3 Test Module

During the testing, the superpixel algorithm is first applied to the images as in training. Sup-
pose the test image is X . Divide the image into m superpixel blocks. Then we mask the super-
pixel blocks one by one. The mask result of each block will generate a masked image, so each
test image will generate m masked images. Record it as Xmask =

{
x1

mask,x
2
mask, . . . ,x

m
mask

}
. It

should be noted that this Xmask is different from it in the training module. A masked image
set is generated by only one test image.

(a) Bottle, Capsule and Grid (b) Hazelnut, Pill and Carpet
Figure 3: Examples for superpixel segmentation results, where the left is the original image
and the right is superpixels.

We input the masked image set Xmask into the inpainting module and get the reconstructed
output image set. Record it as XInpainting =

{
x1

Inpainting,x
2
Inpainting, . . . ,x

m
Inpainting

}
. The SSIM

or L2 calculation is performed on the corresponding mask block between the test image X
and each restoration image in the xInpainting. When using SSIM, the SSIM value shows the
similarity between before and after reconstruction of the image in this mask block. On the
contrary, 1−SSIM shows the difference. The 1−SSIM is accumulated by mask blocks and
an anomaly map is generated based on the similarity value. Brightness shows the degree of
difference. When using L2, we directly use the L2 value to produce abnormal graphs. There-
fore the highlighted area is the defective is. The calculation method is shown in Equation 2
and 3.

M =
m

∑
i=1

(
1−SSIMmask

(
xi

Inpainting,X
))

, (2)

M =
m

∑
i=1

(
L2mask

(
xi

Inpainting,X
))

, (3)

where M, SSIMmask, L2mask , m, xi
Inpainting, X indicates the defected anomaly map, the SSIM

calculation on the mask area corresponding to the masked image xi
mask, the L2 calculation on

the mask area corresponding to the masked image xi
mask, the number of divided superpixel

blocks, the output of image inpainting module and the original image. Figure 2 shows the
specific process of the test module, and Figure 3 shows some superpixel samples.
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Category Our SMAI Our SMAI AE AE AnoGAN CNN-Feature
SSIM l2 SSIM l2 Dictionary

Carpet 0.57 0.93 0.43 0.57 0.82 0.89
0.72 0.4 0.90 0.42 0.16 0.36

Grid 0.91 0.81 0.38 0.57 0.90 0.57
0.93 0.98 1.00 0.98 0.12 0.33

Leather 0.00 0.82 0.00 0.06 0.91 0.63
1.00 0.67 0.92 0.82 0.12 0.71

Wood 0.10 0.79 0.84 1.00 0.89 0.79
1.00 0.95 0.82 0.47 0.47 0.88

Bottle 1.00 1 0.85 0.70 0.95 1.00
0.91 0.71 0.90 0.89 0.43 0.06

Cable 0.72 0.74 0.74 0.93 0.98 0.97
0.55 0.51 0.48 0.18 0.07 0.24

Capsule 0.44 0.57 0.78 1.00 0.96 0.78
0.70 0.73 0.43 0.24 0.20 0.03

Hazelnut 1.00 0.93 1.00 0.93 0.83 0.90
0.53 0.74 0.07 0.84 0.16 0.07

Metal Nut 0.41 0.96 1.00 0.68 0.86 0.55
0.70 0.28 0.08 0.77 0.13 0.74

Pill 0.96 0.85 0.92 1.00 1.00 0.85
0.34 0.46 0.28 0.23 0.24 0.06

Screw 0.73 0.76 0.95 0.98 0.41 0.73
0.56 0.91 0.06 0.39 0.28 0.13

Tile 0.00 0.94 1.00 1.00 0.97 0.97
1.00 0.43 0.04 0.54 0.05 0.44

Toothbrush 0.92 0.83 0.75 1.00 1.00 1.00
0.67 0.93 0.73 0.97 0.13 0.03

Transistor 0.88 0.77 1.00 0.97 0.98 1.00
0.73 0.53 0.03 0.45 0.35 0.15

Zipper 0.75 0.84 1.00 0.97 0.78 0.78
0.80 0.97 0.60 0.63 0.40 0.29

Mean 0.63 0.84 0.78 0.82 0.88 0.83
0.74 0.68 0.49 0.59 0.22 0.30

Mean Acc 0.685 0.76 0.635 0.705 0.55 0.565

Table 1: Results of the evaluated methods when applied to the classification of anomalous
images. For each dataset category, the ratio of correctly classified samples of anomaly-free
(top row) and anomalous images (bottom row) is given. The last row(Mean Acc) is the
average between anomalous and anomaly-free accuracies.

