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Abstract

A few-shot image classification problem aims to recognize previously unseen objects
with a small amount of data. Many works have been offered to solve the problem, while
a simple transfer learning method with the cosine similarity based cross-entropy loss is
still powerful compared with other methods. To improve the performance, we propose
a novel Non-Probabilistic Cosine similarity (NPC) loss for few-shot classification that
can replace the cross-entropy loss with the cosine similarity. A key difference of NPC
loss is that it uses values of inputs instead of their probabilities. By simply changing the
loss function, our model avoids overfitting on a training set and performs well on few-
shot tasks. Experimental results show that the model with NPC loss clearly outperforms
those with other loss functions and also achieves excellent performance compared with
state-of-the-art algorithms on Mini-Imagenet and CUB-200-2011 datasets.

1 Introduction
Traditional deep learning approaches for image classification have achieved great success [8,
19], however, a lack of data for training is fatal. Because one of the significant factors for
the rapid development of this field is an increase in the amount of accessible data. In this
regard, it is desirable to deal well with new classes with few data. Humans have an inherited
ability to recognize previously unseen objects only by facing these few times. For example,
a child, who has never seen any dogs before, can quickly learn what dogs are from a few
experiences. Therefore, it is natural to research on advanced models that are fit to few-shot
image classification tasks just as humans do.

To address few-shot image classification tasks, many previous works have been proposed
based on a meta-learning approach [1, 6, 11, 12, 13, 15, 16, 17, 18, 20, 21, 23, 26]. Meta-
learning aims to extract common knowledge from previous tasks, which can generalize to
new tasks. An episodic training strategy is commonly used as a specific solution. In the
episodic training, a large training dataset is split into many few-shot tasks, each of which
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Figure 1: Our training process for few-shot image classification. The modules with orange
color are trainable, and those with green color are fixed. The red dotted arrows indicate
the backpropagation process. First, the feature extractor and the classifier for base classes
(Classi f ierb) are pre-trained by the training set, which contains a large number of images.
Then the feature extractor from the pre-training stage and the classifier for novel classes
(Classi f iern) are further trained by the support set, which has disjoint classes with the train-
ing set and contains only a few data per class (usually, less than or equal to 5 images per
class). Finally, the model is evaluated by using the query set.

contains a few-shot training set (a support set) and its corresponding test set (a query set).
One few-shot task is called one episode and the model is trained episodically.

On the other hand, recent research [2, 5, 7] showed that a standard transfer learning based
approach with the cross-entropy loss could also reach comparable (or even better) results
with other sophisticated models based on the meta-learning approach. In this approach, the
models are pre-trained by the large training set which contains images from base classes
and then fine-tuned on the few-shot support set from a test set which contains images from
novel classes. Finally, classification accuracy is evaluated by the query set from the test set.
Besides, in most cases, transfer learning models with the cosine similarity achieved better
performance than those with the dot product [2, 7]. Inspired by these studies, we propose
a new loss function with the cosine similarity and our model with the new loss achieves
excellent performance by using a simple transfer learning method (see Figure 1).

In this paper, we propose a new loss function, named Non-Probabilistic Cosine similarity
(NPC) loss for few-shot image classification, which induces to classify images by the values
of the cosine similarity, not by their probabilities. Since the input of the cross-entropy loss
should satisfy the probability condition, the softmax function is usually used together with
it. It means that the loss function depends on the relative difference of values of the inputs.
Thus, it is effective for training and predicting on images from trained classes since the
feature space of the inputs is perfectly fit to the trained classes. However, it is not guaranteed
that unseen classes have a similar distribution with the trained classes: the model trained with
the cross-entropy loss might lead to overfitting on the training set. To solve this problem, we
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design NPC loss function that classifies by the values themselves with a proper criterion to
prevent such overfitting.

Our contribution is three-fold.

• To the best of our knowledge, we first address the overfitting issue when using prob-
ability-based loss functions in few-shot learning.

• We propose NPC loss that alleviates the overfitting problem in few-shot learning.

