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Abstract

Feature representation is fundamental and attracts much attention in few-shot learn-
ing. Convolutional neural networks (CNNs) are among the best feature extractors so
far in this field, which are successfully combined with metric learning, leading to the
state-of-the-art performance. However, the subtle difference among inter-class samples
challenges existing CNN based methods, which only use real-valued CNNs that fail to
extract more detailed information. In this paper, we introduce complex metric module
(CMM) into metric learning, aiming to better measure the inter- and intra-class relations
based on both amplitude and phase information. Specifically, building upon the recent
episodic training mechanism, our CMM can enhance the representation capacity by ex-
tracting robust complex-valued features to facilitate modeling subtle relationships among
samples, which can enhance the performance of the few-shot classification task when
only few samples are available. Moreover, we introduce a new transductive method into
CMM, by considering not only query and support but also query and query relationships
to predict classes of unlabeled samples. Experiments on two benchmark datasets show
that the proposed CMM significantly improves the performance over other approaches
and achieves the state-of-the-art results.

1 Introduction
Great progress has been made in visiual understanding tasks [7, 11, 19, 22, 25], due to
the development of deep learning models and large amounts of labeled data. However, in
some scenarios the performance of deep learning are significantly deteriorated due to limited
numbers of labeled data. In contrast, human babies can recognize new classes with a few
of labeled examples or even some samples of different but similar classes [13]. Few-shot
learning aims to solve this problem, which can be combined with deep learning to better
recognize unlabeled samples with few labeled instances. A variety of few-shot learning
methods have been proposed, which can be roughly divided into three types, i.e., meta-
learning, metric learning and data augmentation. The meta-learning methods optimize the
(hyper) parameters of neural networks so that the models can easily and efficiently adapt to
a new task [5, 6]. Data augmentation is widely used to generate more samples from a small
number of available instances [14, 27]. With more training samples, data augmentation can
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Figure 1: Illustration of the motivation for complex-valued networks. S means support samples and Q
means query samples. Large geometry represents real features and small geometry represents extracted
features. (a) A real-valued feature extractor extracting only amplitude features cannot find the differ-
ence between squares and parallelograms and make a wrong prediction of the unlabeled sample. (b) A
complex-valued feature extractor which extracts phase features can recognize the difference between
squares and parallelograms and correctly predict the class of the unlabeled sample.

significantly alleviate the overfitting problem. Among the three types, metric learning is
more promising for the few-shot classification problem. It learns a mapping from images
to an embedding space, where samples from the same class become closer [20, 21, 24]. To
make full use of limited data, the line of metic learning methods [20, 21, 24] mainly focuses
on learning accurate relationships among samples using different metrics. The drawbacks of
existing methods come from the fact that they pay less attention on feature extraction, which
is actually a deterministic element for the final performance [22], only based on conventional
real-valued convolution neural network (CNNs) for feature representation.

On the contrary, complex-valued neural networks recently receive increasing attention
[23, 28], due to their potential to enable easier optimization [16], better generalization [8] and
fast learning [1]. They are proved to have a richer representational capacity than real-valued
models. These models can extract complex-valued features which consist of both amplitude
and phase messages. The phase component is important not only from a biological point
of view but also from a signal processing perspective. It has been shown that the amount
of information present in the phase of an image is sufficient to recover the majority of the
information encoded in its magnitude[26]. In fact, phase provides a detailed description of
objects as it encodes shapes, edges, and orientations [23].