4 Experimental Results

To demonstrate the effectiveness of our approach, an extensive evaluation of the specific
abnormal detection datasets MVTec [4] is performed. We measure the performance of our
unsupervised abnormal detection framework against existing pipelines. Details of experi-
mental settings are introduced in Section 4.1. The experiment results and the analysis of the
effectiveness of our model are described in Section 4.2.

4.1 Experimental Settings

We experimented on the MVTec Abnormal Detection dataset, using four Titan Xp for train-
ing and one for testing. We have compared with several baseline methods on multiple in-
dicators, including the ratio of correctly classified samples of anomaly-free and anomalous
images and the relative per-region overlap, which is the same evaluation indicators as in [4].
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Category Our SMAI Our SMAI AE AE AnoGAN CNN-Feature
SSIM l2 SSIM l2 Dictionary

Carpet 0.28 0.27 0.69 0.38 0.34 0.20
0.87 0.88 0.87 0.59 0.54 0.72

Grid 0.60 0.84 0.88 0.83 0.04 0.02
0.96 0.97 0.94 0.90 0.58 0.59

Leather 0.98 0.44 0.71 0.67 0.34 0.74
0.51 0.86 0.78 0.75 0.64 0.87

Wood 0.34 0.54 0.36 0.29 0.14 0.47
0.62 0.80 0.73 0.73 0.62 0.91

Bottle 0.48 0.26 0.15 0.22 0.05 0.07
0.91 0.86 0.93 0.86 0.86 0.78

Cable 0.09 0.04 0.01 0.05 0.01 0.13
0.82 0.92 0.82 0.86 0.78 0.79

Capsule 0.20 0.39 0.09 0.11 0.04 0.00
0.81 0.93 0.94 0.88 0.84 0.84

Hazelnut 0.29 0.52 0.00 0.41 0.02 0.00
0.96 0.97 0.97 0.95 0.87 0.72

Metal Nut 0.18 0.07 0.01 0.26 0.00 0.13
0.90 0.92 0.89 0.86 0.76 0.82

Pill 0.13 0.24 0.07 0.25 0.17 0.00
0.93 0.92 0.91 0.85 0.87 0.68

Screw 0.25 0.57 0.03 0.34 0.01 0.00
0.94 0.96 0.96 0.96 0.80 0.87

Tile 0.98 0.14 0.04 0.23 0.08 0.14
0.60 0.62 0.59 0.51 0.50 0.93

Toothbrush 0.39 0.61 0.08 0.51 0.07 0.00
0.96 0.96 0.92 0.93 0.90 0.77

Transistor 0.20 0.06 0.01 0.22 0.08 0.03
0.82 0.85 0.90 0.86 0.80 0.66

Zipper 0.17 0.46 0.10 0.13 0.01 0.00
0.74 0.9 0.88 0.77 0.78 0.76

Mean 0.37 0.36 0.22 0.32 0.09 0.13
0.82 0.89 0.87 0.81 0.74 0.78

Table 2: Results of the evaluated methods when applied to the segmentation of anomalous
regions. For each dataset category, the relative per-region overlap (top row) and the ROC
AUC (bottom row) are given. The best performing method is highlighted in boldface.

4.1.1 Datasets

The MVTec Abnormal Detection dataset comprises 15 categories with 3629 images for train-
ing and validation and 1725 images for testing. The training set contains only normal images
without defects. The test set contains images containing various kinds of defects and defect-
free images. Five categories cover different types of regular (carpet, grid) or random (leather,
tile, wood) textures, while the remaining ten categories represent various types of objects.
In total, 73 different defect types are present, on average five per category. All image reso-
lutions are in the range between 700 × 700 and 1024 × 1024 pixels. Pixel-precise ground
truth labels for each defective image region is provided. In total, the dataset contains almost
1900 manually annotated regions.

