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Abstract

Object detection is a popular branch of research in computer vision, many state of the
art object detection algorithms have been introduced in the recent past, but how good are
those object detectors when it comes to dense object detection? In this paper we review
common and highly accurate object detection methods on the scenes where numerous
similar looking objects are placed in close proximity with each other. We also show that,
multi-task learning of gaussian maps along with classification and bounding box regres-
sion gives us a significant boost in accuracy over the baseline. We introduce Gaussian
Layer and Gaussian Decoder in the existing RetinaNet network for better accuracy in
dense scenes, with the same computational cost as the RetinaNet. We show the gain of
6% and 5% in mAP with respect to baseline RetinaNet. Our method also achieves the
state of the art accuracy on the SKU110K [10] dataset.

1 Introduction
Computer vision as a field has grown from research to more of an applied field. Many
industries are using computer vision either to enhance their existing technology or to create
an altogether new product around it. Either way, object detection algorithms play a crucial
role in almost every aspect. It has attracted much attention in the computer vision field
because of its numerous real world applications, from Self driving cars to Surveillance many
applications require an object detection algorithm. Similar to these, companies are also using
object detection in retail stores to maximize sales and store inventory management. Recent
work from Fuchs et al. [5] show the computer vision challenges in supermarket or retail
stores environment. They have also shown results from transfer learning for image-based
product classification and multi-product object detection, using multiple CNN architectures
on the images of vending machines.

Unlike popular object detection datasets such as ILSVRC [2], PASCAL VOC [13] detec-
tion challenges, MS COCO [15], and the very recent Open Images v4 [14] the retail stores
based datasets such as [10] [29] are more densely packed. The annotations for the WebMar-
ket [29], CAPG-GP [6] and Grocery Products [7] have been released by [27] for more robust
comparison of object detection algorithms on retail stores datasets. The problem while work-
ing on the densely packed datasets is that the very similar looking objects are placed in close
proximity with each other which makes it difficult for the object detection algorithms to find
the boundaries and hence result in many overlapping bounding boxes with high objectness
score.
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Object detection algorithms have evolved in many years, starting off with the two-stage
detection method RCNN [9] and its faster successors such as FastRCNN [8] and Faster-
RCNN [24] which introduced a region proposal network (RPN). This later was improved
by Mask-RCNN [12] by adding a segmentation output as a multi-task learning approach.
Evolving from two-stage to single-stage detection for better and faster results, YOLO [23],
SSD [18], and YOLO9000 [22] were introduced which removed the need of proposals from
the algorithms. Recent work from [10] shows how badly the standard object detection meth-
ods fail in the case of densely packed scenes. Research by Lin et. al [17] showed that the
foreground-background class imbalance is the reason why these state of the art detectors
performed poorly. They introduced feature pyramid network (FPN) [16] with focal loss to
handle the class imbalance and scale variance.

Contributions We extend the work of Lin et al. [17] by adding an auxiliary loss to the
existing RetinaNet architecture. We show that sharing representations between related tasks
can enable our model to generalize better on our original task. We introduce a gaussian
loss as an auxiliary branch for predicting a low resolution, per-pixel heat-map, describing
the likelihood of a object centre in each spatial location in parallel with the existing branch
for bounding box regression and object classification. We try to overcome the limitation of
detecting objects in close proximity by enforcing the network to learn less likelihood for the
pixels which are not the centers of object, hence making it easier for the anchors to learn the
boundaries. We introduce two different network architectures to emphasize the importance
of multi-task learning in object detection for densely packed scenes.

1. Gaussian Layer Network is a multi-task learning approach where we share the com-
mon backbone with the feature pyramid network to predict the set of 2d gaussian in the
image. We show that by adding a simple gaussian layer to your model as an auxiliary
task will give you an accuracy boost with no extra inference time.

2. Gaussian Decoder Network is introduced as an experiment to show that the extra aux-
iliary loss just on the encoder only can help us achieve similar accuracy reported by
[10] on SKU-110k dataset.

Both architectures show the improvement in accuracy in SKU-110K [10] and other groceries
datasets such as WebMarket [29], GroceryProducts [7], CAPG-GP [6] with the baseline.