In this paper, unlike conventional few-shot learning methods based on real-valued fea-
tures, we introduce complex-valued CNNs to enhance the capacity of feature representation
with richer amplitude and phase information. Also, we propose a unique metric learning
method, which can measure embedding distances among samples with amplitude and phase
information. By using the distance metric, we utilize the entire query set for transductive
inference to deal with the few-shot problem. Specifically, we develop a novel Complex Met-
ric Module (CMM) for few-shot learning by combining deep complex-valued CNNs and
complex-value distance metric in the same framework. Firstly, we map the input images to
an embedding space using this complex-valued CNNs. Then, we measure sample relations
using the complex-valued metric and embedding. With a method of transductive inference,
we compute the cross-entropy loss using support-query and query-query scores. Finally, we
follow the recent episodic training mechanism, and all parameters can be end-to-end up-
dated during back propagation. We illustrate our idea in Fig. 1, which shows that with the
phase information, our complex-valued model can correctly find the difference between el-
lipses and circles, and also squares and parallelograms, therefore facilitating the prediction
of unlabeled samples. The main contributions of our work are as follows:

• We are the first to use complex-valued deep neural networks in few-shot learning, to
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the best of our knowledge, which allows the model to gain a richer representational
capacity.

• A new distance metric in the embedding space is proposed based on the complex-
valued features, which significantly improve the performance of real-valued models
with the same degree of freedom.

• Experiments on two open datasets miniImageNet and tieredImageNet show that the
proposed CMM makes a large improvement in 1-shot and 5-shot accuracy over the
state-of-the-art results.

2 Related Work
Few-Shot Learning. The concept of few-shot learning was first introduced by Fei Fei Li
and Rob Fergus [13], which can learn much information from just one or a few images. In
recent years, there is a growing interest in few-shot learning and a large amount of related
work appears. Brenden M Lake et al. [12] proposed a hierarchical Bayesian model that
can achieve human-level accuracy on alphabet recogition tasks with the setting of few-shot
learning. Gregory Koch et al. [10] first introduced the Siamese network which computes the
pair-wise distance between samples to classify unlabeled samples by the k-nearest neighbors
algorithm for few-shot learning. Jake Snell et al. [20] built a prototype representation of
each class which is the mean of sample embedding features of this class. Flood Sung et al.
[21] considered that the measurement method is also a very important part of the network,
which needs to be modeled, and so trained a relation network (RelationNet) (such as CNN)
to learn the measurement method of distance. Lately, meta-learning based approaches rose.
Sachin Ravi and Hugo Larochelle [17] designed a model updating the weights of a classifier
by an LSTM. Chelsea Finn et al. [4] proposed a model agnostic meta-learning (MAML)
algorithm to find parameters that are sensitive to changes in the task with a small number of
samples. Another line for few-shot learning directly solves the over-fitting problem by data
augmentation.

Complex-valued Neural Networks. Using complex parameters has many advantages
from computational and biological perspectives[23, 28]. In terms of computation, Ivo Dani-
helka et al. [2] showed that holographic reduced representations store more informance with
complex-valued parameters, and so as to efficient and stable retrieval from an associative
memory. Unitary-RNN [1] learns a unitary weight matrix, which are a complex generaliza-
tion of orthogonal weight matrices with eigenvalues of absolute value exactly 1. Compared
with other orthogonal counterparts, Unitary-RNN [1] can be easier optimized, provide a
richer representation and show the potential in hard tasks involving long-term dependen-
cies. Using complex weights in neural networks is also biologically meaningful [18] where
a neural network formulation based on complex-valued neuronal units is introduced. These
units are attributed with not only a fire rate but also a phase, which can be used to bulid
richer and versatile networks. The complex-valued formula allow one to express the output
of neurons according to their firing rate and relative time of activity. The amplitude of a
complex neuron represents the former, and its phase represents the latter. Moreover, input
neurons with similar phases are view as synchronous since they add constructively, while
asynchronous neurons increase destructively. Also, David P Reichert and Thomas Serrec
[18] showed that this flexible machanism of neuronal synchrony fulfills multiple functional
roles in deep networks.

