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Abstract

In recent years, the performance of person re-identification has been dramatically
improved by virtue of sophisticated training methods. However, most of the existing
methods are based on the assumption that the statistics of a target domain can be utilized
during training. This inevitably introduces huge costs for data collection each time a
person re-identification system is deployed, which hinders the applicability to real-world
scenarios. To mitigate this issue, we expand upon the concept of domain generalization.
Typical person re-identification datasets are composed of a large amount of identities.
However, examples for each identity are rather scarce. It is widely known that if exam-
ples are highly biased, over-fitting is likely to occur and degrade the performance. To al-
leviate this problem, we propose a novel soft-label regularization method that combines
an expert feature extractor with a beginner classifier for generating soft labels. From
a representation learning perspective, a convolutional neural network-based feature ex-
tractor is thought to prioritize common patterns. Therefore, the subsequent classifier
typically fits common examples first, followed by rare ones. On the basis of this ob-
servation, we force the beginner classifier to remain uncertain towards rare examples by
means of periodic initialization. Accordingly, the beginner classifier assigns highly con-
fident labels to common examples and ambiguous labels to rare ones, thus enabling soft
labels to mitigate over-fitting to biased examples (e.g., highly occluded ones). Extensive
analysis shows that our method successfully assigns ambiguous labels to biased exam-
ples and thus increases the rank-1 accuracy by 3.4 %, 1.6 %, 0.9 %, and 5.2 % on the
VIPeR, PRID, GRID, and i-LIDS datasets, respectively. The source codes are available
athttps://github.com/hitachi-rd-cv/bcar.

1 Introduction

In recent years, person re-identification (Re-ID) has attracted much attention for its diverse
range of real-world applications such as surveillance and marketing. The basic premise of
such applications is to collect exact trajectories of individual pedestrians. Therefore, accu-
rate Re-ID is crucial. Deep convolutional neural network (CNN)-based methods are usually
applied for this and have demonstrated considerable improvement over the years [2, 10, 12,
14, 16, 18, 25, 26, 30]. However, drastic appearance changes caused by variations in il-
lumination, viewpoints, poses, and occlusions remain a long-standing technical obstacle in
conventional methods, which has spurred enduring interest in the topic of Re-ID.
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Figure 1: Overview of proposed soft-label regularization. Soft labels are generated by a
model with a trained feature extractor and a classifier trained at the early stage of learning.
This beginner classifier enables the generator to assign low-entropy labels to common exam-
ples and high-entropy labels to biased ones. Using these labels as regularization mitigates
the performance degradation caused by biased examples.

Most existing approaches are based on the impractical assumption that the statistics of
a target domain can be utilized during training. These approaches can be roughly divided
into two categories: supervised training and unsupervised domain adaptation (UDA). In su-
pervised training, all data are sampled from the same domain and labeled for identifying
individuals. Therefore, Re-ID models do not suffer from severe domain shifts and thus
can achieve promising results (e.g., rank-1 accuracy of over 90 %) [16]. However, this ap-
proach introduces enormous costs for data collection and annotation each time a Re-ID sys-
tem is deployed, which renders supervised training unsuitable for practical use. In UDA,
training data and testing data are sampled from different domains, and testing data do not
need to be annotated for training, which enables efficient utilization of existing large-scale
datasets [2, 14, 25]. However, despite the reduction of costs for data annotation at the initial
phase, data collection still incurs costs at each deployment.

The current best practice for real-world scenarios is domain generalization (DG). In DG,
the statistics of a target domain remain unknown during training. Accordingly, the capability
of acquiring domain-invariant knowledge is crucial for achieving high performance. For
this purpose, two DG approaches have been proposed [10, 18], in which the conventional
image classification architecture is modified to acquire the domain invariance. The modified
models have outperformed existing supervised training and UDA methods on four publicly
available benchmark datasets, which demonstrates the superiority of DG.