2 Related Work
Goldman et. al [10] have recently released their SKU-110K dataset. The dataset represents
various possible dense object detection examples at different scales, angles and containing
different types of noise. Different brands and products which are often distinguishable only
by fine-grained differences are kept in close proximity with each other. It contains 8233
training images, 588 validation images and 2941 testing images containing objects of dif-
ferent aspect ratios, quality and different lighting conditions. This variety in the dataset
makes it a good benchmark to evaluate the performance of the object detection algorithm in
densely packed scenes. They have also shown the performance of state of the art object de-
tection algorithms such as Faster-RCNN [24], YOLO9000 [22] on their dataset to compare
it with their approach. They have extended their work on RetinaNet [17] by introducing an-
other head along with a classifier and the bounding box regressor and they call it a Soft-IoU
layer. They proposed that the classifier predicts the objectness score which is not sufficient in
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Figure 1: Example Prediction In SKU-110K Dataset. (Left) Detection results of Our
Method. (Right) Detection Results of baseline RetinaNet. The red bounding box is the
prediction and the blue bounding box is the groundtruth.

dense images because of the multiple overlapping bounding boxes which often reflect multi-
ple tightly packed objects. So to handle these cluttered predictions they introduce IoU score
as an additional value for every predicted bounding box with the object. In order to handle
the multiple predicted bounding box they introduce an approach that replaces Non Maximum
Suppression (NMS) with EM-Merger. This takes the predictions as a set of 2D Gaussians
and performs Gaussian Mixture Modeling whereas we try two merge this two step process
by training our model to predict the gaussian of every object as an auxillary task. This will
ultimately help to learn to give better anchors instead of relying on the naive post processing
step.

Instance Segmentation. The research community has started shifting their attention to
the more complex task of instance segmentation, while the object detection methods give
the bounding box for each object, the segmentation models give the pixel-level mask for that
object. K He et al. [12] came up with the multi-task approach of training an object detection
method along with the instance segmentation. They called their multi-task architecture as
MaskRCNN which has an additional branch for predicting segmentation masks on each Re-
gion of Interest (RoI) in a pixel-to pixel manner. This multi-task training approach proves to
be better than the normal FasterRCNN [24], hence giving the accuracy boost on both the ob-
ject detection and Instance segmentation tasks. Path Aggregation Network extends the idea
of MaskRCNN by introducing the bilinear Interpolation in their ROI Align module. Follow-
ing the idea of training object detection and segmentation, Fu et al. [4] introduce RetinaMask
which is the extended version of RetinaNet. In our approach where the objects are densely
placed together, predicting the class at every pixel makes it difficult for the network to learn
the objectness. So instead we only predict the gaussian with maxima at the centre of the
object.

Gaussian Based detection. Many problems such as Human Pose Estimation [28] [21],
Face Keypoint detection [19] etc. uses gaussian maps in their approach. Similar to ours, Baek
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et. al [1] used gaussian map prediction to localize the characters in scene text localization
tasks. The performance of their algorithm shows the effectiveness of this method. They
train a weakly supervised method to detect each individual character using a gaussian map
which they call Region score. Despite being a completely different problem it relates to
our retail based densely packed scenes. The numerous similar looking characters which are
stacked together in a word correlates with the products which are placed together on the
shelf. Inspired by his idea we add this gaussian map to our model but instead of localizing
directly through the gausian map we train a seperate branch for bounding box regression
with shared features.

3 Motivation
Many Object Detection algorithms and their variants have been proposed for detection tasks
like PASCAL [13], COCO [15], but the object detection in dense scenes is still an area
which is not much explored. Retail stores and supermarkets are the perfect case in point
for densely packed scenes. They contain similar looking products which are very large in
number and placed in close proximity with each other. Recent study by [10] has shown
that state of the art object detectors like YOLO [23], Faster-RCNN [24], fail to perform
well when it comes to dense object scenes. The performance is drastically improved by the
RetinaNet [17] architecture with focal loss because of its ability to handle positive-negative
class imbalance while training. Goldman et al. [10] introduced an EM-Merger module which
is a gaussian mixture model to merge all the predictions in a post processing step instead of
using standard Non Maximum Suppression(NMS). Our work aims to remove this two-step
process and convert it to an end to end model which learns to give precise boxes through
the supervision of gaussian. We hypothesize that instead of using a post processing method,
adding an auxiliary loss of gaussian map to the RetinaNet architecture and performing a
multi-task learning approach will directly help the anchors to learn the better boundaries of
the object and will also help the network to generalize better.