4.1.2 Comparison with Other Methods

We compare with the following baselines for their performance.

• l2 AutoEncoder which uses the CAE (Convolutional AutoEncoders) [11] architec-
ture to reconstruct defect-free training samples through a bottleneck (latent space).
Anomalies are detected by a per-pixel l2 loss of the input with its reconstruction.

• SSIM (structural similarity) AutoEncoder [3] similar to l2 AutoEncoder employing a
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(a) Bottle, Capsule and Grid (b) Hazelnut, Pill and Carpet
Figure 4: Examples for reconstruction results, where the left is the test image, the middle is
the masked image, and the right is the restoration image.

loss based on the structural similarity (SSIM).

• AnoGAN [21], a generative model, which can obtain anomaly maps by a per-pixel
l2-comparison of the input image with the generated output.

• CNN-Feature Dictionary [16], which perform Principal Component Analysis (PCA)
on extracted features from the 512-dimensional avgpool layer of a ResNet-18 pre-
trained on ImageNet.

4.1.3 Implementation Details

During training, we resize the image to 256× 256 and then divide it into 77 superpixel
blocks. Masking 10 blocks each iteration randomly. We train the inpainting module (PEN-
NET) with a learning rate of 1e-4 with a batch size of 8 for 50000 iterations. During the test,
we resize the image to 256×256 as in training and mask the superpixel blocks one by one,
then calculate the SSIM or L2 values before and after the image inpainting module on the
masked area. Then we use the 1−SSIM or L2 values to generate the anomaly map.

4.2 Results and Analyses

We make a comprehensive comparison with several baseline methods mentioned in Sec.
4.1.2 and visualize the experimental results. Evaluation results for the classification of
anomalous images and segmentation of anomalous regions are given for SMAI and dataset
categories in Tables 1 and 2, respectively. Figure 4 shows some reconstruction results. We
mask some anomaly areas in the abnormal image and then restore them. By comparing the
content before and after the reconstruction of this area, we can obtain the anomaly map. In
Figure 5 we show some test results. Among them, the right is the anomaly map and the
bright areas are the defected anomaly regions.

It can be seen from Table 1 that SMAI(SSIM) reduces the ratio of correctly classified
samples of anomaly-free images but greatly improves it of anomalous images. SMAI(L2)
exceeds the baseline methods in the ratio of correctly classified samples of both anomaly-free
and anomalous images. Table 2 shows that SMAI(SSIM) greatly improves the positioning
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(a) Bottle, Capsule and Grid (b) Hazelnut, Pill and Carpet
Figure 5: Examples for test results, where the left is the test image, the middle is the ground
truth and the right is our result. The brighter the difference.

accuracy of abnormal regions. SMAI(L2) also surpasses the baseline methods in both overlap
and AUC score.

Specifically, in Table 1, we improve the ratio of correctly classified samples of anomaly-
free and anomalous images, which means that SMAI is better than the previous methods at
the instance level on anomaly detection. In Table 2, SMAI achieves the highest relative per-
region overlap and AUC score compared with previous methods, which means that SMAI
has made great progress in pixel-level anomaly localization. SMAI (SSIM) achieved the best
performance on Abnormal Acc and overlap while SMAI(L2) performed best on AUC and
Mean Acc. Figure 4 shows that when we mask the abnormal area, the content before and after
restoration is very different, which means it is easy to judge whether it is an anomaly area.
In Figure 5, the right image is the anomaly detection map, and the brightest area represents
the anomaly area. It can be seen that SMAI can accurately detect abnormal regions. To be
summarized, SMAI can not only identify abnormal images more accurately but also locate
abnormalities more exactly.

5 Conclusion

We propose the superpixel masking and inpainting method for self-supervised anomaly de-
tection. SMAI greatly improving the ratio of correctly classified samples of anomaly-free
and anomalous images, the accuracy of positioning defective areas and AUC score. We
comprehensively compared SMAI with several baseline methods on the MVTec Abnormal
Detection dataset. Overall, SMAI greatly surpasses the previous methods and has a huge
advantage in anomaly location.
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