To further enhance the generalization performance of existing methods, we propose a be-
ginner classifier as regularization (BCaR), a novel soft-label regularization method. Large-
scale Re-ID datasets are generally composed of over thousands of identities. However, ex-
amples for each identity are rather scarce: sometimes as few as just two per identity. This is
extremely small for training CNNs since their over-parameterized nature renders them prone
to be over-fitted to a particular example. Various techniques such as weight decay, batch
normalization [9], dropout [19], and label smoothing [21] have been proposed to prevent
over-fitting, but as these techniques do not consider the dataset statistics, the performance
improvement is limited. In contrast to these techniques, BCaR mitigates the impact of iden-
tities that have a few biased examples by utilizing soft labels. As Fig. 1 shows, soft labels
are generated by an auxiliary generator model composed of a trained feature extractor and a
classifier trained at the early stage of learning. This beginner classifier assigns low-entropy
(i.e., high-confident) labels to common examples and high-entropy (i.e., ambiguous) labels
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to rare ones because it is forced to remain uncertain towards rare examples due to the peri-
odic initialization during generator training. This results in generating ambiguous labels for
biased examples such as those of highly occluded pedestrians or of low brightness. By using
these soft labels as regularization for Re-ID training, the impact of biased examples can be
mitigated.

To summarize, our contributions are three-fold: (1) We propose BCaR, which utilizes
soft labels for regularizing Re-ID models, as a remedy for over-fitting. BCaR enhances the
generalization performance of existing models without incurring additional computational
costs at test time. (2) We demonstrate state-of-the-art performances on Re-ID benchmarks
using both MobileNet and ResNet backbones. (3) We conduct extensive experiments and
show that our method improves performance even in within-dataset settings.

2 Related work

2.1 Generalized person re-identification

There have been a few prior studies that examined generalization performance [10, 18].
In [18], Song et al. proposed a model based on meta-learning [22] called Domain-Invariant
Mapping Network (DIMN). In contrast to the common approach that utilizes feature dis-
tances for matching scores, DIMN generates classifier weights from gallery images and
takes the dot product between the weights and probe image features to calculate matching
scores. This meta-learning pipeline enables the model to be domain-invariant. However, its
complicated learning procedure compounds the difficulties of optimization, and the weight
generation during test time slows down the inference speed. Considering these drawbacks,
an approach called DualNorm was proposed by Jia et al. [10]. It regards style and content
variations as the cause of domain bias and suppresses them by inserting instance normal-
ization [24] and batch normalization (BN) [9] at specific positions. They showed that the
normalization successfully eliminates domain bias and improves the performance. Since our
method can be applied as regularization, it can easily be combined with DualNorm to further
enhance the performance without incurring additional computational costs at test time.

2.2 Soft-label regularization

Soft-label regularization is one of the most frequently used methods to alleviate over-fitting
by imposing various distributed probabilities on each class. Label smoothing [21] is a simple
soft-label approach that uniformly redistributes the probability of a ground-truth class to
those of other classes. Although this approach is known to boost generalization performance,
uniform redistribution is likely to be inconsistent. For comparatively consistent soft labels,
learning-based label generation approaches have been proposed. Knowledge distillation [7]
transfers knowledge from a high-capacity teacher model to a compact student model through
soft labels. On the basis of knowledge distillation, Furlanello et al. proposed Born-Again
Networks (BAN) [4] that utilize student and teacher models with identical structures. BAN
shows that iterative training of a model with soft labels generated by a previously trained
model improves performance. Recently, Tian et al. [23] proposed a method called network
as regularization (NaR). As with BAN, NaR uses student and teacher models that have an
identical structure, but differs in that both models are trained simultaneously using hard
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Figure 2: The proposed method. During Re-ID training, input images are forwarded to an
auxiliary label generator for generating soft labels that regularize a Re-ID model. To generate
effective soft labels, the classifier g (v;E) is forced to be in an early stage of learning by
periodically initializing the parameter Z during generator training. A BN layer is inserted at

the last part of the feature extractor f (X;¥) for stable convergence after the initialization.

labels and dynamically generated soft labels. Although our proposed approach resembles
NaR, the experiment in Sec. 4.6 shows that BCaR has a better performance.

