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Abstract

Domain shift is a very challenging problem for semantic segmentation. Any model
can be easily trained on synthetic data, where images and labels are artificially generated,
but it will perform poorly when deployed on real environments. In this paper, we address
the problem of domain adaptation for semantic segmentation of street scenes. Many
state-of-the-art approaches focus on translating the source image while imposing that the
result should be semantically consistent with the input. However, we advocate that the
image semantics can also be exploited to guide the translation algorithm. To this end, we
rethink the generative model to enforce this assumption and strengthen the connection
between pixel-level and feature-level domain alignment. We conduct extensive exper-
iments by training common semantic segmentation models with our method and show
that the results we obtain on the synthetic-to-real benchmarks surpass the state-of-the-art.

1 Introduction

Deep neural networks for the semantic segmentation of street scenes require to be trained
on large and heterogeneous datasets to achieve good accuracy and generalize well. Never-
theless, they still might fail in unseen scenarios and environments (e.g. because of adverse
weather). Collecting and manually annotating datasets which can cover all these scenarios
requires a huge effort, since the cost of per-pixel labeling is too high.

Simulators, instead, allow to generate unlimited labeled data with low effort. Driving
simulators, for example, only require to setup the needed scene and to drive in it to collect
the required data. Despite the advances and the photorealism of modern computer graphics,
simulators still fail at generating images visually similar to the real ones, which is why
models trained naively on such kind of data perform poorly when deployed in the real world.

This setting falls in the more general problem of Domain Adaptation: we have access to
two domains, source and target, and we want to exploit the source domain to maximize the
accuracy in the target domain, for a given task. When we do not have access to the target
labels, but only source ones, we call this Unsupervised Domain Adaptation (UDA). In our
case we can formalize the source and target domains to be a synthetic and real dataset.
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Figure 1: Core idea of our image-to-image translation system. We use the segmentation
network M to get the semantic map M(XS) from the source image XS. The semantic map
acts as guidance for the translation model FS→T , which translates XS to the target domain.
The translated image XS→T is then fed to M again and we get M(XS→T ). Finally we impose
the cross-domain semantic consistency by using the Symmetric Cross-Entropy Loss LSCE .

The most recent solutions to this problem adopt a two-steps approach. The first step is
to perform image-to-image translation, where a generative model (e.g. CycleGAN [51]) or
a stylization method [8] is employed to translate the source images to the target domain.
The second step involves training the segmentation network on the translated images, where
various methods can be employed to align the features extracted in the two domains.

We focus on improving the first step, making the translation model aware of the task that
has to be performed on the resulting images. Different loss functions have been introduced
to impose that the task network gives the same result on the two domains [5, 16, 24]. Here,
instead, we rethink the generator architecture itself and design it to condition the image
translation according to the predicted classes. This not only enhances the capabilities of the
generator, but also strengthens the connection between translation and segmentation, since
the generated features are connected to the corresponding class by the network itself.

Similar to the related work [5, 16, 24, 31, 42] we test our method by adapting both the
GTA5 [36] and SYNTHIA [37] synthetic datasets to Cityscapes [6] and show that our results
surpass the current state-of-the-art for the commonly used segmentation networks.

2 Related Work
Our work can be split into two cooperating parts: UDA for semantic segmentation and
image-to-image translation. Here we separately review the most relevant approaches to these
tasks, highlighting our contributions.

Unsupervised domain adaptation We aim at using synthetic data to perform semantic
segmentation on real images, where no labels are available. This can be framed as a problem
of UDA, where the main idea is to align the source and target distributions at either feature
level, pixel level, or both. This has been applied to image classification [3, 9, 10, 29, 30,
43, 44] by minimizing the Maximum Mean Discrepancy [11, 29], measuring the correlation
distance [41] or with adversarial learning [44].