Metric Learning. Metric learning [3] is one of the most effective categories of few-shot
learning approaches which first learns a representation of a sample or class (it depends on
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Figure 2: The overall framework of our model in which amplitude and phase information are learned
by a sample-wise parameter. It is composed of four components: complex-valued feature repretation,
complex-valued metric, transductive inference and loss generation.

whether inter-class information is considered) and then calculates relation scores between
query samples and support samples using a metric method. Siamese network [10] trained the
network to learn to extract feature embeddings in a supervised way. By calculating the dis-
tances of sample pairs, it estimates whether they belong to the same class and generates cor-
responding probability distributions. Matching network [24] constructed different encoders
for the support set and the query set, and the output of the final classifier is a weighted sum of
the predicted relation values of the support and query samples. Prototype network [20] was
based on the idea that there is a prototype representation for each class, and the prototype
of the class is the mean of the support set in the embedding space. Then, the classification
problem becomes finding the nearest neighbor in the embedding space. Flood Sung et al.
[21] believed that the metric is a very important part of the model and a single fixed distance
metric may not be optimal, so they trained a network to learn a better distance metric.

3 Our Approach
The proposed method is illustrated in Fig. 2, which utilizes both amplitude and phase infor-
mation of complex-valued CNNs to improve the performance for the few-shot classification
problem.

3.1 Problem Definition
Typically, for few-shot classification tasks, there are two datasets: training set Dtrain and test
set Dtest , which do not share the same categories. Generally speaking, Dtrain contains many
classes, each of which has multiple samples. In the training stage, we randomly select C
categories in Dtrain, K samples of each category as the labeled data which form the support
set (SS), and then select Q samples from the remaining data of these C categories as unlabeled
data which form the query set (SQ). The model is required to learn how to distinguish these
C ∗Q samples in the C categories. Such a task is called the C-way K-shot problem. In each
task, the selected data are (SS,yS,SQ,yQ) = (I1,I2, ...,IC∗(K+Q);y1,y2, ...,yC∗(K+Q)), where
Ii and yi denote an image and its label respectively. In the training process, each episode[24]
samples different meta-tasks including different combinations of classes. This mechanism
enables the model to learn the common knowledge of different meta-tasks, such as how to
extract important features and compare samples, and forget the task-related parts of meta-
tasks. Through this learning mechanism, samples can be classified well for new meta-tasks.
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Figure 3: The detailed architecture of CMM. (a) The detailed architecture of a complex-valued convo-
lutional block. (b) The detailed architecture of the feature extractor fθ . (c) The detailed architecture of
the network gφ

3.2 Complex Metric Module
The proposed Complex Metric Moudule (CMM) consists of two components: feature em-
bedding with a complex-valued convolution neural network and a complex metric unit that
can measure relationships between samples.

Complex-valued Feature Representation. To make full use of limited samples, we em-
ploy complex convolutions and other corresponding components including complex batch-
normalization, complex pooling and complex Relu strategies [23] for complex-valued CNNs.
The rule is different from traditional CNNs. Assuming there is an input I = X +Yi, and a
complex filter matrix W = A+ iB, where X is an image matrix, Y is initialized to 0, and
A and B are real matrices since we simulate complex arithmetic using real-valued entities.
Specially, the rule of complex convolution is[

R(I ∗W)
I(I ∗W)

]
=

[
A −B
B A

]
∗
[

X
Y

]
. (1)

Complex Relu (CRelu) and complex Pooling (CPooling) both act on the real and the imagi-
nary parts of a neuron separately

CRelu(z) = Relu(R(z))+iRelu(I(z)), (2)
CPooling(z) = Pooling(R(z))+iPooling(I(z)). (3)

We standardize the complex data to the standard normal complex distribution by scaling
the data with the square root of their variances. Specially, we multiply the 0-centered data
(x−E[x]) by the inverse square root of the 2×2 covariance matrix V as

x̂ = (V )−
1
2 (x−E[x]), (4)

Similar to the real-valued batch normalization algorithm, two parameters, β and γ are
used in complex-valued batch normalization. The complex batch normalization is defined as

CBN(x̂) = γ x̂+β . (5)

The chain rule for complex-valued neural networks is also used in the back propagation
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process. Let L be a real-valued loss function and z be a complex variable such that z = a+ ib
where a,b ∈ RD. Then

∇L(z) =
∂L
∂ z

=
∂L
∂a

+ i
∂L
∂b

=
∂L

∂R(z)
+

∂L
∂I(z)

=R(∇L(z))+ iI(∇L(z)). (6)

To make a fair comparison in the experiments, the feature extractor fθ follows the same
architecture as in the latest works [4, 20], which consists of four convolutional blocks (see
Fig. 3). Each block begins with a 2D complex-valued convolutional layer with a 3 × 3
kernel and 64 filters, and also includes a complex batch-normalization layer, a complex Relu
nonlinearity, and a 2 × 2 average-pooling layer.