• NPC loss is easy to implement, but powerful. The model trained with NPC performs
well compared to many other state-of-the-art models, and especially in 5-shot cases
for Mini-ImageNet [23] and CUB-200-2011 [24] dataset, it achieves the best perfor-
mance.

2 Related Work
Previous works for few-shot image classification can be grouped into two main groups; meta-
learning based and transfer learning based models.

Meta-learning based: The meta-learning based models can be further categorized into
gradient based and metric-learning based models.

i) Gradient based: These models typically learn model parameters from previous tasks
and then fine-tune on new tasks. Ravi and Larochelle [17] presented an LSTM-based meta-
learner that learns the parameters of a learner. Finn et al. [6] used an average of model
parameters on previous tasks as initial parameters on new tasks. However, the model is un-
stable because the purpose of the model was to find sensitive points that can adapt to unseen
tasks quickly. To overcome this drawback, Nichol et al. [15] simplified the computation by
only using the first derivative of its loss, and Antoniou et al. [1] introduced various technical
ways to train the model of [6]. Recently, Rusu et al. [18] introduced a model that embeds
the features of images to low-dimensional space. This latent embedding was data-dependent
and eventually resulted in fast optimization.

ii) Metric-learning based: A large number of previous models are metric-learning based.
The goal of these models is to find a metric and a feature embedding that works well on
few-shot tasks. Vinyals et al. [23] embedded the support set and the query set by different
LSTM-based embedding modules. Then, they used the cosine distance as the metric to dis-
tinguish each image. Snell et al. [20] used just one embedding module for both the support
set and the query set, and used Euclidean distance as the metric. Sung et al. [21] also used
one embedding module as in [20], but searched for a proper metric by a suggested relation
module. Li et al. [12] applied the Naive-Bayes Nearest-Neighbor algorithm after the im-
ages passing through their embedding module, and demonstrated the effectiveness of their
approach.

Transfer learning based: Meta-learning based models are all achieved by a unique
training method, e.g., episodic training. Unlike those models, models based on the traditional
transfer learning method are trained by the whole large dataset at once. Chen et al. [2]
showed that the model pre-trained on the large dataset and then fine-tuned on the few-shot
dataset achieves comparable performance with other existing models. In addition to this,
Gidaris et al. [7] devised an attention-based weight generator for the few-shot dataset. They
used a linear combination of pre-trained weights and averaged features of the few-shot data
as new weights of the few-shot data. Recently, Dhillon et al. [5] achieved high performance
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by combining pre-training on the large dataset and the transductive fine-tuning on the few-
shot dataset. They utilized unlabeled data while fine-tuning, just like in the semi-supervised
learning field. The most remarkable aspect is that above models commonly applied the
cosine similarity instead of the dot product, and achieved high performance.

Our model is also based on transfer learning and uses the cosine similarity. However,
unlike other models, we utilize the novel loss function proposed in this paper. Our model is
trained as in [2], and it shows excellent performance compared to others.

3 Approach

3.1 Problem Definition
We first formalize the few-shot classification problem by defining following notations. Let a
pair (x,y) denote an image and its corresponding ground-truth label. Consider two datasets, a
training set Dtrain = {(xi,yi) | yi ∈Ytrain}Ntrain

i=1 , and a test set Dtest = {(xi,yi) | yi ∈Ytest}Ntest
i=1 ,

where Ntrain and Ntest are the number of total images in each dataset, and Ytrain and Ytest are
sets of the ground-truth labels for images in each dataset, respectively. Note that label spaces
of each dataset are disjoint with each other, e.g., Ytrain∩Ytest = /0.