4 Baseline
We use RetinaNet [17] as our baseline as it has been proven to work better than Faster-
RCNN [24]. The reason for this is, Faster-RCNN [24] uses Region Proposal Network for
bounding box regression and classification on top of high level feature map which losses
lots of semantic information thus unable to detect small objects. RetinaNet uses Feature
Pyramid Network (FPN) that naturally leverages the pyramidal shape of a Convnet feature
hierarchy while creating a feature pyramid that has strong semantics at all scales, hence
solving the problem of detecting small objects. The class imbalance is another reason why
we use RetinaNet as our baseline. Many object detection algorithms face the problem of
huge class imbalance because of less positive anchors and very large number of negative
anchors. Similar imbalance problem was addressed by Abhinav et al.[26] while training
object detection algorithms. To overcome this problem RetinaNet [17] used FocalLoss for
classification. Focal loss is an extension of cross entropy loss that down-weights the loss
assigned to easy negatives hence preventing the easy negatives to harm the detector during
training. We determine the positive and negative anchors during training using the overlap
with ground truth boxes. The classification subnet returns the objectness probability p for
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every anchor whereas the regression subnet returns the offset x for every positive anchor.

pt =

{
p if y = 1,
1− p otherwise

Lcls(pt) = α(1− pt)γ log(pt) (1)

In FocalLoss (1), we use γ and α as mentioned in the original paper that is 2, 0.25
respectively. Unlike classification subnet that uses focal loss instead of cross entropy loss,
the bounding box subnet uses the standard Smooth L1 loss (2) that is applied on all positive
anchors.

Lreg =

{
0.5x2 if |x| < 1,
|x|−0.5 otherwise

(2)

5 Our Approach

Baek et al [1] used gaussian heatmap for predicting the character level bounding boxes for
scene text detection. The scene text detection datasets have numerous number of words and
in a word the characters are close together and almost similar looking. This trend in the
scene text dataset can be seen in our densely packed scenes. Similar to that, we can see
our objects as a 2D gaussian with its peak at the center of the object and the σx and σy
of that gaussian is defined by the width and the height of the object. Scene text datasets
don’t have character level bounding box annotation that is why they do weakly supervised
character detection whereas we have the bounding box annotation for every object so we
perform a fully supervised training by generating the gaussian heatmaps using the ground
truth bounding box. For each training image, we generate the ground truth gaussian map
using the object ground truth bounding box. The gaussian map is a set of 2d gaussians for
every object in the training image. Every 2d gaussian represents the object with the highest
probability at the center of the object. To generate the gaussian map, we first make a square
gaussian of size 120 and sigma 40. For every bounding box in the training image we find
the homography H using four point transform P, which is then applied to the gaussian G to
wrap it to the box area. We consider N ground truth bounding boxes Bi ∈ R2 and convert
them to 2D gaussians, we start with an empty image I

G = exp−4log2((x−xc)
2+(y−yc)

2)/σ2

H = {hi}N
i=1 = {P(Bi)}N

i=1

I = I+H(G)

We train RetinaNet from scratch with Resnet50 [11] as the backbone which is pretrained
on ImageNet [3]. We would like to emphasize on the point that we do multi-task learning
training with additional Mean Squared Loss(MSE) with hard example mining on the output
gaussian map I∗ added to the existing RetinaNet architecture and we call this a gaussian
loss. We create two empty masks, δn for negative sampling and δp for positive sampling,
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;

Figure 2: Left : Gaussian Decoder Network. A standard UNet Achitectecture is used with
B2, B3, B4, B5 layers as a decoder. Right : Gaussian Layer Network. Instead of adding an
additional decoder for gaussian map we add an extra layer B2 and call it as a gaussian layer.
Intrinsic details of the gaussain layer and decoder can be seen in B*.

of dimension I. δn is activated when the target is less than equal negative thresh and δp is
activated when it is greater than equal positive thresh.

Lgl =
1
n

n

∑
i=1

∑
xy
(δn||Ixy− I∗xy||2 +δp||Ixy− I∗xy||2) (3)

5.1 Gaussian Layer Network (GLN)

We propose a Gaussian Layer and Gaussian subnet in the RetinaNet architecture for gaussian
map prediction. The main idea behind the gaussian layer is to help the network correctly
predict centres of the objects which are very similar looking and are placed close to each
other. This additional task of predicting centres helps the anchors to learn better boundaries
using the combination of low resolution semantically strong features with the high resolution
semantically weak features using skip connections. Similar to the bbox subnet and class
subnet introduced in RetinaNet, we introduce gaussian subnet on top of the gaussian layer
which has sequence of convolution, batchnorm and relu blocks as shown in Figure 2.

