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Abstract

The query-based moment retrieval is a problem of localising a specific clip from an
untrimmed video according a query sentence. This is a challenging task that requires
interpretation of both the natural language query and the video content. Like in many
other areas in computer vision and machine learning, the progress in query-based mo-
ment retrieval is heavily driven by the benchmark datasets and, therefore, their quality
has significant impact on the field. In this paper, we present a series of experiments as-
sessing how well the benchmark results reflect the true progress in solving the moment
retrieval task. Our results indicate substantial biases in the popular datasets and unex-
pected behaviour of the state-of-the-art models. Moreover, we present new sanity check
experiments and approaches for visualising the results. Finally, we suggest possible di-
rections to improve the temporal sentence grounding in the future.

1 Introduction
The capability of retrieving specific events from video content is an appealing property for
many practical applications. However, the underlying search problem is very challenging
due to the complicated nature of the possible activities and queries. For this reason, the
approaches relying on predefined object or action classes are not well suited for this problem.
Therefore, a relatively new research area called query-based moment retrieval has gained
plenty of interest [5, 8, 11, 17, 19] in the computer vision community.

The query-based moment retrieval in videos, also known as temporal sentence grounding
or moment retrieval, aims at locating a specific moment from the input sequence that matches
to the given query sentence (see Fig. 1). Similarly to many other fields in machine learning,
the development in the query-based moment retrieval is heavily driven by the vision and
language benchmark datasets such as TACoS [12], DiDeMo [8], Charades-STA [5], and
ActivityNet Captions [10]. In particular, the latter two have been widely adopted as the
standard benchmarks in the recent works [5, 7, 11, 16, 17, 18, 19].
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Figure 1: Moment retrieval finds the moment in a video corresponding to a query sentence.

It is vital that the benchmark results reflect the true progress in solving the original prob-
lem, otherwise the entire field the can be steered into a wrong direction. Despite the im-
portance, this aspect is not well studied, particularly, in the context of query-based moment
retrieval. Inspired by the similar works in other domains [4, 6], we perform in depth analy-
sis on the recent models and benchmark datasets in moment retrieval. In particular, we use
Charades-STA [5] and ActivityNet Captions [10] datasets for our study.

The main findings of this work include:

• Popular datasets include significant biases. We observe that the query sentences
provide a strong prior on the temporal locations of the moments. Based on this obser-
vation, we develop a set of simple baseline models which do not use any visual content
and show that they obtain non-trivial performance surpassing numerous recent works.

• State-of-the-art models are often agnostic to video. We find evidence that the cur-
rent state-of-the-art models do not necessarily make any (or very little) use of the visual
input. In particular, with ActivityNet Captions, the models do not learn cross-modal
matching, but exploit the dataset biases instead.

• Limitations in the current benchmarks. We investigate human performance on the
same tasks and find it lower than with the state-of-the-art models. Moreover, we dis-
cover substantial disagreement between different annotators, which may indicate that
the visual task proposed in the datasets is highly ambiguous.

The evaluation code and the additional annotations will be made publicly available. We
hope that our work inspires similar analysis for other vision and language tasks.

2 Related work

Dataset analysis This paper is inspired by works that analyze benchmarks for visual un-
derstanding tasks, such as VQA [1, 6] and action recognition/detection [2, 14]. For VQA,
biases in a popular dataset and models’ capability of image understanding are investigated
in [1, 6]. Our work also analyzes benchmarks for video moment retrieval from the aspect of
dataset biases and check if models make use of input video. The Charades dataset [13], upon
which Charades-STA is built, is also investigated in [14] with respect to the action recog-
nition task. Our analysis further adds new insights about the dataset by revealing biases in
temporal annotation and how the biases affect the moment retrieval performance.
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Charades-STA ActivityNet Captions

Figure 2: Top-30 frequent actions of each dataset.

Video moment retrieval A two-stage framework has been used for the moment retrieval
task that generates candidate video moments and ranks them according to the relevance to the
query sentence. Some methods extract candidate moments with temporal sliding windows
and predict the relevance [5, 11]. They also refine the moments’ boundaries by predicting the
offsets to ground truth boundaries. Some other methods use a model to generate candidate
moment boundaries [16]. Inspired by recent object and action detection methods, a single-
shot framework has also been explored [17, 19]. This framework skips candidate moment
generation and encodes video moments in different durations in a single pass. Alternatively,
Yuan et al. [18] proposed to regress temporal locations of a moment from the query sentence
and the global feature of the target video. Hahn et al. [7] trained an agent that adjusts moment
boundaries in the reinforcement learning framework. This paper presents an analysis of
the performance of these methods by comparing them to our baseline models. We provide
further investigation about the behavior of the methods [17, 19].