3 Proposed method

3.1 Baseline

As a baseline method, we first introduce a naive deep learning approach called aggregation
(AGG). Suppose we have K source domains D = {Dk}szl, where D, = {(X (k), y(k)) },

X® is an image of an identity, and y(k) is a corresponding label. Here, we assume that there
are Nj identities in the k-th domain Dy, and they are not overlapped between domains, i.e.,

{y(kl)} N {y(kZ)} = @ for arbitrary k; and k, (1 < k; < k» < K). For training, all the source
domains are combined into a single domain, hence the training dataset is D = {(X,y)} =
Ule Dy, and the number of identities is N = ZszlNk. During training, y is converted to a

hard label y,,,; in one-hot encoding, i.e., [yy,ql1 = 1 and y,,,4 € {0,1}". Utilizing this
label, a model is trained to minimize the following loss:

Lac =L (X Ypara) = 1“F (g (F (X)) ¥hara) (1

where f (-) is a feature extractor, g (-) is a classifier, and /(°F)(-,-) is the cross-entropy loss
function. Once the loss converges, Re-ID is conducted using the cosine similarities of f (X).

3.2 Training procedure

Figure 2 shows the proposed Re-ID training method. Hereinafter we denote a feature extrac-
tor in a Re-ID model as f (X;0), a classifier in that model as g (v;®), a feature extractor in a
label generator model as f (X;¥), and a classifier in that model as g (v;E), where O, ®, ¥,
& are the parameters of each component.

In the proposed training, an auxiliary label generator is used to generate soft labels. This
generator is trained beforehand or simultaneously with the Re-ID model. As Algorithm |1
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Algorithm 1: Training procedure for label generator

Data: Training dataset D
Parameter: LR 7 for f (X;¥), LR 1’ for g (v;Z), training epochs 7, init interval T
1 Initialize ¥ and &
2 fori< 1to7T do
while epoch not completed do
Create a mini-batch by randomly sampling image-label pairs from D
Calculate the loss (Eq. 1)
Update ¥ and E with 17 and 1’, respectively
if mod (i, 7) = O then

3
4
5
6
7
8 Initialize

Algorithm 2: Training procedure for Re-ID model

Data: Training dataset D

Parameter: LR 7 for f(X;0) and g (v;®), training epochs 7', regularization adj. «
1 Initialize ® and &
2 fori< 1to 7T do
3 while epoch not completed do
4 Create a mini-batch by randomly sampling image-label pairs from D
5 Generate soft labels (Eq. 2)
6
7

Calculate the loss (Eq. 3)
Update ® and ® with

shows, given a training dataset D, the generator is trained using the loss Eq. 1 and stochastic
gradient-based optimization. This is a quite common Re-ID training paradigm, but the pa-
rameter E is initialized every few epochs for forcing the classifier g (v;E) to be in an early
stage of learning. To control the upper bound of the capability of the classifier g (v;&) for
fitting training data, the initialization interval T and the learning rate (LR) 7’ are used as
hyper-parameters. In the case that the generator is trained simultaneously with the Re-ID
model, the generator is cloned before the initialization and the cloned model is used to gen-
erate soft labels in the next T epochs after cloning.

The training procedure for a Re-ID model is shown in Algorithm 2. In contrast to the
generator training, the Re-ID model is trained using both hard and soft labels. The soft labels
are generated by the generator as follows:

Ysore = Softmax (g (f (X;¥);E)). (2)

Using those labels, the loss for the training is derived as
Lpcar = 0tLac+ (1 — )L (X,y5,1), 0< 0 <1, 3)
where « is a hyper-parameter that adjusts the magnitude of the soft-label regularization.

Note that the loss is not back-propagated to the generator to keep it free from being affected
by the Re-ID training.
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3.3 Label generation network design

Since the parameter of the classifier in the label generator X is periodically initialized dur-
ing training, stable convergence is important. For this reason, a BN layer is inserted after
global average pooling (GAP) in the feature extractor f(X;¥). This design is similar to
BNNeck [10, 16] but differs in that we insert a BN layer for the purpose of stabilizing con-
vergence after the initialization of the parameter =. The significance of the proposed method
is further supported by the observation from the ablation study in Sec. 4.3 that combining
BN with the initialization is more powerful than solely applying BN.