Complex-valued Metric. Different from other methods for few-shot learning, the ex-
tracted complex-valued features xi = fθ (Ii) = R(xi)+ iI(xi), R(xi),I(xi) ∈ RD, in CMM
have both amplitude and phase information, where D is the number of feature dimensions.
We design a unique metric learning method to measure relationships between samples. Our
complex metric module contains two parts: complex-valued parameter generation and sam-
ple relation metric.

To use the amplitude and phase information in the feature embedding, we choose a com-
monly used Gaussian similarity function based on a learnable complex-valued network gφ

to produce a sample-wise length-scale parameter σi,
σi = gφ ( fθ (Ii)) = gφ (R(xi)+ iI(xi)), (7)

where σi = R(σi)+ iI(σi) and σi is generated by the amplitude and phase information of
feature embedding. The detailed architecture is illustrated in Fig. 3. Then, our relationship
matrix is defined below.

Ai, j = exp(−1
2

d(M(
xi

σi
),M(

x j

σ j
))), (8)

where d denotes the distance function, andM means the L2 norm. We can also use the real
and imaginary parts of xi and σi to define the operation

xi

σi
=

R(xi)+ iI(xi)

R(σi)+ iI(σi)
=

R(xi)R(σi)+I(xi)I(σi)+ i(R(σi)I(xi)−R(xi)I(σi))

R2(σi)+I2(σi)
. (9)

Then, we normalize A and the overall sample relationship is defined as follows

R = D−1/2
A AD−1/2

A , (10)
where DA is the diagonal matrices with the (i, i)-value to be the sum of the i-th row of A.
We test our method based on the transductive inference [14]. A,R ∈ R(C×(K+Q))×(C×(K+Q))

denote all support and query samples. We only keep the k-max values in each row of R to
reduce the noise. We empirically set k = K +Q+C that guarantees that the model can learn
label information of K support samples and Q query samples of the same class.

3.3 Transductive Method
In the tranductive inference process, we learn query sample labels from support sample la-
bels. Different from the transductive inference of [14], we learn the labels with both support
and query samples. In this way, we can learn more accurate inter- and intra-class relation-
ships. Let R∈R(C×(K+Q))×(C×(K+Q)) denote the learned relation matrix whose (i, j)-value is
the relationship between the ith sample and the jth sample. Define an initial relation matrix
I as

Ii, j =

 I(yi == y j), if xi,x j ∈ SS,
1/C, if xi,x j ∈ SQ,
0, otherwise,

(11)
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where I is the indicator function. Staring from the initial matrix I defined in (11), we itera-
tively learn the query samples labels from the union set SS∪SQ

Yt+1 = (1−α)RYt +αI, (12)
where Yt denotes the predicted labels at t, R denotes the normalized relation matrix, and α

controls the amount of the learned information. Also, it is well known that the sequence {Yt}
has a closed-form solution as

Y ∗ = (I−αR)−1I, (13)

where Y ∗ denotes the last predicted relationship between samples.
3.4 Label Prediction and Loss Generation
After computing the last learned relation matrix Y ∗, we can directly convert the relation
matrix Y ∗ to label scores using softmax as

PQS(ỹi = j|Ii) =
exp(∑K

z=1 Y ∗i,z+K( j−1))