Our Gaussian Layer Network is a multitask learning architecture with shared encoder
and decoder. We take the concatenation of low level features C2 and P3 as the input for
the gaussian layer (B2). The output features from the gaussian layer are then passed to the
gaussian subnet. The anchors from layers P3, P4, P5, P6, P7 are trained using the standard
regression and classification loss. In addition to this, a gaussian loss is applied on the output
of the gaussian subnet. We hypothesize that, gaussian loss will not only refine the anchors
from P3, P4, P5 but will also enhance the low level features C2. The final output from the
gaussian subnet is a single channel map of size (H/2, W/2) where H and W is the height and
width of the original image. The final loss is calculated as the weighted sum of classification
(1), regression (2) and gaussian loss (3).

Ltotal = λ1Lcls +λ2Lreg +λ3Lgl (4)
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5.2 Gaussian Decoder Network (GDN)

Gaussian Decoder Network is an extended version of RetinaNet similar to Gaussian Layer
Network but with the different decoder. The idea behind introducing the Gaussian Decoder
Network is to show the importance of predicting gaussian centres with just the shared en-
coder. This simple idea of training with an auxiallry task only on the encoder gives you the
similar accuracy to previous state of the art. Similar to RetinaNet we use Resnet50 [11] as
the encoder but instead of using the feature pyramid network as the decoder we propose a
separate decoder which predicts the sets of 2d gaussians of every objects in the image. The
feature pyramid network predicts the bounding box and the classes at every level. In order
to predict the gaussian center of each product in the image, the network should have an idea
of “what” and “where”, which means what are the objects which the network has to pre-
dict and where are the center of those objects. Ronneberger et. al. [25] showed that the U
shape architecture which has a contracting path mainly consists of convolutional and down-
sampling layers and the expansive path which consists of transpose-2d convolutional layers
for upsampling along with the skip connections to concatenate the features from contracting
path is a good architecture for this. The same idea is used to design the decoder of the GDN.
As shown in Figure 2, layers C2, C3, C4, C5 of the encoder Resnet50 [11] are used as skip
connections to the decoder. The layers B2, B3, B4, B5 in decoder consists of convolution,
batchnorm and relu followed by an interpolation of 2x.The interpolated output from B2 of
size H/2, W/2 is then pass to gaussain subnet for final gaussian map prediction.

6 Experiments & Results

We train one model of each proposed approach on the SKU-110K training set which has
8233 images and use the checkpoint with best performance on the validation set that has
556 image. These models trained on SKU-110K [10] dataset are tested not just on the test
set of SKU-110K but also on WebMarket [29], GroceryProducts [7], CAPG-GP [6] and
Holoselecta [5]. All the implementation is done in Pytorch [20]. We compare our method on
SKU-110K datasets with the baselines and the full approach given by Goldman et. al [10]
and we also add another baseline of MaskRCNN to compare our method with the multi-task
segmentation approach. We also compare the full approach given by Goldman et. al [10] on
other retail based datasets. We want to make clear that we used the improved weights given
by the authors which are better than the one they reported in the paper [10]. The link of those
weights can be found here.

6.1 Training

We train all our experiments by following the settings given in the original RetinaNet [17]
paper. Input images are resized by keeping minimum dimension as 800 and maximum di-
mension as 1333. All our models are trained on a single 1080ti GPU, as some of the models
take larger GPU RAM we keep the batch size as 1 for all training. To compare our models
well with the previously trained methods we keep all the hyperparameters constant as men-
tioned in the original paper. We take the anchor boxes on feature pyramid levels P3 to P7.
Every anchor box is matched with a single ground truth bounding box and all the anchors
that have intersection over union overlap greater than 0.5 are taken as positive anchors and
those with less than 0.4 are taken as negative, rest all the anchors are ignored from training.
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Method AP AP.50 AP.75 AR300 AR.50
300

Faster-RCNN [24] 0.045 - 0.010 0.066 -
YOLO9000 [22] 0.094 - 0.073 0.111 -
RetinaNet [17] 0.455 - 0.389 0.530 -
Goldman et. al [10] 0.492 - 0.556 0.554 -
Goldman et. al* 0.514 0.853 0.569 0.571 0.872
MaskRCNN [12] 0.403 0.742 0.396 0.465 0.778
Gaussian Decoder 0.512 0.878 0.552 0.582 0.917
Gaussian Layer 0.521 0.891 0.562 0.596 0.931

Table 1: Performance of our approach on SKU-110K dataset. We compare our model also
with the baselines provided by [10]. * denotes results obtained using the improved model
given by the authors at URL

Method FPS DPS
Faster-RCNN [24] 2.37 93
YOLO9000 [22] 5 317
RetinaNet [17] 0.5 162
Goldman et. al [10] 0.23 73
Gaussian Decoder 0.5 162
Gaussian Layer 0.5 162

Table 2: Detection run-time comparison on SKU-110k

We then train our network with Focal Loss for classification, regression for bounding box
and L2 Norm with hard example mining for gaussian maps till the best validation loss is
not achieved. We have also shown MaskRCNN [12] as our one of the baselines, we have
used the implementation provided by Pytorch [20] with Resnet 50 as the backbone which is
common for all the networks we have trained as well the current state of the art model on
SKU-110K [10] dataset.