Citation
Citation
{Zhu, Park, Isola, and Efros} 2017

Citation
Citation
{Dundar, Liu, Wang, Zedlewski, and Kautz} 2018

Citation
Citation
{Chen, Lin, Yang, and Huang} 2019

Citation
Citation
{Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros, and Darrell} 2018

Citation
Citation
{Li, Yuan, and Vasconcelos} 2019

Citation
Citation
{Chen, Lin, Yang, and Huang} 2019

Citation
Citation
{Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros, and Darrell} 2018

Citation
Citation
{Li, Yuan, and Vasconcelos} 2019

Citation
Citation
{Luo, Zheng, Guan, Yu, and Yang} 2019

Citation
Citation
{Tsai, Hung, Schulter, Sohn, Yang, and Chandraker} 2018

Citation
Citation
{Richter, Vineet, Roth, and Koltun} 2016

Citation
Citation
{Ros, Sellart, Materzynska, Vazquez, and Lopez} 2016

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Chen, Liu, Wang, Wassell, and Chetty} 2018

Citation
Citation
{Ganin and Lempitsky} 2015

Citation
Citation
{Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, and Lempitsky} 2016

Citation
Citation
{Long, Cao, Wang, and Jordan} 2015{}

Citation
Citation
{Long, Zhu, Wang, and Jordan} 2016

Citation
Citation
{Tzeng, Hoffman, Darrell, and Saenko} 2015

Citation
Citation
{Tzeng, Hoffman, Saenko, and Darrell} 2017

Citation
Citation
{Geng, Tao, and Xu} 2011

Citation
Citation
{Long, Cao, Wang, and Jordan} 2015{}

Citation
Citation
{Sun and Saenko} 2016

Citation
Citation
{Tzeng, Hoffman, Saenko, and Darrell} 2017



MUSTO, ZINELLI: SEMANTICALLY ADAPTIVE IMAGE-TO-IMAGE TRANSLATION 3

Pixel-level Alignment Feature-level Alignment

Figure 2: Overview of our method. M is the segmentation network, which is shared for all
the steps. F is the translation network. Dseg is the segmentation discriminator. The losses
are detailed in Section 3. We omitted the reconstruction and consistency pipelines, together
with the target image discriminator. The pixel-level alignment for T → S is symmetric to
S→ T . The dashed arrow between M(XT ) and Y SSL

T is used to indicate that the pseudo-label
generation is performed offline, before feature-level alignment.

Semantic segmentation is a much more complex task and the first solution for domain
adaptation has been proposed in [15] with global distribution alignment at feature level. Cur-
riculum learning was used in [50], where the authors proposed first to learn the global distri-
bution of the image and the local distribution of superpixels, and then train the segmentation
network according to these properties. Global feature alignment was also adopted in [42],
where different discriminators are employed for features at different levels. Other works
introduced class-wise adversarial learning [4] and pseudo-labels [4, 24, 52]. CLAN [31]
improves feature level alignment by reweighting the adversarial loss with a discrepancy map
based on categories. Feature level alignment, however, is not enough to adapt to different
domains, which is why the most recent approaches [5, 8, 16, 24, 49] introduced also pixel-
level alignment. CyCADA [16] trains the segmentation network on images translated with
CycleGAN [51] and a semantic consistency loss. DCAN [49] adopts a custom image-to-
image translation network and performs feature alignment both in the translation and in the
segmentation step. CrDoCo [5] uses a cross-domain consistency loss to improve the trans-
lation. Similarly BDL [24] links translation and segmentation with a perceptual loss, where
the training is iterated to gradually improve both tasks.

Our work builds on top of these ideas, but we rethink the generator architecture to condi-
tion the image-to-image translation with the semantic guidance of the segmentation network.

Image-to-image translation In order to translate synthetic images into real looking ones
without using paired couples, the most common approach is to use Generative Adversarial
Networks [12]. By learning how to trick the discriminator, the generator network becomes
able to generate images aligned with the target distribution.