The goal is to train a model on the training set and applying it to few-shot tasks sampled
from the test set. One few-shot task (one episode) consists of two datasets, the support set
and the query set. Thus, let us define subsets of the test set, the support set Dsupport =

{(xi,yi) | yi ∈ Ysampled}
Nsupport
i=1 , and the query set Dquery = {(xi,yi) | yi ∈ Ysampled}

Nquery
i=1 ,

where Ysampled is a sampled subset of Ytest . Nsupport = |Ysampled | ×Ksupport and Nquery =
|Ysampled |×Kquery are the number of images in each dataset, which means there are Ksupport
and Kquery images for each class, respectively, where | · | indicates the number of elements in
the set. Generally, this task is called the |Ysampled |-way Ksupport -shot problem.

The feature extractor of the model is denoted as F(· |φ) with the network parameters φ ,
and the classifier is denoted as C(· |W ), where W is a set of weight vectors for each class.
By the feature extractor trained on Dtrain and Dsupport , and the classifier trained on Dsupport ,
the model predicts the labels of images in Dquery. For an image x, the predicted label can be
represented as ŷ =C(F(x |φ ∗) |W ∗), where the ∗ symbol indicates the optimized parameters.

3.2 NPC Loss
If the ground-truth label of the i-th image xi is n, e.g., yi = n, then, for a feature vector
zi = F(xi |φ), our NPC loss is expressed as

LNPC =
1
N

N

∑
i=1

[(es(1−cos(zi,wn))−1)+λ

|Y |

∑
m=1,m 6=n

(es(cos(zi,wm)−cos ε)−1)+], (1)

where N is a batch size, wn is a weight vector of the classifier for class n, and Y is a set of the
ground-truth labels. For vectors a and b, cos(a,b) = (a ·b)/(‖a‖2‖b‖2), and (·)+ denotes
max(· , 0). λ is a hyperparameter that adjusts the ratio of the first and second terms. ε and s
are also hyperparameters, which are discussed in the following.

The concept of NPC loss is depicted in Figure 2. Let us assume that there are two
weight vectors and one feature vector. Weight vectors are representatives of classes n and
m, respectively, and the ground-truth label of the feature vector is n. NPC loss makes the
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Figure 2: w̄n and w̄m denotes the normalized weight vectors for classes n and m, respectively.
z̄i is the normalized feature vector which has the ground-truth label of n. By NPC loss, an
angular distance between w̄n and z̄i, θn approaches to zero, and the one between w̄m and z̄i,
θm becomes larger than the criterion ε .

angular distance between the weight vector of the ground-truth label and the corresponding
feature vector small and the one between the weight vector and the feature vector belonging
to another class large. The former is caused by the first term of Equation 1, and the latter
by the second term of it. The first term is smaller as the value of cos(zi,wn) increases, and
zero when the cosine value equals to 1. That is, it induces the two vectors to be close to each
other. The second term, on the other hand, is smaller as the value of cos(zi,wm) decreases,
and is zero when cos(zi,wm) ≤ cos ε . It means it makes the angle between the two vectors
to be larger than ε .

ε can be viewed as a criterion to be set in advance. As ε increases, the inter-class variance
becomes larger; however, since the importance of the first term in Equation 1 decreases,
the intra-class variance also becomes larger. And both the inter-class and the intra-class
variances become smaller vice versa. Therefore, it is crucial to decide the proper value of ε

in advance. We assume that there is an optimal value of ε for each dataset. Thus, we set the
value of ε by tuning on the validation set of the datasets. Further analysis for ε is described
in Section 4.5.

s is a re-scale factor that is also frequently used by other loss functions with the cosine
similarity [2, 4, 7, 14, 16, 25]. Since the value of the cosine similarity is between -1 and 1,
the range of the exponential function with this is also limited. In the case of the exponential
function, when the exponents are greater than or equals to zero, the ratio of its values is
bigger as the exponents increase. For example, e2/e1 � e20/e10. Therefore, there is an
effect of enhancing the discriminative power of the model by multiplying the re-scale factor.