3 Dataset analysis
We perform our analysis using Charades-STA [5] and ActivityNet Captions [10] datasets.

Charades-STA is built upon Charades [13] and contains 9,848 videos, each of which is
associated with multiple natural language sentences. Each sentence has a temporal annota-
tion that indicate the start and end points of the corresponding moment in the video. The
videos are created by asking crowd sourcing workers to record themselves performing ac-
tions based on a short script (i.e., a set of the sentences associated with the video), where the
script was written by composing predefined vocabulary and describe multiple daily actions.

ActivityNet Captions contains 19,209 YouTube videos. Each video is associated with
captions and their temporal locations. This dataset was originally tailored for dense video
captioning, but has been recently used also for moment retrieval. Currently, this is the
largest dataset for the video moment retrieval task. Typical query sentences are longer than
Charades-STA’s and often describe multiple actions as shown in Fig. 1.

3.1 Biases in query sentences and moment locations
We start by analyzing the dataset biases by exploring the query sentences. The query sen-
tence often describe an action of a person. Therefore, we extract the verbs from query
sentences to provide an overview of what actions are in the datasets. Figure 2 shows the top-
30 frequent verbs, which cover 93.2% of all verbs (or actions) in Charades-STA and 51.4%
in ActivityNet Captions. For Charades-STA, the annotators were asked to write sentences
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Figure 3: Distributions of temporal locations of target moments. Color represents values
of probability density function. The top three plots are the distributions for Charades-STA,
and the bottom three are for ActivityNet Captions. For each dataset, the left distribution
is produced for all moments, while the other two distributions are moments described by a
certain verbs. More examples can be found in the supplementary material.

using predefined vocabulary, and so the diversity of sentences is rather limited. ActivityNet
Captions uses the verb “show” frequently, but this word is less likely to describe actions of
person as there are many sentences like “something is shown to the camera.” We can observe
that some verbs are used more frequently than others, which implies that they might have
larger impact on evaluation scores.

One important characteristics of these datasets lies in the biases of temporal locations of
target moments. The left density plots in Fig. 3 show the overall distributions of the temporal
moment locations in Charades-STA and ActivityNet Captions, where the horizontal and ver-
tical axes are the starting time and duration of a moment, both of which are normalized to the
range of 0 to 1 by dividing them by the length of the respective video. These distributions
are obtained using kernel density estimation with the Gaussian kernel. In Charades-STA,
target moments are more likely to start at the very beginning of videos and last roughly 20%
of the video length. For ActivityNet Captions, we can see a peak near the bottom left corner
of the plot. This peak corresponds to moments that start at the beginning of videos and cover
roughly 10% of the video length. These biases provide powerful priors on moment locations.
Weighting candidate locations according to these distributions can improve the chances of
obtaining the correct moment.

We hypothesize that verbs in query sentences provide further hints on the temporal lo-
cations of target moments. For example, a moment described by “cooking something” may
be longer than one described by “throwing something.” We thus estimated the distribution
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of temporal locations for each verb. Examples are also shown in Fig. 3. In Charades-STA,
target moments corresponding to“open” are biased to start at the beginning of videos, while
ones corresponding to “leave” are often located at the end. ActivityNet Captions also shows
biases. These results suggest that we can guess the temporal location of target moments
more precisely by using only one word (i.e., the verb) in a query sentence.

3.2 Analysis with blind baselines
Given the observation above, the question is how far one can go using only the priors (i.e.,
without using any visual information). To this end, we implement three blind baseline mod-
els that exploit the biases at different levels.

Prior-Only Blind The first baseline predicts temporal locations without using videos or
query sentences. This baseline randomly samples 100 temporal locations from the prior
distribution, which is computed from all training samples (the top-left and bottom-left distri-
butions in Fig. 3). The sampled locations are ranked based on their likelihood, and the most
probable sample is chosen.1

Action-Aware Blind This baseline uses only one word in a query sentence to predict tem-
poral locations of the moments. For simplicity, we use the first verb in a query sentence as
an approximation of the target action. Although these do not always correspond to the true
action, the main purpose is to provide a simple yet powerful clue for predicting the temporal
locations of the moments exploiting the biases. The distribution of locations given the verb
in the query sentences is computed beforehand for the top-50 frequent verbs. At inference
time, this baseline takes the first verb from the query sentence and samples 100 temporal
locations from the corresponding conditional distribution. For verbs that are not in top-50,
we use the Prior-Only Blind baseline, because the corresponding conditional distributions
might be unreliable.

