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Abstract

Obtaining object response maps is one important step to achieve weakly-supervised
semantic segmentation using image-level labels. However, existing methods rely on the
classification task, which could result in a response map only attending on discriminative
object regions as the network does not need to see the entire object for optimizing the
classification loss. To tackle this issue, we propose a principled and end-to-end train-
able framework to allow the network paying attention to other parts of the object, while
producing a more complete and uniform response map. Specifically, we introduce the
mixup data augmentation scheme into the classification network and design two uncer-
tainty regularization terms to better interact with the mixup strategy. In experiments,
we conduct extensive analysis to demonstrate the proposed method and show favorable
performance against state-of-the-art approaches.

1 Introduction
Semantic segmentation is one of the fundamental tasks in computer vision, with a wide
range of applications such as image editing and scene understanding. In order to obtain reli-
able models and achieve promising performance, recently deep neural network (DNN) based
methods [6, 19, 47] are learned from fully-supervised data that requires pixel-wise seman-
tic annotations. However, acquiring such pixel-wise annotations is usually time-consuming
and labor-intensive, which limits the application potentials in the real world. As a result,
numerous approaches tackle this issue via training models only on weakly-annotated data,
e.g., image-level [1, 4, 26, 33, 35], bounding box [9, 24, 32], point-level [2], scribble-based
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[31, 42], or video-level [7, 40, 52] labels. In this paper, we focus on utilizing the image-
level label, which is the most efficient scheme for weak annotations but also a challenging
scenario.

Existing weakly-supervised semantic segmentation (WSSS) algorithms mainly operate
with three steps: 1) localizing objects via a categorical response map, 2) refining the response
map to generate pseudo annotations, and 3) training the semantic segmentation network us-
ing pseudo ground truths. Recent methods [1, 21, 43, 45] have achieved significant progress
for WSSS, but most of them focus on improving the latter two steps. Since the success of
these sequential steps hinges on the quality of the initial response map generated in the first
step, in this paper we present an effective solution to localize objects.

One common practice to produce the initial response map is using class activation map
(CAM) [53]. However, since CAM is typically supervised by a classification loss that could
be sufficiently optimized through seeing only a small portion of objects, the generated re-
sponse map usually only attends on partial regions (see Figure 1(a)). To tackle this issue,
recent methods [23, 28] make efforts to improve the response map via using the dropout strat-
egy that increases the model uncertainty or aggregating maps produced at different stages to
see more object parts. However, there remains a challenge whether there are better loss func-
tion designed to explicitly facilitate the model training and produce better response maps,
which are not addressed in prior works.

In this paper, we propose a principled and end-to-end trainable network with loss func-
tions designed to systematically control the generation of the response map. First, inspired
by the mixup data augmentation in [50], we observe that including mixup could effectively
calibrate the model uncertainty on overconfident predictions [39] and in return enables the
model to attend to more object regions. However, it is challenging to control the mixup aug-
mentation process and the model uncertainty, due to non-uniform response distributions (see
Figure 1(b)), which may affect subsequent response refinement steps. Therefore, we intro-
duce another two loss terms to the mixup process by regularizing the class-wise uncertainty
and the spatial response distribution. We refer to our model as Mixup-CAM and show that
the produced response map is more complete and balanced across object regions (see Figure
1(c)), which facilitates the latter response refinement and segmentation model training steps.

We conduct quantitative and qualitative experiments to demonstrate the effectiveness of
the proposed Mixup-CAM method on the PASCAL VOC 2012 dataset [11]. To the best
of our knowledge, our algorithm is the first to demonstrate that mixup could improve the
WSSS task on complicated multi-labeled images, along with other designed loss functions
to produce better response maps. In addition, we present the ablation study and more analysis
to validate the importance of each designed loss. Finally, we show that our method achieves
state-of-the-art semantic segmentation performance against existing approaches.

2 Related Work
Initial Prediction for WSSS. Initial cues are essential for segmentation tasks since they
provide reliable priors to generate segmentation maps. The class activation map (CAM)
[53] is a common practice for localizing objects. It highlights class-specific regions that
are served as the initial cues. However, since the CAM model is trained by a classification
network, it tends to attend to small discriminative parts of the object, leading to incomplete
initial masks. Several methods have been developed to alleviate this problem. Approaches
like [29, 37, 44, 51] deliberately hide or erase the regions of an object, forcing the model
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Figure 1: Comparisons of (a) the original CAM method; (b) CAM + the mixup data augmen-
tation; and (c) the proposed Mixup-CAM framework that integrates the mixup scheme and
the uncertainty regularization. Compared to (a) and (b), our final response map (c) attends
to other object parts with more uniformly distributed response.

to look for more diverse parts. However, such strategies require iterative model training
and response aggregation steps. After gradual expansion of the attention regions, non-object
regions are prone to be activated, which leads to inaccurate attention maps. Other algorithms
[20, 49] use both object and background cues to prevent the attention map from including
more background regions, yet pixel-level saliency labels are used.