3.3 Comparison with Cross-entropy Loss
For a feature vector zi = F(xi |φ), the Cosine-similarity-based Cross-entropy (CC) loss with
the softmax function is expressed as

LCE =− 1
N

N

∑
i=1

log
escos(zi,wn)

∑
|Y |
m=1 escos(zi,wm)

. (2)
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The cross-entropy loss also gathers the same class together and pushes the other classes
away. In this respect, it is similar to NPC loss. However, the most significant difference
is whether the loss function utilizes the probability or not. The inputs of the negative log-
arithmic function should be between 0 and 1 for the function always to be positive and
monotonically decreasing. The softmax function satisfies this condition. And since the total
sum of it is always 1, the relative values of the inputs are naturally adjusted. Because of these
characteristics, it leads the model to have high discriminative power.

However, this can be a problem in the case of few-shot image classification. The fact
that the relative values of the inputs automatically optimize the model implies that there is
a possibility of overfitting on the training set. Such a model is likely to extract the detailed
features for the base classes; thus, if the model is applied for the novel classes, these features
will be disturbing. Hence, we aim to train the model that extracts features that are also suited
for the novel classes to ensure the high discriminative power for those. We hypothesize that
this could be achievable by not using probabilities, which leads the model to extract less de-
tailed features for base classes. And finally, by fine-tuning, the model can be further trained
to extract detailed features for the novel classes. However, there is no guarantee that the less
detailed base classes’ features will be applied to novel classes. Thus, we introduce ε to adjust
this discrepancy. The effectiveness of the proposed approach for few-shot classification is
demonstrated in Section 4.

3.4 Training Strategy
Our model follows the procedure of the network pre-training, fine-tuning, and finally, evalu-
ation. Figure 1 illustrates the whole procedure.

Pre-training: In the pre-training stage, we train the feature extractor F(· |φ) and the
classifier C(· |Wtrain), where Wtrain is a set of the weight vectors of each class in Dtrain. By
minimizing NPC loss on examples in the training set, we find the optimal values for φ and
Wtrain from scratch.

Fine-tuning: We train the feature extractor F(· |φ) and the classifier C(· |Wsampled),
where Wsampled is a set of the weight vectors of each class in Dsupport . Unlike in the pre-
training stage, φ and Wsampled are initialized by specific values. We use the feature extractor
from the pre-training stage, e.g., the initial value of φ is a result of the pre-training stage.
For the classifier, the feature vectors belonging to each class are averaged. For the feature
vectors having the ground-truth label of n, the initial value of the weight vector for class n is

winit
n =

1
Ksupport

Ksupport

∑
k=1

z̄n
k , (3)

where z̄n
k denotes the k-th normalized feature vector which has the ground-truth label of n.

To recap, the feature extractor and the classifier from the specific initial values are trained on
examples in Dsupport .

Evaluation: Finally, we predict the label of examples in Dquery by the feature extractor
and the classifier from the fine-tuning stage. For the feature vector zi obtained from the i-th
image of Dquery, the predicted label is

ŷi = argmax
n

cos(zi,wn), (4)

for n = 1, ..., |Ysampled |.
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4 Experimental Results
In this section, the experimental results are delineated for few-shot image classification prob-
lems. First, the proposed NPC loss is compared with other losses while using the same mod-
els. Next, our model depicted in Figure 1 is compared with the state-of-the-art algorithms on
benchmark datasets. And then, visualizations of the feature vectors are provided. Finally, an
analysis about the hyperparameter ε is conducted.

4.1 Implementation Details
Here we describe details about the datasets and experimental settings for our experiments.

Datasets: We used two benchmark datasets which are Mini-ImageNet and CUB-200-
2011 (CUB). Mini-ImageNet dataset is a subset of ImageNet dataset [3]. There are 100
classes sampled from ImageNet and each class contains 600 images. Vinyals et al. [23]
first presented this dataset, however, recent works utilized the setting provided by Ravi and
Larochelle [17]. Thus, we used the same setting which splits 100 classes into 64 training,
16 validation, and 20 test classes. CUB dataset contains 11,788 images of birds from 200
classes. It was firstly presented by Wah et al. [24], and we split the dataset into 100 training,
50 validation, and 50 test classes, which is the setting provided by Hilliard et al. [9].