The classifier g (v;E) is the linear combination of an input variable and the parameter .
Therefore, the gradient with respect to the parameter ¥ is derived as

9L _ (3L (9g) (v _ (L) (ov w
0¥ \dg av o) \dg) \o¥)’
A concern arises that the layers in the feature extractor f (X;¥) may be subject to the effect
of the periodic initialization. Concretely, large initial values are likely to damage the feature

extractor f (X;¥). To mitigate this vulnerability, we initialize the parameter X using a normal
distribution with expected value 0 and standard deviation 0.001.

4 Experiments

4.1 Datasets and evaluation settings

To evaluate our method, we follow the setting described in the papers of Song et al. [18]
and Jia et al. [10]. In this setting, CUHKO2 [11], CUHKO3 [12], Duke MTMC [30],
Market1501 [28], and PersonSearch [26] are combined into a single training dataset that
has 121,765 images belonging to 18,530 identities. For evaluation, VIPeR [5], PRID [8],
GRID [15], and i-LIDS [29] are used. Probe/gallery identities are randomly sampled from
the overall identities in VIPeR, PRID, GRID, and i-LIDS in accordance with the number:
316/316, 100/649, 125/900, and 60/60, respectively. The evaluation is conducted in a single-
shot manner on those sampled identities. For each dataset, we evaluate ten probe/gallery
splits and report the average results.

4.2 Implementation details

We follow the paper of Jia ef al. [10] and build our method by referring to its publicly
available source code!, within which MobileNetV2 [17] serves as the backbone network.
Basically, the generator and the Re-ID model possess an identical structure, but in the case
of the Re-ID model without a BN layer inserted after GAP (as aforementioned in Sec. 3.3),
we solely insert a BN layer into the generator. The networks are trained from scratch for
T = 150 epochs using stochastic gradient descent with the Nesterov momentum set to 0.9.
The learning rate 7 is set to 0.01 and decayed by 0.1 after 100 epochs. Mini-batch size is
set to 64, and all images in a mini-batch are resized to 256 x 128. To prevent over-fitting,
weight decay of 0.0005, random horizontal flipping, and random cropping are used for all
networks, whereas dropout [19] with the rate of 0.5 is used only for vanilla MobileNetV2 in
the Re-ID model. For test-time data augmentation, horizontal flipping is used. To determine

https://github.com/BJTUJia/person_relID_DualNorm
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Figure 3: Rank-1 accuracy of a validation set. In (a), (b) and (c), the hyper-parameters 1’, 7,
and « are changed respectively.

Table 1: Effect of each component. Rank-1 accuracy is shown.

Soft-label BN in Periodic
regularization ~ generator initialization

VIPeR PRID GRID i-LIDS

42.1 26.1 28.6 66.3

v 42.4 25.1 30.0 65.5
v v 41.2 355 30.6 64.8
v v 37.3 11.0 221 56.5
v v v 50.4 371 319 68.7

Table 2: Comparison of the generator training timing. Rank-1 accuracy is shown.
VIPeR PRID GRID i-LIDS

Before training the Re-ID model 443 30.5 31.5 67.2
Simultaneous training with Re-ID model  50.4 371 319 68.7

hyper-parameters 1’, 7, and @, we randomly select 2,000 identities from the training dataset
and use them as a validation set. The validation results are shown in Fig. 3. In accordance
with the results, we set ' = 0.02, T =1, and & = 0.3. Note that the optimizer’s momentum
of the parameter Z is also reset when the parameter is initialized, and the learning rate 7’ is
not decayed so as to preserve the upper bound of the capability of the classifier g (v;E) for
fitting training data.