Nevertheless, only with the introduction of the cycle consistency [51] the generated
images look realistic. UNIT [26] develops a more complex assumption: by combining
VAEs [7, 35] with CoGANs [25], they enforce that two domains share a common latent
space which can be used to move from one domain to the other and back. This approach
evolves in MUNIT [18], where the shared latent space is formalized as the content and com-
bined with the target style to generate multimodal realistic outputs.
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GTA5 sample GTA5 pred (D) GTA5→ CS (D) GTA5 pred (F) GTA5→ CS (F)
Figure 3: Translation from GTA5 [36] to Cityscapes [6]. We take a sample from GTA5,
get the predicted segmentation using M, and generate XS→T . We present the results obtained
with both DeepLabV2 [2] and FCN8s [28] used as semantic guidance.

Normalization layers The key insight for image-to-image translation is in the ability to
disentangle style and content. In fact, in order to move from one domain to the other, one
has to be able to change the style while preserving the image content.

It has been noted [17] that the most effective way to swap styles is by using normalization
layers. Batch Normalization [19] has been used in [45], but [47] found that replacing it with
Instance Normalization (IN) [46] leads to significant improvements. IN works in the feature
space in the same way Contrast Normalization works in the pixel space, which makes it much
more effective. A more general approach has been introduced by Adaptive IN (AdaIN),
which computes the affine transformation from a style input. UNIT [26] uses IN to swap the
source and target style. Instead of performing a global translation with IN, we exploit the
task network to translate each region of the image according to its semantic meaning. To this
end, we choose to denormalize the generator activations with the SPADE layer [34], giving
a result that naturally cooperates with the learning of the semantic segmentation task.

3 Method

Our objective is to train a deep neural network M to perform semantic segmentation on a
target (real) dataset T . We assume we only have the target images XT without the target
labels YT . In order to do this, we use synthetic data from a source (synthetic) dataset S,
where we have both the images XS and the labels YS.

This problem setting is UDA for semantic segmentation, which means that we want to
reduce the domain shift caused by the difference in visual appearance of the two domains.

As depicted in Figure 2, we follow the recent work [5, 16, 24] and take advantage of
both pixel-level and feature-level alignment to reduce the domain shift. We can see them as
two separate subtasks, but we will also show how they actually need to cooperate to improve
each other in the following sections.
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Test sample Ground truth GTA5→ CS w/ D GTA5→ CS w/ F
Figure 4: Semantic Segmentation adapted from GTA5 [36] to Cityscapes [6]. We take a
sample XT from the Cityscapes validation set and show the segmentation predictions M(XT )
of both the adapted DeepLabV2 [2] and FCN8s [28] networks.

3.1 Pixel-level alignment
For pixel-level alignment, we make use of an image-to-image translation network FS→T ,
which learns through adversarial training to visually align XS to XT by generating XS→T =
FS→T (XS). Some visual examples of the results of this pipeline are depicted in Figure 3.
Inspired by [26] [18], we assume that S and T share a common latent space Z and design
two coupled GANs to train the desired system.

The training objective for the image translation model is comprised of several loss func-
tions computed as the sum of two components, one per domain. The final objective is then:

L= λreconLrecon +λGANLGAN +λCCILCCI +λCCHLCCH +λSCELSCE (1)

Image reconstruction We have an encoder for each domain, ES and ET , coupled with
a corresponding generator for each domain, GS and GT , to form two Autoencoders. The
encoders extract the latent code z ∼ Z, which is fed to the generators along with the se-
mantic features predicted by M. Therefore, a translated image is indicated as xA→B =
GB(EA(xA),M(xA)) and the image reconstruction loss is:

LS
recon = ExS∼XS [||xS→S − xS ||] LT

recon = ExT∼XT [||xT→T − xT ||] (2)

Adversarial loss By combining ES with GT and vice versa, we get the actual translation
models FS→T and FT→S, which are trained in an adversarial fashion to trick the corresponding
discriminators DT and DS:

LS
GAN =

1
2
ExS∼XS [(DS(xS))

2] +
1
2
ExT∼XT [(DS(xT→S)−1)2]

LT
GAN =

1
2
ExT∼XT [(DT (xT ))

2]+
1
2
ExS∼XS [(DT (xS→T )−1)2]

(3)

Cycle consistency By combining FS→T with FT→S and viceversa we can now apply the
cycle consistency loss to images and latent spaces:

LS
CCI

= ExS∼XS [||xS�T − xS||] LT
CCI

= ExT∼XT [||xT�S− xT ||]
LS

CCH
= EzS∼Z [||zS→T − zS||] LT

CCH
= EzT∼Z [||zT→S− zT ||]

(4)
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where zS→T refers to the latent space extracted by ET from xS→T and viceversa.