Blind-TAN We implement a neural network-based model that uses the full query sentence
to predict temporal locations. Blind-TAN is built upon 2D-TAN [19], which encodes a query
sentence with an LSTM network. Video features of candidate moments (i.e., all possible
temporal segments formed by uniformly sampled starting time and end time) are extracted
with a pre-trained CNN, forming a two-dimensional map of visual features (the first and sec-
ond dimensions of the map correspond to starting and end times). The sentence and visual
features are fused and fed into a CNN to produces a map, each value of which is the score of
the corresponding candidate moment. Blind-TAN removes the CNN to extract video features
and replaces the map of visual features with a learnable map in the same shape. By training
this model solely with query sentences, the learnable map may acquire some ideas on when
certain actions are likely to happen. More details are provided in the supplementary material.

The evaluation is performed using popular R@k(IoU > m), which is the percentage of query
sentences in the test set that have at least one moment in top-k retrieved moments with IoU
larger than m. Following the recent works, we report R@1(IoU>0.5). Figure 4 summa-
rizes the scores for our blind baselines as well as for the recent models, namely ACRN [11],

1This baseline’s first-ranked location approaches to the starting time and duration at the mode of the prior
distribution when the number of sample increases.
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Figure 4: R@1 (IoU>0.5) scores on Charades-STA (left) and ActivityNet Captions (right).
Highlighted bars indicate blind baselines. Surprisingly, the blind baselines outperform many
deep models and reach close to the state-of-the-art on ActivityNet Captions.

CTRL [5], ABLR [18], QSPN [16], TripNet [7], 2D-TAN [19], and SCDM [17]. The scores
for these models are taken from the original papers, except for SCDM. The SCDM’s eval-
uation discards some samples and thus the reported score is not comparable. Therefore, we
recomputed the scores using all test samples. In addition, we tested an option which samples
temporal locations from the uniform distribution in [0,1].2 The scores of the baseline without
priors is computed by computing the score for entire test set 100 times and averaging them.
As a result, we obtain 10.77% on Charades-STA and 13.57% on ActivityNet.

Surprisingly, our blind baselines are competitive and even outperform some deep models
on Charades-STA. The action-aware baseline outperforms ACRN, CTRL, ABLR, and other
recent works [3, 9, 15] that were not included in the figure due to space constraints. On
ActivityNet Captions, Prior-Only Blind and Action-Aware Blind do not perform as well as
the deep models, but Blind-TAN achieves a score close to the state-of-the-art. This may be
because the query sentence in ActivityNet Captions often describes some actions (2.2 verbs
appear on average), whereas our Action-Aware Blind used only the first verb from the query.
Using more information from the query led to further improvements to the baseline scores.

In summary, the baseline results indicate the significance of the biases in the datasets,
which should be considered when assessing the models. Many recent works compare their
models to other deep models; however, these comparisons might not be that meaningful if
the comparison model performs below the blind baseline. This result implies that building
strong baselines is essential in order to validate deep models in general.

Furthermore, some deep models outperform our baselines, but unfortunately, this does
not necessarily mean that the deep models are actually predicting based on video. We will
investigate this further in the following section.

4 Sanity check on visual input
As observed in the previous section (Fig. 4), many deep models do not perform better than
our blind baselines. This suggests that the deep models might also heavily rely on the priors,
and the contribution of visual input may not be significant. To clarify this, we experimentally
show how much recent deep models take input videos into account for prediction.

2This may generate invalid combinations of starting and end times. We keep sampling a temporal location until
we have valid one.
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Figure 5: R@1(IoU>0.5) scores for 2D-TAN [19] and SCDM [17] when the original input
videos and randomized ones are fed into these models.

Figure 6: The number of success and failure cases with respect to the duration of the ground-
truth moment on ActivityNet Captions.