Network architecture: For the feature extractor F(· |φ), we used two different archi-
tectures: conv(64)×2-(128)×2 and ResNet-18. The former one refers to four conjugated
convolution modules. Each module consists of 3 × 3 convolution filters and followed by
batch normalization, ReLU nonlinearity, and 2 × 2 max-pooling. The first two modules
have 64 channels, and the last two have 128 channels. The latter one refers to the ResNet [8]
like architecture used in [2] (Refer to the supplementary material for the details). The input
image size is 84× 84 for conv(64)×2-(128)×2 and 224× 224 for ResNet-18. For the classi-
fier C(· |W ), we used one linear layer with the cosine similarity, where the output dimension
of the Classi f ierb in Figure 1 depends on the number of the training classes of each dataset,
and the one of the Classi f iern depends on the number of ways of few-shot tasks.

Experimental settings: For the both datasets, we used train classes for the pre-training,
and test classes for the evaluation. The validation classes were used for tuning hyperparam-
eters. A standard data augmentation including random crop, left-right flip, color jitter was
applied in the pre-training stage. We implemented 1-shot, and 5-shot cases and evaluated
with 15 query shots, e.g., Ksupport = 1,5, and Kquery = 15. For the pre-training stage, the
Adam optimizer [10] with a fixed learning rate of 10−3 was used. ε was set to 90◦ for Mini-
ImageNet dataset, and 30◦ for CUB dataset. For the fine-tuning stage, we trained the model
with the Adam optimizer with a fixed learning rate of 5×10−4 for 50 epochs. λ and s were
set to 1/15 and 30, respectively, and the batch size of 128 was used for the both stages.

4.2 Comparison with Other Losses
First, we compared NPC loss with the CC loss (Equation 2), ArcFace (AF) [4], and CosFace
(CF) [25]. We selected the AF and CF for comparison since they show higher discriminative
power than other margin added cosine similarity losses as well as the cross-entropy loss. For
the i-th feature vector zi = F(xi |φ), these losses are expressed as

L =− 1
N

N

∑
i=1

log
es(cos(arccos(cos(zi,wn))+M1)−M2)

es(cos(arccos(cos(zi,wn))+M1)−M2)+∑
|Y |
m=1,m6=n escos(zi,wm)

, (5)
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5-way 20-way
Loss function Architecture 1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%)

CC 52.78 ± 0.77 68.76 ± 0.68 24.43 ± 0.27 39.38 ± 0.24
AF 52.62 ± 0.77 68.82 ± 0.66 23.70 ± 0.25 38.52 ± 0.23
CF 52.32 ± 0.81 69.15 ± 0.66 24.71 ± 0.27 40.18 ± 0.25

NPC

conv(64)×2-(128)×2

52.72 ± 0.86 70.79 ± 0.70 24.78 ± 0.26 42.10 ± 0.25

CC 50.02 ± 0.84 66.60 ± 0.68 23.30 ± 0.27 37.03 ± 0.24
AF 47.42 ± 0.79 63.64 ± 0.69 21.21 ± 0.27 33.88 ± 0.25
CF 50.45 ± 0.83 66.96 ± 0.69 23.23 ± 0.27 36.64 ± 0.24

NPC

ResNet-18

57.51 ± 0.85 75.37 ± 0.65 28.51 ± 0.31 48.30 ± 0.25

Table 1: The results of few-shot image classification on the test set of Mini-ImageNet dataset
without fine-tuning. The results are average accuracies over 600 test episodes with the 95%
confidence intervals.