∑
C
l=1 exp(∑K

z=1 Y ∗i,z+K(l−1))
, (14)

where ỹi denotes the final predicted label for the ith sample of the query set. And then we
compute classification loss between the predictions of the query set and the ground-truth
labels of the union of the support and query sets to end-to-end update all parameters. Firstly,
we split the classification loss into two parts as query-support (QS) and query-query (QQ)
classification losses. Experiments in Section 4 show that considering the relation among
query samples can make the model learn a better relationship and have a better performance.
The QS classification loss is defined as

LQS =
C(K+Q)

∑
i=CK+1

C

∑
j=1
−I(yi == j)log(PQS(ỹi = j|Ii)), (15)

where yi is the ground-truth label of Ii. Similar to the QS classification loss, the QQ loss is
defined as

PQQ(ỹi= j|Ii)=
exp(∑Q

z=1 Y ∗i,NK+z+Q( j−1))

∑
C
l=1 exp(∑Q

z=1 Y ∗i,NK+z+Q(l−1))
, (16)

LQQ =
C(K+Q)

∑
i=CK+1

C

∑
j=1
−I(yi == j)log(PQQ(ỹi = j|Ii)). (17)

Then, the overall loss is the sum of the QS and the QQ losses:
L= LQS +LQQ. (18)

Note that PQQ is only used in the training process to make the model learn a more better
inter- and intra-class relationship, and PQS is used both in the test and training process.

4 Experiments
We evaluate and compare our proposed CMM with other state-of-the-art approaches on two
datasets, miniImageNet and tieredImageNet.
4.1 Datasets
MiniImageNet. The miniImageNet [11], a subset of ImageNet, has 100 classes selected
randomly from ImageNet and each class has 600 images. Following the split proposed by
[17], the dataset is divided into training, validation, and test sets, with 64, 16, and 20 classes
respectively.
TieredImageNet. The tieredImageNet [11] dataset is a larger subset of ImageNet with 608
classes. Different from miniImageNet, it has a hierarchical structure of broader categories of

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Ravi and Larochelle} 2017

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012



8 LIU, ZHANG, GUO: COMPLEX-VALUED FEW-SHOT LEARNING
Table 1: Few-shot classification accuracies on miniImageNet and tieredImageNet. Each result is the
average of 600 test episodes.

mini 5-way mini 10-way tiered 5-way tiered 10-way
Model Trans. 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
MAML [4] B 48.70 63.11 31.27 46.92 51.67 70.30 34.44 53.32
MAML+Trans. [4] Y 50.83 66.19 31.83 48.23 53.23 70.83 34.78 54.67
Prototypical Net [20] N 46.14 65.77 32.88 49.29 48.58 69.57 37.35 57.83
Maching Net [24] N 43.56 55.31 - - 54.02 70.11 - -
Relation Net [21] B 51.38 67.07 34.86 47.94 54.48 71.31 36.32 58.05
Reptile [15] N 47.07 62.74 31.10 44.66 48.97 66.47 33.67 48.04
Reptile+BN [15] B 49.97 65.99 32.00 47.60 52.36 71.03 35.32 51.98
TPN [14] Y 53.75 69.43 36.63 52.32 57.53 72.85 40.93 59.17
Our CMM (QS) Y 56.21 70.53 37.68 55.39 57.12 72.74 43.30 61.71
Our CMM (QS+QQ) Y 56.26 70.98 38.82 55.56 58.12 73.46 43.46 61.85