Instead of using the erasing scheme, recently the FickleNet approach [28] introduces the
stochastic feature selection to obtain a diverse combination of locations on feature maps.
Moreover, the OAA method [23] adopts an online attention accumulation strategy to collect
various object parts discovered at different training stages. By aggregating the attention
maps, it could obtain an initial cue that contains a larger region of the object. Unlike methods
that mitigate the problem by discovering complementary regions via iterative erasing steps
or consolidating attention maps, our proposed approach aims at harnessing the uncertainty in
end-to-end classification learning. In addition, by regularizing both class-wise uncertainties
and spatial response distributions, our approach averts the attention from focusing on small
parts of the semantic objects, hence producing much improved response maps.

Response Refinement for WSSS. Various approaches [1, 12, 13, 21, 26, 43, 45] are pro-
posed to refine the initial cue by expanding the region of attention maps. Other methods
[1, 12, 13] are developed using affinity learning. The recent SSDD scheme [36] proposes a
difference detection module to estimate and reduce the gap between the initial mask and final
segmentation results in a self-supervised manner. However, the performance of these meth-
ods is limited as initial seeds are still obtained from CAM-like methods. If these seeds only
come from the discriminative parts of the object, it is difficult to expand regions into non-
discriminative parts. Moreover, the initial prediction may produce wrong attention regions,
which would lead to even more inaccurate regions in subsequent refinement steps.

Label-preserving vs. Non-preserving Augmentations. Data augmentation is a common
regularization technique in both supervised and unsupervised learning [8, 18, 30]. Conven-
tional data augmentation techniques such as scaling, rotation, cropping, color augmentation,
and Gaussian noise can change the pixel values of an image without altering its labels. These
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Figure 2: Overview of Mixup-CAM. We perform mixup data augmentation on input images
with their corresponding labels via (2) and pass the mixed image through the feature extrac-
tor E and the classifier G to obtain the probability score Pc for each category c. For loss
functions, in addition to the classification loss Lcls on mixup samples, we design two terms
to regularize class-wise entropy (Lent via (3)) and spatial distribution on CAM (Lcon via (4)).

label-preserving transformations are commonly applied in training deep neural networks to
improve the model generalization capabilities.

Recent work has demonstrated that even non-label-preserving data augmentation can be
surprisingly effective. Explicit label smoothing has been adopted successfully to improve the
performance of deep neural models. The Mixup method [50] is proposed to train a neural
network on a convex combination space of image pairs and their corresponding labels. It
has been proven effective for the classification task and increases the robustness of neural
networks. Numerous Mixup variants [3, 15, 38, 39, 41, 48] have been proposed to extend
mixup for better prediction of uncertainty and calibration of the DNNs. These methods
exhibit shared similarity of producing better-generalized models.

Entropy Regularization. Aside from mixup schemes for predictive uncertainty, another
common uncertainty measure is entropy, which could act as a strong regularizer in both su-
pervised and semi-supervised learning [14, 34]. In particular, [34] discourages the neural
network from being over-confident by penalizing low-entropy distributions, while [14] uti-
lizes entropy minimization in a semi-supervised setting as a training signal on unlabeled data.
In this paper, we also adopt the entropy-based loss to regularize the uncertainty, coupled with
the mixup data augmentation for producing better response maps on objects.

3 Weakly-supervised Semantic Segmentation
We first describe the overall algorithm and introduce details of the proposed Mixup-CAM
framework with loss functions designed to improve the initial response map. We then detail
how to generate the final semantic segmentation results.

3.1 Algorithm Overview
One typical way to generate response maps for annotated object categories is to use CAM
[53]. However, these response maps tend to focus on discriminative object parts, which are
less effective for the WSSS task. One reason is that CAM relies on the classification loss,
which only requires partial object regions to be activated during training. As a result, when
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the objective is already optimized with high confidence, the model may not attempt to learn
other object parts.

In this paper, we propose to integrate the idea of mixup data augmentation [50], thereby
calibrating the uncertainty in prediction [39] as well as allowing the model to attend to other
regions of the image. Although we find that adding mixup could improve the response
map, sometimes the response could diverge too much, resulting in more false-positive object
regions. To further regularize this uncertainty, we introduce two additional loss terms: the
spatial loss and the class-wise loss. We illustrate the overall model and loss designs in
Figure 2 and provide more details in the next subsection.