Method Architecture Mini-ImageNet CUB

1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%)

Matching Networks [23] conv(64)×4 46.6 60.0 - -
Matching Networks* conv(64)×4 48.14 ± 0.78 63.48 ± 0.66 60.52 ± 0.88 75.29 ± 0.75
LSTM Meta-learner [17] conv(64)×4 43.44 ± 0.77 60.60 ± 0.71 - -
Prototypical Networks [20] conv(64)×4 49.42 ± 0.78 68.20 ± 0.66 - -
Prototypical Networks* conv(64)×4 44.42 ± 0.84 64.24 ± 0.72 50.46 ± 0.88 76.39 ± 0.64
MAML [6] conv(32)×4 48.70 ± 1.84 63.11 ± 0.92 - -
MAML* conv(32)×4 46.47 ± 0.82 62.71 ± 0.71 54.73 ± 0.97 75.75 ± 0.76
Relation Network [21] conv(64-96-128-256) 50.44 ± 0.82 65.32 ± 0.70 - -
Relation Network* conv(64-96-128-256) 49.31 ± 0.85 66.60 ± 0.69 62.34 ± 0.94 77.84 ± 0.68
Dynamic Few-shot [7] conv(64)×2-(128)×2 55.95 ± 0.84 73.00 ± 0.64 - -
Baseline++ [2] conv(64)×4 48.24 ± 0.75 66.43 ± 0.63 60.53 ± 0.83 79.34 ± 0.61
DN4 [12] conv(64)×4 51.24 ± 0.74 71.02 ± 0.64 53.15 ± 0.84 81.90 ± 0.60

NPC conv(64)×2-(128)×2 52.73 ± 0.83 71.26 ± 0.70 60.65 ± 0.89 81.30 ± 0.59

Baseline++ [2] ResNet-18 51.87 ± 0.77 75.68 ± 0.63 - -
Dynamic Few-shot [7] ResNet-12 55.45 ± 0.89 70.13 ± 0.68 - -
TADAM [16] ResNet-12 58.5 ± 0.3 76.7 ± 0.3 - -
MetaOpt SVM [11] ResNet-12 62.64 ± 0.61 78.63 ± 0.46 - -
LEO† [18] WRN-28-10 61.76 ± 0.08 77.59 ± 0.12 - -

NPC ResNet-18 60.98 ± 0.87 80.17 ± 0.65 - -
∗ Results from [2]. † Pre-trained on both the training and validation sets. - Not reported.

Table 2: The mean accuracies over 600 test episodes with the 95% confidence intervals of
5-way image classification task. The test sets of each dataset are used. The second column
indicates the architecture of the feature extractor. All results are cited from the original works
except for those with the ∗ symbol.

where M1 and M2 are an angular margin. M1 = 0 for the CF, and M2 = 0 for the AF.
For a fair comparison, we used the same model architectures, training procedures and

only changed the loss functions. Table 1 shows the results of 5-way and 20-way image
classifications on the test set of Mini-ImageNet dataset without fine-tuning. For the CC, the
AF, and the CF, we set s to 10 and trained the model by the Adam optimizer with early
stopping. M1 and M2 was set to 0.1 and 0.35 for the AF and the CF, respectively.

When the shallow architecture (conv(64)×2-(128)×2) was used, the model trained with
NPC loss achieves better performance only when the 5-shot cases. However, when the deep
architecture (ResNet-18) was used, the model trained with NPC loss overwhelms those with
other probabilistic losses. Note that the accuracies of the probability-based losses decrease
when the feature extractor architecture is deepened. Generally, the use of deep architectures
improves performance but also aggravates overfitting issues. The CC, AF, and CF suffer
performance degradation as the architecture deepened, but in the case of NPC, performance
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(a) (b)
Figure 3: t-SNE visualizations of the feature vectors of the test classes of Mini-ImageNet
dataset extracted from the ResNet-18 architecture before fine-tuning. Each figure indicates
the feature visualization of (a) the model trained with the CC loss and (b) the one trained
with NPC loss.

increased. Through this experiment, we proved our hypothesis that overfitting has a negative
effect on few-shot learning, and NPC offsets this effect.

4.3 Results on Benchmark Datasets
We conducted standard few-shot classification experiments on Mini-ImageNet and CUB
datasets and compared with the state-of-the-art models. Table 2 shows the results of 5-way
image classification on both datasets. conv(k)×l denotes that the convolution module with
k channels are conjugated l times. ResNet-12 indicates residual network [8] modules used
in [16] and [11]. WRN-28-10 denotes a wide residual network [27] with a depth of 28 and a
widening factor of 10.