To this end, we divide input videos into short segments and randomly reorder them be-
fore evaluating the models (note that we used the original input videos for training). This
randomization messes up the correspondence between input videos and ground truth tem-
poral locations of target moments. If a model’s prediction is based on input videos, the
performance should drop significantly by this randomization; otherwise, we can conclude
that input videos do not help prediction.

We tested two recent models: SCDM [17] and 2D-TAN [19], which achieve the state-
of-the-art performances on Charades-STA and ActivityNet Captions, respectively. For 2D-
TAN, we used a model with trained parameters provided by the authors. For SCDM, we
used authors’ implementation but trained a model. We confirmed that we could reproduce
the performance close to the original reported score.

Figure 5 shows the scores when the original input videos and randomized ones are used.3

SCDM shows a significant performance drop for randomized videos on Charades-STA,
which implies that SCDM uses visual information for prediction. Interestingly, however,
SCDM’s score for randomized input videos are on a par with the original input video on Ac-
tivityNet Captions. To see the effect of input videos on prediction, we computed differences
between the starting (or end) times of predicted moments for original and randomized videos.
We observed that most SCDM’s predictions are immune to the difference in input videos on
ActivityNet. The distributions of differences of predictions can be found in supplementary
material. As for 2D-TAN, the performances for the original and randomized input videos are

3The scores for the original input videos are adopted from the corresponding papers.
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Dataset Rep. Human Random Human 2D-TAN SCDM

Charades-STA 52.1 42.8 (1.05) 39.7 51.7
ActivityNet Cap. 44.4 35.4 (1.17) 44.8 35.5

Table 1: R@1(IoU>0.5) scores for 2D-TAN [19] and SCDM [17], as well as the human
annotators. Rep. Human and Random Human are the scores with (i) and (ii), respectively.
Bracketed values for Random Human are the standard deviations over 100 trials.

almost the same on both datasets. Especially on ActivityNet Captions, 67.9% of predictions
remain exactly the same.

Figure 6 shows the numbers of success and failure cases with respect to duration of
ground-truth moments for the Action-Aware Blind baseline and 2D-TAN. We can see that
the performance gain of 2D-TAN mainly comes from long moments, but there is little differ-
ences between the baseline and 2D-TAN in shorter moments. This result provides a possible
explanation why 2D-TAN can achieve a good performance score even though it is less likely
to make use of the visual information from input videos. That is, if a model can guess that
a given query sentence is likely to match a long moment, the model can easily obtain a high
IoU by predicting a long moment, which can be the case for 2D-TAN as it gives high success
rates for moments with longer duration. Together with 2D-TAN’s immunity to input videos,
this may means that, instead of finding semantic matches between the query sentence and
input video, a deep model learn dataset biases and predict temporal locations of moments
based only on query sentences.

5 Human performance
The experiments with our blind baselines suggest that recent models do not benefit much
from the visual information. This raises a question: Are there any factors that prevent utiliza-
tion of input videos. To answer this question, we examine how humans perform in the same
task. Unfortunately, each query comes with a single annotation, thus, it is not feasible to as-
sess each annotator’s performance on the datasets. We are also interested in how well human
annotators agree about moment boundaries. If there are high ambiguity, answering correct
moments will be difficult even for humans. For deeper investigation of human performance,
we re-collected temporal annotations on Amazon Mechanical Turk for Charades-STA and
ActivityNet Captions.

We asked the annotators to work on the moment retrieval task, where a query sentence
and a video were displayed to an annotator, and the annotator marked the start and end times
of a moment that corresponds to the query sentence. More details including the annotation
interface can be found in the supplementary material. We picked out random subsets from
the test/validation sets and collected 5 answers for each sample (i.e., query-video pair). We
collected 5,000 annotations (1,000 samples) for Charades-STA and 6,440 annotations (1,288
samples) for ActivityNet Captions. 77 annotators were involved in total.

We assessed the human performance on the video moment retrieval task in two ways.
(i) We choose one representative annotator for each sample. To obtain one representative
annotator out of 5, we compute the pairwise IoUs among the moments from the 5 annotations
(consequently, each annotator get 4 IoUs) and select one annotator as representative that
have the largest average IoU. Representative annotators therefore are ones who are the most
consistent with others. (ii) We randomly sample 1 annotator out of 5 for each sample and
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Figure 7: Example of temporal annotations on ActivityNet Captions. Blue bars indicate
re-annotated moments, and gray area indicates ground truth moment.

compute R@1(IoU>0.5) for the entire test set. We compute the score for 100 times and
report their average.