After receiving the initial response map, we utilize the method in [1] to expand and refine
the response. Finally, we generate pseudo ground truths from the refined response and train
a semantic segmentation network to obtain the final segmentation output. Note that while
we focus on the first step of the initial response map in this paper, the succeeding two steps
could be replaced with alternative modules or models.

3.2 Mixup-CAM

CAM Generation. We first describe the CAM method for producing the initial response
map as our baseline (see Figure 1(a)). The base network begins with a feature extractor
E, followed by a global average pooling (GAP) layer and a fully-connected layer G as the
output classifier. Next, given an input image I with its image-level labels Y , the network is
trained with a multi-label classification loss Lcls(Y,G(E(I))) following [53]. After training
this classification network, the activation map Mc for each category c is obtained by applying
the c-channel classifier weight θ c

G on the feature map f = E(I):

Mc = θ
c>
G f . (1)

Finally, the response is normalized by the maximum value of Mc.

Mixup Data Augmentation. Since the original classification network could easily obtain
high confidence, in which the generated CAM only attends to small discriminative object
parts, we utilize mixup data augmentation to calibrate the uncertainty in prediction [39].
Given an image pair {I1, I2} and its label {Y1,Y2} randomly sampled from the training set,
we augment an image I′ and its label Y ′ via:

I′ = λmixI1 +(1−λmix)I2,

Y ′ = λmixY1 +(1−λmix)Y2, (2)

where λmix is sampled from the Beta(α,α) distribution following [50]. Using this augmented
data, we feed it into the classification network to minimize the loss Lcls(Y ′,G(E(I′))) and
follow the same procedure in (1) to produce the response map (see Figure 1(b)).

Compared to the original CAM generation, our network no longer receives a pure image
but a mixed image that could have multiple objects with their weights based on λmix as in
(2). Therefore, the predictive uncertainty could be enhanced, leading to smoother output
distributions and enforcing the model to pay attention to other regions in the image in order
to satisfy the classification loss Lcls(Y ′,G(E(I′))).
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Uncertainty Regularization. Although mixup could improve the response map by look-
ing at other parts in the image, sometimes the response could become too divergent and thus
attend to pixels non-uniformly, e.g., Figure 1(b). This is attributed to the difficulty in control-
ling the quality of mixed images, especially when the model faces more complicated images
such as PASCAL VOC, e.g., an object could appear at various locations of the image with
noisy background clutters.

To further facilitate the mixup process, we propose to self-regularize the uncertainty via
class-wise loss and spatial loss terms. The first term is to directly minimize the entropy in
output prediction from the classifier to reduce uncertainty:

Lent(G(E(I′))) =− 1
HW ∑

h,w
∑
c∈C

Pc(h,w) logPc(h,w), (3)

where C is the category number and Pc ∈ RH×W is the output probability for category c.
Since our classifier G outputs multi-label probability, we concatenate the probabilities and
normalize them by the maximum value, then calculate the final P with softmax.

Although the first term has the ability to minimize the uncertainty, it does not explicitly
operate on the response map. To better balance the distribution on the response, we utilize a
concentration loss similar to [22] and apply it directly on CAM for each category (i.e., Mc),
which encourages activated pixels to be spatially close to the response center:

Lcon(M) = ∑
c∈C̄

∑
h,w
||〈h,w〉−〈µc

h ,µ
c
w〉||2 · M̂c(h,w), (4)

where µc
h = ∑h,w h · M̂c(h,w) is the center in height for category c (similarly for µc

w), M̂c

is the normalized response of Mc to represent a spatially distributed probability map. Note
that, here we only calculate the concentration loss on presented categories C̄ as provided in
the image-label Y to avoid confusing the model with invalid categories.

Overall Objective. We have described our proposed Mixup-CAM framework, including
mixup data augmentation in (2) and two regularization terms, i.e., (3) and (4). To train the
entire model in an end-to-end fashion, we perform the online mixup procedure and jointly
optimize the following loss functions:

Lall = Lcls(I′,Y ′)+λentLent(I′)+λconLcon(M). (5)

For simplicity, we omit the detailed notation inside each loss term. We also note that M is
produced online via computing (1) on valid categories in each forward iteration.

3.3 Implementation Details
Classification Network. Similar to [1], we use the ResNet-38 architecture [46] as our
classification network, which consists of 38 convolution layers with wide channels, followed
by a 3×3 convolution layer with 512 channels for better adaptation to the classification task,
a global average pooling layer, and two fully-connected layers for classification. In training,
we adopt the pre-trained model on ImageNet [10] and finetune it on the PASCAL VOC 2012
dataset. Typical label-preserving data augmentations, i.e., horizontal flip, random cropping,
random scaling, and color jittering, are utilized on the training set.
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Table 1: IoU results of CAM and its refinement on the PASCAL VOC training set.