4.3 Ablation study

To investigate the effect of each essential component (i.e., the soft-label regularization, BN in
the generator, and periodic initialization) in the proposed BCaR, we introduce four ablated
variants based on the AGG baseline [10]. Table 1 shows the comparison results. We can
see that solely applying the soft-label regularization, which is almost identical to NaR [23],
yielded improvement only on VIPeR and GRID, and coupling BN in the generator with
the soft-label regularization yielded improvement only on PRID and GRID. These results
indicate that universal improvement across all datasets cannot be obtained by just training
the Re-ID model with an auxiliary label generator network. Additionally, we found that
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Table 3: Comparison results against baselines. (R: Rank, S: Supervised training, U: UDA,
DG: Domain generalization with the MobileNetV2 backbone, —: No report)

VIPeR PRID GRID i-LIDS
Type R-1 R-10 R-1 R-10 R-1 R-10 R-1 R-10

SpindleNet [27] S 53.8 832 67.0 89.0 - - 66.3 91.8
SSM [1] S 53.7 915 - - 272 612 - -
JLML [13] S 50.2 843 - - 375 694 - -
SSDAL [20] U 379 756 20.1 557 19.1 458 - -
TJAIDL [25] U 38.5 - 34.8 - - - - -
MMFAN [14] U 39.1 - 35.1 - - - - -
Synthesis [2] U 43.0 - 43.0 - - - 56.5 -
AGG [10] DG 42.1 - 27.2 - 28.6 - 66.3 -
DIMN [18] DG 512 760 392 767 293 658 702 945
DualNorm [10] DG 539 - 60.4 41.4 - 74.8

Vanillanet+ BCaR DG 504 77.0 37.1 684 319 61.6 68.7 943
DualNorm + BCaR DG 573 833 620 898 423 745 80.0 97.0

Table 4: Comparison with the ResNet backbone. Rank-1 accuracy is shown.

Method VIPeR PRID GRID i-LIDS
AGG [10] 48.5 20.3 29.0 71.3
DualNorm [10] 59.4 69.6 43.7 78.2

DualNorm + BCaR 65.8 70.2 52.8 81.3

combining the soft-label regularization and periodic initialization degraded performance.
This is because without BN, the training of the classifier in the generator takes long time,
and it becomes difficult to determine the initialization timing for generating effective soft
labels. By applying the periodic initialization tactics with BN in the generator, universal
improvement across all datasets was demonstrated.

As described in Sec. 3.2, the generator can be trained before training the Re-ID model
or simultaneously with it. To unravel the optimal training timing of the generator, we con-
ducted a comparison with the generator trained beforehand and simultaneously with the Re-
ID model. Table 2 shows the comparison result. The result showed that the simultaneous
training yielded better performance. The reason for this is that the simultaneous training
can mitigate the dependence of the input order of training data. Since the classifier in the
generator is trained for only a epoch, the output soft labels are highly dependent on the input
order. However, in the simultaneous training, the classifier is updated at every epoch and
outputs different soft labels. Therefore, the impact of the dependency to the Re-ID model is
mitigated, and the effectiveness of the soft labels is boosted. Considering this performance
advantage, the simultaneous setting is used in the following experiments.

4.4 Comparison against baselines

To evaluate the performance of BCaR, we conducted a comparison with previously proposed
baselines. In addition to the results of DG methods, we provide those of supervised training
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Table 5: Within-dataset results on Market1501 and Duke MTMC. (R: Rank)

Dataset Method R-1 R-5 R-10 mAP
Vanilla net (MobileNetV2) [10] 772 899 938 539
Market1501 DualNorm (MobileNetV2) [10] 82.6 91.7 953 572
DualNorm (MobileNetV2) + BCaR 87.6 955 97.1 65.7
Vanilla net (MobileNetV2) [10] 65.0 79.8 84.1 44.1
Duke MTMC DualNorm (MobileNetV2) [10] 712 825 863 483