6.2 Evaluation
We evaluate all methods using the COCO [15] object detection metric. In Table 1 and Table 3
we report the average precision (AP) at IoU=0.50:.05:0.95, AP at IoU=0.5, AP at IoU=0.75,
average recall (AR300) at IoU=0.50:.05:0.95, AR300 at IoU=0.5. The average recall is cal-
culated on top 300 predictions of the model. The evaluation on inference time can be seen
in Table 2. We report frames per second (FPS) and detections per second (DPS). Both our
methods, Gaussian decoder and Gaussian Layer network uses an auxiliary task for training
purpose only. During test time the auxilary weights are removed and the gaussian map is not
predicted. Hence, the inference time is same as Retinanet.

6.3 Comparison on SKU-110K
SKU-110K test set comprises of 2941 images with total 432,312 ground truth bounding
boxes which makes it approximately 146 objects per image, similar statistics belong to the
training set. We compare our models with baselines provided by [10]. We also add MaskR-
CNN as another baseline to the list for future work comparisons. As shown in Table 1,
Gaussian Decoder and Gaussian Layer Network outperforms the baseline RetinaNet with
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Dataset Method AP AP.50 AP.75 AR300 AR.50
300

WebMarket[29] Goldman et. al* 0.383 0.773 0.332 0.491 0.855
Gaussian Decoder 0.397 0.798 0.340 0.547 0.946
Gaussian Layer 0.403 0.813 0.340 0.551 0.954

Holoselecta[5] Goldman et. al* 0.454 0.835 0.447 0.581 0.955
Gaussian Decoder 0.368 0.717 0.316 0.497 0.842
Gaussian Layer 0.384 0.705 0.368 0.524 0.843

GP[7] Goldman et. al* 0.259 0.520 0.241 0.403 0.716
Gaussian Decoder 0.494 0.846 0.539 0.623 0.967
Gaussian Layer 0.506 0.862 0.548 0.634 0.975

CAPG-GP[6] Goldman et. al* 0.431 0.684 0.519 0.481 0.721
Gaussian Decoder 0.482 0.782 0.573 0.542 0.819
Gaussian Layer 0.510 0.777 0.616 0.572 0.816

Table 3: Performance of our approach across different general product datasets. * denotes
results obtained using the trained model given at URL as is.

approximately 5% and 6% respectively. This accuracy gain on the baseline validates our
hypothesis of performing multitask learning with gaussian maps.We also show the improve-
ment in accuracy in comparison with the previous state of the art method. We want to make
it clear that our final accuracy is better than the numbers reported in the paper by 3% and
also than the weights given by the author in his github repository by 0.8%.

6.4 Comparision on Other Datasets

We also compare our trained model on different datasets [29] [7] [6] [5], unlike SKU-110k
these datasets are not that dense, the number of ground truth bounding box per image are
37, 13, 20 and 34 respectively. We want to clarify that we have not fine tuned our model
on any of these datasets and while training there were no augmentations with respect to
different scale and size. [27] has given a detailed analysis on these datasets with the general
object annotations which we use to compare our model accuracy. As shown in Table 3, our
Gaussian Decoder and Gaussian Layer Network outperforms the model given by [10] on
WebMarket [29], Grocery Products [7] and CAPG-GP [6] dataset by a large margin, where
as we see a drastic performance loss in the Holoselecta [5] dataset. The performance drop in
the Holoselecta dataset is observed because of their varied image dimensions and the object
scale variance in the datasets, these mistakes can be easily solved with multi-scale testing or
training but we perform single scale testing on all the datasets for fair comparison.

7 Conclusion
In this work, we proposed an additional multi-task training on the existent RetinaNet archi-
tecture. As shown in Fig. 1 gaussian layer network does not confuses with the background
as much as the simple RetinaNet because of the gaussian map training, the network now
is more robust to background objects and can distinguish better between objects placed in
close proximity. This gives the significant boost in accuracy in various datasets without any
overhead. Our proposed gaussian decoder network shows the affect of multitask training
with shared encoder whereas gaussian layer network shows the same with shared encoder
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and decoder. The improvement in accuracy from gaussian decoder to gaussian layer network
also proves our hypothesis of having shared representations for the anchors.
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