high-level nodes in ImageNet. This set of nodes is partitioned into 20, 6, and 8 disjoint sets
of training, validation, and testing nodes, and the corresponding classes form the respective
meta-sets. Therefore, the training classes have distinct semantical samples from the test
classes, which makes it a more challenging and realistic task for few-shot learning.
4.2 Experimental Setting
Following the recent work, we use the same episodic training procedure[24] to update our
model parameters. To be specific, during the training process, we randomly select C classes
in Dtrain and K samples in each class as the support data, and then select 15 samples from
the remaining data of these C classes as the query data. In all experiments, we set α to 0.01
and we take Adam[9] as the optimizer with an initial learning rate of 10−3 which is halved
for every 25,000 episodes on both miniImageNet and tieredImageNet. All experiments are
done without data augmentation.
4.3 Few-Shot Learning Results
We compare our model with several state-of-the-art approaches in various settings. As
the proposed CMM belongs to the metric learning type, we mainly compare our model
with other state-of-the-art metric learning models including Matching Nets[24], Prototyp-
ical Nets[20], Relation Nets[21], and Reptile[15]. Moreover, we also choose TPN[14] and
use the simple transductive method named MAML+Transduction designed by [14], both of
which explicitly utilize the query set. Experimental results including the combinations of 5
and 10 ways and 1 and 5 shots are shown in Tab. 1, each accuracy is the average of 600
randomly generated episodes from the test set Dtest and top results are highlighted. All the
methods are divided into three groups with three different inference methods; "N" means
inference methods without transduction, "Y" means transductive inference methods where
all query samples are simultaneously predicted, and "BN" means query batch statistics are
used to share informance among test samples.

The experiments show that the proposed CMM achieves state-of-the-art results and out-
performs all the others with a large margin. Especially in the scenario of 5-way 1-shot on
miniImageNet, our model can achieve a high accuracy of 56.26% with a significant improve-
ment 2.51% over the best compaired method TPN. Even in a more realistic scenario of 10
ways, the absolute improvements by CMM can also achieve 2.19% and 2.53% for 1-shot and
3.24% and 2.68% for 5-shot on miniImageNet and tieredImageNet respectively.

Another observation is that LQQ can slightly improve the accuracy of our model. In the
process of transductive inference, the loss of CMM consists of two parts, LQS and LQQ. The
first part can make our model learn relationships between support and query samples and
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predict the labels of query samples in the test. The second part aims to make our model learn
better relationships among query samples which can improve the performance of transduc-
tive inference. Obviously, with more accuracy relationships among samples, our model can
have a better performance.

Table 2: Few-shot classification accuracies on miniImageNet with different metric methods. Each
result is the average of 600 test episodes. RI measures sample distances using the real and imaginary
parts of features. AP measures sample distances using the amplitude part of features.

5-way Acc 10-way Acc
Methods 1-shot 5-shot 1-shot 5-shot
TPN-64 53.75 69.43 36.62 52.32
TPN-128 54.75 69.79 37.08 53.53
RI 54.99 70.02 37.03 54.43
AP 56.26 70.98 38.82 55.56

4.4 Ablation Experiments
To validate the effects of the proposed complex metric unit named AP , we design a com-
monly used metric method named RI which measures the real and imaginary parts of
sample features separately. Specially, our complex metric unit firstly generate a sample-
wise complex-valued parameter which learn from amplitude and phase information of the
feature embedding and measure amplitude distance between samples with the feature em-
bedding and the complex-valued parameter. Different from the complex metric unit AP ,
RI measures the Gaussian distance of the real and imaginary parts between samples, and
then directly sum them up. This method is commonly used to measure sample distances in
[14, 21, 24]. Also, to eliminate the influence of the number of parameters, we design a TPN-
128 that has the same number of parameters as CMM and more filters. The experimental
results are shown in Tab. 2, which show that the proposed complex metric unit AP has a
better performance than commonly used metric methods. Even with the same number of
parameters and fewer filters, CMM still has a higher classification accuracy than TPN.

5 Conclutions
In this work, we have introduced a complex setting for few-shot learning. Our proposed
approach, namely Complex Metric Module (CMM), firstly adopts a complex-valued neu-
ral network to learn both the amplitude and phase information of samples. Specially, our
approach is composed of four parts: complex feature extractor, complex metric unit, trans-
ductive inference, and label prediction and loss generation. The complex feature extractor
and the complex metric unit are the key components of CMM that extracts and measures
the amplitude and phase features, and consequently results in a more accuracy metric. In
the transductive inference, we explicitly consider the relationship among query samples,
which slightly improves the performance of our model. The proposed CMM can achieve
state-of-the-art results on miniImageNet and tieredImageNet. Also, we have shown ablation
experiments to verify the effectiveness of our metric method and transductive inference.
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