Symmetric cross-entropy Finally, we impose that the segmentation predicted for the trans-
lated image has to be consistent with the one predicted for the original one through a sym-
metric cross-entropy loss, which is made of two contributions. For the S→ T case, the first
contribution assumes that M(xS→T ) is the ground truth label and tries to align M(xS) with
it. The second contribution assumes that M(xS) is the ground truth label and tries to align
M(xS→T ) with it. The T → S case is symmetrical to the first one.

LS
SCE =−ExS∼XS [M(xS→T ) logM(xS) ]−ExS∼XS [M(xS) logM(xS→T ) ]

LT
SCE =−ExT∼XT [M(xT→S) logM(xT )]−ExT∼XT [M(xT ) logM(xT→S)]

(5)

3.2 Semantically adaptive generator
Recent generator architectures [18, 21, 27] make use of AdaIN to remove the source style
and inject the target one. However, we observe that the global denormalization performed
by AdaIN might be suboptimal for the image translation task. This is why we redesigned
our generator to adaptively denormalize each pixel based on its semantics.

We use M to extract a segmentation map m ∈ RB×C×H×W from the input image, where
C is the number of classes. When feeding it to the generator, we choose to represent this
semantic guidance as the unnormalized output of M. In the supplementary material we
detail the reasons behind this choice and the other possibilities.

Given an input activation x ∈ RB×C′×H ′×W ′ , m is resized to H ′×W ′ and fed to the SPADE
layer, which outputs γ,β ∈ RB×C′×H ′×W ′ . We then normalize x by using Instance Normaliza-
tion and use γ and β to denormalize it:

yb,c,h,w = γb,c,h,w
xb,c,h,w−µb,c

σb,c
+βb,c,h,w (6)

3.3 Analysis
Pixel-level alignment has given a great boost to the research in UDA problems, but the gap
with the performance achievable with full supervision is still huge. We believe that the
image translation methods still need a lot of improvements and this is why we focused on
redesigning the generator to include a semantic conditioning. Our claim is that adaptively
denormalizing each pixel based on its class allows the translation model to produce results
which are better for domain adaptation, since each region gets injected with features that are
more consistent with its semantic. This connection strengthens the bridge with feature-level
alignment (see Figure 1), which before our work was induced only by consistency losses.

3.4 Feature-level alignment
For feature-level alignment, we train M on XT and XS→T by combining supervision on XS→T ,
self-supervision on XT and adversarial learning. The loss, in this case, is given by

L= λsegLseg +λSSLLSSL +λadvLadv (7)

We set λseg = 1, λSSL = 1, λadv = 10−3 for DeepLabV2, λadv = 10−4 for FCN8s and use
the same optimization hyperparameters of [24] to train both networks.
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mIoU
Cycada [16] D 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19 65.0 12.0 28.6 4.5 31.1 42.0 42.7

AdaptSegNet [42] D 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4
DCAN [49] D 85.0 30.8 81.3 25.8 21.2 22.2 25.4 26.6 83.4 36.7 76.2 58.9 24.9 80.7 29.5 42.9 2.5 26.9 11.6 41.7
CLAN [31] D 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
BDL [24] D 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

Ours D 91.2 43.3 85.2 38.6 25.9 34.7 41.3 41.0 85.5 46.0 86.5 61.7 33.8 85.5 34.4 48.7 0.0 36.1 37.8 50.4
Curriculum [50] F 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 16.6 28.9