Interestingly, the results show that the scores of human annotators are lower or on a par
with the state-of-the-art models (Table 1), even though it is fair to expect that our human
annotators fully understand videos and query sentences. The limited human scores may sug-
gest that the benchmark is not appropriately designed to assess the capability in video and
language understanding. The dataset biases can partially explain why humans and deep mod-
els obtain similar scores: Deep models can exploit the priors learned from training samples,
which increases models’ scores. Meanwhile, humans do not have access to such prior and
thus lower the scores, but they instead gain thanks to the visual information.

Another issue is in the current evaluation metric. R@k(IoU > m), which computes over-
lap between a predicted moment and a single ground-truth moment, ignores the ambiguity in
the ground-truth moments. That is, videos can have multiple moments that can be described
by a query sentences. Ideally such moments should also be counted as positive matches, but
the metric fails to do so. Figure 7 shows an example in which a video has different positive
moments. The blue bars represent moments by new annotators, and the gray area represent
the ground truth provided in ActivityNet Captions. The video shows gymnasts practicing
jumps repeatedly, and all re-collected moments match to the query sentence to some extent.

We also observed some unreliable ground-truth moments in the datasets. For example, in
Fig. 7, the ground-truth moment actually shows “three” gymnasts performing jumps, while
the query sentence says “alone.” Discarding such miss-labeled samples might be necessary
for reliable evaluation.

6 Alternative evaluation metrics

Evaluation based on just a single ground-truth moment per sample can be problematic as
(1) a video can have multiple positive moments and (2) there can be miss-labeled samples.
To alleviate these problems, we present two alternative evaluation metrics that can exploit
multiple annotated moments as references.

The first metric evaluates predicted moments with respect to the nearest-neighbor ref-
erence. This is based on the fact that a video may have multiple positive moments for a
single query sentence. When a predicted moment is close to at least one reference moment,
the moment is counted as positive. Specifically, a moment is counted as positive when the
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Dataset GT
Action-Aware

Blind 2D-TAN SCDM Human

Charades-STA NN 36.50 51.70 59.48 83.3 (0.96)
Rep. 18.70 24.90 34.50 66.8 (1.16)

ActivityNet Captions NN 33.51 60.24 50.40 72.4 (1.07)
Rep. 15.97 36.55 31.17 52.3 (1.00)

Table 2: R@1(IoU > 0.5) with respect to the nearest neighbor reference (NN) and represen-
tative (Rep.) references . The values in parentheses are the standard deviations.

largest IoU among all reference moments exceed m.
The second metric considers the reliability of human annotations. When a reference mo-

ment largely overlaps with the majority of other reference moments, the reference moment is
more reliable. On the other hand, a reference moment that is different from others is possibly
miss-labeled. Based on this assumption, we select the reference moment that has the largest
average IoU to other moments, as representative reference.

R@1(IoU > 0.5) scores with the nearest neighbor and representative references are
shown in Table 2. We evaluated Action-Aware Blind, 2D-TAN, SCDM, and Human an-
notations described in Sec. 5. GT represents ground truth references, either nearest neighbor
(NN) or representative (Rep). To evaluate human performance, we randomly select one
annotation for each sample. Note that when computing the score for human with the repre-
sentative reference, we exclude the annotation used as representative and compute the score
based on randomly selected one out of the remaining 4 annotations. The score is computed
over the entire test set for 100 times, and their average and standard deviation are reported.
The overall tendency of the performance remians the same for Action-Aware Blind, 2D-
TAN, and SCDM with our metrics, but human annotators clearly outperform others.

7 Conclusion

Recent works have boosted the evaluation scores on the query-based moment retrieval bench-
marks. However, it has not been assessed if these developments reflect the true progress in
the task. Our experiments revealed that the high evaluation score per se is not necessarily
be the indisputable evidence that the model actually works well in practice. The datasets
provided in major benchmarks include latent biases, and deep models are really good at
making use of them. The evaluation metric, which has been extensively used in the litera-
ture, is not necessarily reliable, and we proposed alternatives, demonstrating better human
performances.

Our results suggest that there are two directions for improvement. One is to make better
datasets by collecting diverse queries and finding samples where annotators agree on tempo-
ral locations. Another direction is data augmentation to diminish the effects of biases. For
example, we may truncate or concatenate input videos to diversify temporal locations.
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