DualNorm (MobileNetV2) + BCaR 78.6 86.5 89.6 55.2

methods and UDA methods for reference. As shown in Table 3, BCaR had a competitive or
even better performance than the supervised training methods and UDA methods, indicat-
ing that combining a large amount of existing training data with the proposed regularization
can achieve state-of-the-art performance without the need for cumbersome data collection.
Comparing within DG, BCaR improved the rank-1 accuracy by 8.3 %, 9.9 %, 3.3 %, 2.4 %
for vanilla MobileNetV2 and by 3.4 %, 1.6 %, 0.9 %, and 5.2 % for DualNorm on VIPeR,
PRID, GRID, and i-LIDS, respectively. This shows that BCaR can further enhance the per-
formance of the outstanding baselines without adding any computational burden at test time.
We also evaluate BCaR with the ResNet50 [6] backbone. Following the paper of Jia et
al. [10], the model is initialized with an ImageNet [3] pre-trained model and trained for 70
epochs. The learning rate for the feature extractors f (X;0) and f(X;¥) is set to 0.005,
and that for the classifier g (v;®) is set to 0.05. Those rates are decayed by 0.1 after 40
epochs. The hyper-parameters are set to the values of the evaluation with the MobileNetV?2
backbone. Table 4 shows the comparison results. Again, BCaR improved the generalization
performance, thus demonstrating the model-independent effectiveness of BCaR.

4.5 Within-dataset evaluation

Next, we investigate invariant effectiveness of BCaR under a supervised setting. In this
evaluation, two large-scale datasets, Market1501 [28] and Duke MTMC [30], are used. We
follow the original train/test splits and evaluation protocols. The implementation remains
the same as that described in Sec. 4.2 except that we set the mini-batch size to 16, since
the reported results in [10] are acquired with that mini-batch size. As shown in Table 5,
BCaR improved the rank-1 accuracy by 5.0 % and 7.4 % for Market1501 and Duke MTMC,
respectively, suggesting that biased examples degrade the performance even within the same
domain, and BCaR successfully mitigates the impact of those examples.

4.6 Analysis on soft-label regularization

To further examine our proposed soft-label regularization, comparison with other soft-label
regularization methods is conducted. As criteria for evaluation, the mean and standard de-
viation of the entropy are calculated for the teacher soft labels of each method. DualNorm
with the MobileNetV2 backbone serves as the model for this comparison. In Table 6, the
results of the second generation of BAN [4], the third generation of BAN, NaR [23], and our
BCaR are shown. Note that the entropy of BCaR is averaged over the last 20 epochs, as the
periodic initialization makes soft labels highly sensitive to the order in which training data
are input. We can see that BAN-3 yielded the entropy of higher mean and standard deviation
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Table 6: Analysis on various soft-label regularization methods. Rank-1 accuracy is shown.

Method Lot omiapy el ontrme O VIPeR  PRID  GRID i-LIDS
BAN-2[4] 123 0.78 46.6 546 384 727
BAN-3[4] 227 1.19 479 615 382 725
NaR [23] 1.33 0.75 469 581 384 712
BCaR 1.32 1.46 573 620 423 800

(d) (©
Figure 4: Example of images with soft labels of high entropy. (a) No person. (b) Only part
of a person. (c) Highly occluded person. (d) Behind another person. (¢) Low brightness.

than BAN-2 and NaR, outperforming them by a narrow margin. This indicates that BAN-3
imposes a stronger yet example-dependent regularization, which works slightly better than
the other two. Compared with BAN-3, BCaR yielded lower mean yet higher standard devi-
ation of the entropy, revealing that our regularization is highly example-dependent. Figure 4
shows sample images with soft labels of high entropy. These images are of poor quality, in-
dicating that ambiguous labels were successfully assigned to biased examples, and that our
regularization works well for mitigating the impact of those examples.

5 Conclusion

In this paper, we have proposed a novel beginner classifier as soft-label regularization to
boost the generalization performance of Re-ID. The beginner classifier is in the soft label
generator and is forced to remain uncertain towards biased examples due to periodic ini-
tialization. Our empirical exploration demonstrates that the proposed classifier assigns soft
labels of high entropy to the biased examples, thus mitigating their impact on the model’s
generalization performance. Cross-domain evaluations conducted on four public benchmark
datasets demonstrate a state-of-the-art performance. Additionally, we found that our method
can further improve the performance of existing Re-ID models without increasing the com-
putational burden at test time.
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