Method CAM CAM + Refinement

AffinityNet [1] 48.0 58.1
Mixup Lcls 49.3 60.5
Mixup Lcls + Lent 49.5 61.6
Mixup Lcls + Lcon 49.9 61.7
Mixup Lcls + Lent + Lcon 50.1 61.9

We implement the proposed Mixup-CAM framework using PyTorch with a Titan X GPU
with 12 GB memory. For training the classification network, we use the Adam optimizer [25]
with initial learning rate of 1e-3 and the weight decay of 5e-4. For mixup, we use α = 0.2
in the Beta(α,α) distribution. For uncertainty regularization, we set λent as 0.02 and λcon as
2e-4. Unless specified otherwise, we use the same parameters in all the experiments. In the
experimental section, we show studies for the sensitivity of different parameters.

Semantic Segmentation Generation. Based on the response map generated by our Mixup-
CAM, we adopt the random walk approach via affinity [1] to refine the response and produce
pixel-wise pseudo ground truths for semantic segmentation. In addition, similar to existing
methods, we adopt dense conditional random fields (CRF) [27] to further refine the response
and obtain better object boundaries. Finally, we utilize the Deeplab-v2 framework [6] with
the ResNet-101 architecture [17] and train the segmentation network.

4 Experimental Results

In this section, we present our main results of the proposed Mixup-CAM method for the
WSSS task. First, we show that our approach achieves better initial response maps and
further improves the subsequent refinement step. Second, we demonstrate the importance of
each designed component. Finally, we provide evaluations on final semantic segmentation
outputs in the PASCAL VOC dataset [11] against the state-of-the-art approaches. More
results can be found in the supplementary material.

4.1 Evaluated Dataset and Metric

We conduct experiments on the PASCAL VOC 2012 semantic segmentation benchmark [11]
with 21 categories, including one background class. Following existing WSSS methods, we
use augmented 10,528 training images [16] to train our network. For evaluation of response
maps of the training set, we use the set without augmentation with 1,464 examples, fol-
lowing the setting in [1]. For final semantic segmentation results, we use 1,449 images in
the validation set to compare our results with other methods1. In all experiments, the mean
Intersection-over-Union (mIoU) ratio is used as the evaluation metric.

1Although there is a test set that can be evaluated on the official PASCAL VOC website, by the submission
deadline the website is still out of service for returning the evaluated performance.
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Figure 3: Sample results of initial responses. Our approach often produces the response map
that covers more complete region of the object (i.e., attention on the body of the animal),
while the initial cue obtained by CAM [53] is prone to focus on small discriminative parts.

Figure 4: Enhancement on refinement. Our regularization enforces a more uniform response
on objects, which can facilitate the refinement step. The examples illustrate that the IoU
difference of the resultant refined map is significantly larger than the one of initial response.

4.2 Ablation Study and Analysis

Improvement on Response Map. We first present results of the initial and refined re-
sponse maps. In Table 1, we show the performance for the original CAM used by the base-
line AffinityNet [1], our CAM using the mixup data augmentation (Mixup Lcls), and our
final Mixup-CAM with mixup and uncertainty regularization (Mixup Lcls + Lent + Lcon). In
both results of CAM and its refinement, our IoU improvements are consistent after gradually
adding the mixup augmentation and regularization. In addition, Figure 3 shows example
results of the initial response, which illustrates our Mixup-CAM is able to make the network
attend to more object parts and produce more uniform response distributions on objects.

Effectiveness of Regularization. One interesting aspect we find is that adding regulariza-
tion could enhance the effectiveness of the refinement step. In Table 1, compared to Mixup
Lcls, adding either Lent (3rd row) or Lcon (4th row) improves the CAM IoU by 0.2% and
0.6% respectively. Nevertheless, with the refinement, the corresponding improvements in
IoU is 1.1% and 1.2%, which are larger than the ones before refining the response. This is
because our regularization enforces a more uniform response on objects, which greatly facil-
itates the refinement step (e.g., via region expanding). In addition, we illustrate one example
in Figure 4, where the IoU difference of initial response is relatively small, but the resultant
refined map could differ significantly.
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Figure 5: Sensitivity analysis for parameters. (a) α for mixup augmentation; (b) λent and (c)
λcon for uncertainty regularization.