CBST [52] F 66.7 26.8 73.7 14.8 9.5 28.3 25.9 10.1 75.5 15.7 51.6 47.2 6.2 71.9 3.7 2.2 5.4 18.9 32.4 30.9
Cycada [16] F 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4
DCAN [49] F 82.3 26.7 77.4 23.7 20.5 20.4 30.3 15.9 80.9 25.4 69.5 52.6 11.1 79.6 24.9 21.2 1.3 17.0 6.7 36.2
LSD [39] F 88.0 30.5 78.6 25.2 23.5 16.7 23.5 11.6 78.7 27.2 71.9 51.3 19.5 80.4 19.8 18.3 0.9 20.8 18.4 37.1

CLAN [31] F 88.0 30.6 79.2 23.4 20.5 26.1 23.0 14.8 81.6 34.5 72.0 45.8 7.9 80.5 26.6 29.9 0.0 10.7 0.0 36.6
CrDoCo [5] F 89.1 33.2 80.1 26.9 25.0 18.3 23.4 12.8 77.0 29.1 72.4 55.1 20.2 79.9 22.3 19.5 1.0 20.1 18.7 38.1
BDL [24] F 89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3

Ours F 91.1 46.4 82.9 33.2 27.9 20.6 29.0 28.2 84.5 40.9 82.3 52.4 24.4 81.2 21.8 44.8 31.5 26.5 33.7 46.5

Table 1: Results of adapting GTA5 [36] to Cityscapes [6]. D stands for DeepLabV2 [2] with
ResNet101 [13], while F stands for FCN8s [28] with VGG16 [40] as backbone network.

Segmentation loss The main supervision for the segmentation task is given by training
the network on (XS→T ,YS), where XS→T are images translated from the synthetic to the real
domain. This is formulated as the common cross-entropy loss:

Lseg =−Ex∼XS→T ,y∼YS

K

∑
k=1

1[k=y] log(M(x)k) (8)

Self-supervised segmentation Following [24], we also adopt self-supervision to improve
the adaptation model. To this end, we compute M(XT ) and use as labels the high confidence
predictions, creating Y SSL

T :

Y SSL
T =

arg max
1≤k≤K

M(XT )k, if M(XT )k ≥ thSSL

−1, otherwise
(9)

where K is the number of classes, −1 is the index ignored and thSSL is the confidence
threshold, which we use to filter the uncertain predictions. In our experiments we set thSSL =
0.9.

This makes us able to compute a cross-entropy loss also on the target dataset:

LSSL =−Ex∼XT ,y∼Y SSL
T

K

∑
k=1

1[k=y] log(M(x)k) (10)

Adversarial loss Supervision on pixel-level aligned images and self-supervision on target
images are not enough to learn a full model. This is why we also make use of adversarial
training by feeding the semantic maps to a discriminator Dseg, which has to distinguish the
maps predicted by M for S and T , giving:

Ladv = ExT∼XT [log(Dseg(M(xT )))]+ExS→T∼XS→T [log(1−Dseg(M(xS→T )))] (11)

This loss enforces an output space alignment [42], which means that M has to learn how
to predict semantic maps with distributions that are aligned regardless of the input domain.
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mIoU
AdaptSegNet [42] D 79.2 37.2 78.8 - - - 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 45.9

CLAN [31] D 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 47.8
BDL [24] D 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 51.4

Ours D 87.7 49.7 81.6 - - - 19.3 18.5 81.1 83.7 58.7 31.8 73.3 47.9 37.1 45.7 55.1
FCNsITW [15] F 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.2
Curriculum [50] F 65.2 26.1 74.9 0.1 0.5 10.7 3.5 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0

CBST [52] F 69.6 28.7 69.5 12.1 0.1 25.4 11.9 13.6 82.0 81.9 49.1 14.5 66.0 6.6 3.7 32.4 35.4
DCAN [49] F 79.9 30.4 70.8 1.6 0.6 22.3 6.7 23.0 76.9 73.9 41.9 16.7 61.7 11.5 10.3 38.6 35.4
CLAN [31] F 80.4 30.7 74.7 - - - 1.4 8.0 77.1 79.0 46.5 8.9 73.8 18.2 2.2 9.9 39.3
CrDoCo [5] F 84.9 32.8 80.1 4.3 0.4 29.4 14.2 21.0 79.2 78.3 50.2 15.9 69.8 23.4 11.0 15.6 38.2
BDL [24] F 72.0 30.3 74.5 0.1 0.3 24.6 10.2 25.2 80.5 80.0 54.7 23.2 72.7 24.0 7.5 44.9 39.0