Among the models using four convolution modules as their feature extractors, our model
with fine-tuning achieved the best performance except for Dynamic Few-shot model on
Mini-ImageNet dataset. Moreover, our model with fine-tuning showed the best accuracy
for the 5-shot case on CUB dataset. When using ResNet-18 architecture, our model af-
ter fine-tuning overwhelmed other models with the conv architectures; however, for a fair
comparison, we compared our results on Mini-ImageNet with some other models with deep
structures. Our model outperformed most of the models and achieved the best performance
for the 5-shot case. Note that Dynamic Few-shot model with the deep structure suffered from
the performance degradation probably caused by overfitting.

Our model with NPC loss achieved excellent performances on two benchmark datasets,
and compared with other models, it is easy to implement because we simply replace the loss
function of the standard transfer learning method.

4.4 Feature Visualization
To show that the model trained with NPC loss has high discriminative power for the novel
classes, we compared the t-SNE visualizations [22] for the feature vectors of Mini-ImageNet’s
test classes extracted from each extractor: one trained by the CC loss, and the other trained
by NPC loss. Here, ResNet-18 architecture was used as the feature extractor.

As can be seen from Figure 3, when the model is trained with the CC loss, most of the
classes are hard to distinguish from each other. The fact that some classes are well-clustered
indicates that there are some similar classes between the base and novel classes. However,
when the model is trained with NPC loss, most of the classes are well-clustered. Comparing
well-clustered classes from Figure 3(a) with (b), intra-class variance of each class is smaller
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(a) (b)
Figure 4: An analysis of the feature vectors of 64 training classes in Mini-ImageNet dataset
after the pre-training stage. (a) The distribution of angles between 64 weight vectors and
feature vectors belonging to each class. As ε increases, the angle distribution moves to the
right. (b) A visualization of covariance matrices of the weight vectors. The distance between
each weight vector becomes larger as ε increases.

in the case of Figure 3(a). It indicates the model trained with NPC loss extracts less detailed
features of the base classes but can be shared across the novel classes.

4.5 Hyperparameter Analysis
Here, we further analyzed ε in Equation 1. It plays a crucial role in determining the distribu-
tion of the feature vectors as mentioned in Section 3.2. Both the intra-class and the inter-class
variances increase as ε becomes larger, and vise versa. Figure 4 illustrates this characteris-
tic. After the pre-training stage, we measured angles between the weight vectors in Wtrain
and corresponding feature vectors. The left part of the figure shows the distribution of these
angles when ε is 30◦, 60◦, and 90◦. As ε becomes larger, the angle distribution moves to
the right, and it means that the intra-class variance is getting bigger. The right part of the
figure is a visualization of covariance matrices of Wtrain. The larger the ε , the smaller the
values of elements of the covariance matrix except for the diagonal elements. This indicates
that inter-class variance is getting bigger as ε increases. Since the intra-class variance should
be small and the inter-class variance should be large for excellent discriminative power, it is
essential to adjust ε to find the proper balance of the distributions of the feature vectors.

We could roughly set the initial value of ε as follows: In a fine-grained dataset such as
CUB, the intra-class variance should be small since both the base and novel classes are likely
to share detailed features, which means ε should be small. Datasets such as Mini-ImageNet
are less likely to share such features, thus, requiring large ε . We observed that our model
achieved the best performances when ε was set to 30◦ for CUB dataset, and set to 90◦ for
Mini-ImageNet dataset.

5 Conclusion
In this paper, we proposed a novel NPC loss function for few-shot image classification. We
addressed the overfitting problem when using the probabilistic loss functions in this task.
We applied our loss function to a simple transfer learning method and obtained excellent
classification performance. Our observation showed that proposed NPC loss could alleviate
the negative effect of the overfitting issue. Future work could focus on using NPC loss for
other models with different network architectures or meta-learning strategies.
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