Parameter Sensitivity. In this paper, we mainly study three parameters in our Mixup-
CAM framework, i.e., α for mixup regularization and {λent ,λcon} in uncertainty regulariza-
tion. In Figure 5(a), when increasing the α value, the Beta distribution would become more
uniform, which encourages a more uniform λmix in (2) and results in mixed images that are
more challenging to optimize. Nevertheless, the IoUs of Mixup Lcls under various α are
consistently better than the CAM baseline. For regularization terms, we fix λcon = 2e− 4
and adjust λent in Figure 5(b), while fixing λent = 0.2 and change λcon in Figure 5(c). Both
figures show that these two parameters are robust to the performance under a wide range.

4.3 Semantic Segmentation Performance

After generating the pseudo ground truths using the refined response map, we use them to
train the semantic segmentation network. First, we compare our method with state-of-the-art
algorithms using the ResNet-101 architecture or other similarly powerful ones in Table 2.
Note that, while our method focuses on improving the initial responses on the object, most
methods aim to improve the refinement step or segmentation network training. In Table 3,
we further present detailed performance for each category. We show two groups of results
without (top rows) or with (bottom rows) applying CRF [27] to refine final segmentation
outputs. Compared to the recent FickleNet [28] approach that also tries to improve the initial
response map, our proposed Mixup-CAM shows favorable performance in final semantic
segmentation results.

5 Conclusions

In this paper, we propose the Mixup-CAM framework to improve the localization of object
response maps, as an initial step towards weakly-supervised semantic segmentation task us-
ing image-level labels. To this end, we propose to integrate the mixup data augmentation
strategy for calibrating the uncertainty in network prediction. Furthermore, we introduce
another two regularization terms as the interplay with the mixup scheme, thereby producing
more complete and uniform response maps. In experimental results, we provide compre-
hensive analysis of each component in the proposed method and show that our approach
achieves state-of-the-art performance against existing algorithms.
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Table 2: Comparison of WSSS methods using image-level labels on the PASCAL VOC 2012
validation set. X indicates the methods that focus on improving the initial response. The
result of † on AffinityNet is re-produced by training the same ResNet-101 as our pipeline.

Method Backbone Init. Resp. IoU on Val

MCOF CVPR’18 [43] ResNet-101 60.3
DCSP BMVC’17 [5] ResNet-101 60.8
DSRG CVPR’18 [21] ResNet-101 61.4
AffinityNet CVPR’18 [1] Wide ResNet-38 61.7
AffinityNet† CVPR’18 [1] ResNet-101 61.9
SeeNet NIPS’18 [20] ResNet-101 X 63.1
Zeng et al ICCV’19 [49] DenseNet-169 63.3
BDSSW ECCV’18 [13] ResNet-101 63.6
OAA ICCV’19 [23] ResNet-101 X 63.9
CIAN CVPR’19 [12] ResNet-101 64.1
FickleNet CVPR’19 [28] ResNet-101 X 64.9
SSDD ICCV’19 [36] Wide ResNet-38 64.9
Ours ResNet101 X 65.6

Table 3: Semantic segmentation performance on the PASCAL VOC 2012 validation set. The
bottom group contains results with CRF refinement, while the top group is without CRF. The
best three results are in red, green and blue, respectively.
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AffinityNet [1] 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 61.7
Ours (w/o CRF) 87.6 54.5 30.7 73.0 46.5 72.0 86.5 74.8 87.6 31.3 80.8 50.3 82.6 74.5 67.2 68.7 39.6 79.2 44.8 64.9 51.1 64.2

MCOF [43] 87.0 78.4 29.4 68.0 44.0 67.3 80.3 74.1 82.2 21.1 70.7 28.2 73.2 71.5 67.2 53.0 47.7 74.5 32.4 71.0 45.8 60.3
Zeng et al. [49] 90.0 77.4 37.5 80.7 61.6 67.9 81.8 69.0 83.7 13.6 79.4 23.3 78.0 75.3 71.4 68.1 35.2 78.2 32.5 75.5 48.0 63.3
FickleNet [28] 89.5 76.6 32.6 74.6 51.5 71.1 83.4 74.4 83.6 24.1 73.4 47.4 78.2 74.0 68.8 73.2 47.8 79.9 37.0 57.3 64.6 64.9
SSDD [36] 89.0 62.5 28.9 83.7 52.9 59.5 77.6 73.7 87.0 34.0 83.7 47.6 84.1 77.0 73.9 69.6 29.8 84.0 43.2 68.0 53.4 64.9
Ours (w/ CRF) 88.4 57.0 31.2 75.2 47.8 72.4 87.2 76.0 89.2 32.7 83.1 51.1 85.4 77.3 68.4 70.2 40.0 81.5 46.2 65.4 51.8 65.6
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