Ours F 79.1 34.0 78.3 0.3 0.6 26.7 15.9 29.5 81.0 81.1 55.5 21.9 77.2 23.5 11.8 47.5 41.5

Table 2: Results of adapting SYNTHIA [37] to Cityscapes [37]. D stands for DeepLabV2 [2]
with ResNet101 [13], while F stands for FCN8s [28] with VGG16 [40] as backbone network.

4 Experiments

We present our experimental results for the synthetic to real adaptation using two dataset set-
tings: GTA5 [36] to Cityscapes [6] and SYNTHIA [37] to Cityscapes. We evaluate the mean
intersection-over-union (IoU) on the Cityscapes validation set and show how our method
outperforms the current state-of-the-art by adopting the same segmentation models. Finally,
we conduct an ablation study to highlight the value of our contributions.

Segmentation network We choose to adapt two segmentation networks: DeepLabV2 [2]
with ResNet101 [13] and FCN8s [28] with VGG16 [40]. Both networks are trained on
images downsampled to 1024x512 with batch size 1.

We initialize the segmentation networks from [24] to speed up the training process. In
order to show the independence from this initialization, we also conduct one experiment
where we train DeepLabV2 from scratch for the GTA→Cityscapes task, and we find this to
be in line with the results that we get by initializing it with [24].

Translation network For the translation part, we describe the architecture of the encoders,
generators and discriminators.

The encoder is made by few downsampling blocks, followed by residual blocks for fur-
ther processing of the latent code and they all use IN [46]. Symmetrically, the generators
take in the latent code and process it with residual blocks, where IN and SPADE are com-
bined to normalize the feature maps. These are followed by upsampling blocks with Layer
Normalization [1]. We found LN to better preserve the style in the generated activations.

In each domain we have discriminators for multiple scales [48], each being a Patch Dis-
criminator [20, 23]. The GAN [12] objective we choose is the one proposed in LSGAN [32].
We apply Spectral Normalization [33] to all the models described here.

When training the translation model we resize the input images to 1024x512 and take
512x512 random crops out of them. We use Adam [22] as optimizer with β1 = 0.9 and
β2 = 0.99. We apply TTUR [14] and set the initial learning rate to be 10−4. The learning rate
is scheduled to decay to 0 after 1000000 iterations with a ’poly’ scheduling where the power
is 0.9. The batch size is 1 for all the experiments. The loss weights are set to λrecon = 10,
λGAN = 1, λCCI = 10, λCCH = 1, λSCE = 10.
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SPADE LSCE mIoU Gain Gap to UB
49.2 15.6 15.9

X 49.5 15.9 15.6
X 49.5 15.9 15.6

X X 50.4 16.8 14.7

Table 3: Ablation study. We report the mIoU, the gain wrt the lower bound (i.e. training
naively on source), the gap wrt the upper bound (i.e. training on target).

Bidirectional learning Pixel-level and feature-level alignment are not performed in an
end-to-end fashion. Besides being highly expensive in terms of memory requirements, we
found this approach to be very unstable and it did not lead to good results.

We adopt a policy similar to [24] and iteratively recreate XS→T when M stops improving
on the target dataset. Before each training of the segmentation network, we also generate
new pseudo-labels Y SSL

T . We found this procedure to significantly improve the final mIoU
compared to a single iteration of pixel-level and feature-level alignment.

4.1 Comparison with State of the Art
GTA5 to Cityscapes For the GTA5 [36] to Cityscapes [6] task, we evaluate on all the
19 classes used in the Cityscapes benchmark since the datasets are fully compatible. Some
visual results for this setting are presented in Figure 4. In this case, the upper bounds in
terms of mIoU are 65.1 for DeepLabV2 [2] and 60.3 for FCN8s [28], which are the results
achievable by training with the target labels. In Table 1 we compare our results with the
related work. In terms of mIoU, we get respectively +1.9% and +4.2% over the state-of-the-
art with the two networks.

SYNTHIA to Cityscapes SYNTHIA [37] has been adopted in the past by the other works
for its overlapping with 16 of the Cityscapes classes. For the SYNTHIA to Cityscapes task
we compare our results with the state-of-the-art in Table 2 and present some visual results in
the supplementary material. For a fair comparison, the results of the DeepLabV2 architecture
are limited to the 13 classes adopted by the other works [24, 31, 42]. The upper bounds in
terms of mIoU are 71.7 for DeepLabV2 and 59.5 for FCN8s. In the case of DeepLabV2 we
surpass the current state-of-the-art in mIoU by +3.7%. For FCN8s, instead, we get +2.5%
on the mIoU.

4.2 Ablation study
In order to weight our contribution, we perform an ablation study of the proposed method
(see Table 3). For each experiment, we report 3 values: the mIoU; the gain wrt the lower
bound, which is a naive training on the source dataset; the remaining gap wrt the upper
bound, which is the result for training with target labels (called oracle prediction).

The experiments are conducted with DeepLabV2 [2] for the GTA5 [36] to Cityscapes [6]
task, for which the lower bound is 33.6 and the upper bound is 65.1.

We first show the baseline results that we get by using the generator with no Symmetric
Cross-Entropy LSCE and no semantic guidance. In this setting, the residual blocks of the
generator use IN [46] layers and the image-to-image translation is completely unrelated to
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Setting Network IS FID
GTA5→ Cityscapes DeepLabV2 4.9 27.9
GTA5→ Cityscapes FCN8s 4.8 40.3

SYNTHIA→ Cityscapes DeepLabV2 5.0 100.8
SYNTHIA→ Cityscapes FCN8s 4.9 113.7

Table 4: Image quality evaluation. We report the Inception Score (IS) [38] and the Fréchet
Inception Distance (FID) [14] of the images generated in each setting of our experiments.

the semantic segmentation. Secondly, we add the semantic guidance with the SPADE [34]
layer. This setting can still benefit from the semantic guidance in the translation, but loses
the ability to enforce the cross-domain consistency for the segmentation task. Then we swap
back the SPADE layer with IN and enable LSCE . This setting resembles the one used in [5],
where the architecture of CycleGAN [51] is replaced by ours. Finally, we show that the best
results are achieved by the combination of the two elements, which completely bridges the
translation and segmentation tasks and is the final setting of our work.

We can see that when we remove SPADE or LSCE the mIoU drops, suggesting that they
both have an important contribution to get the best result.

4.3 Generated image quality
We also report the quality of the images generated by our image-to-image translation model.
In Table 4 we report the Inception Score (IS) [38] of the images XS→T and the Fréchet Incep-
tion Distance (FID) [14] with the Cityscapes training set. Although the IS of the produced
images is low in every setting, the FID results indicate that the semantic guidance induced
by DeepLabV2 is the one that best visually aligns the synthetic domain to Cityscapes. The
images translated from SYNTHIA, however, have a much greater distance from Cityscapes
than the ones translated from GTA5, regardless of the network used as semantic guidance.
We note that this is possibly due to the bigger initial gap in visual appearance between the
two domains, since the FID between the original SYNTHIA and Cityscapes is 156.92, while
the FID between the original GTA5 and Cityscapes is only 62.42.

5 Conclusion
We presented a semantically guided image-to-image translation model. This model cooper-
ates with a semantic segmentation network to improve its adaptation performance. We have
redesigned the generator to take as input the segmentation features extracted by the adap-
tation network. This allows the system to translate each region according to its predicted
class and automatically improves the pixel-level alignment for the two domains we try to
adapt. Our experiments validate the effectiveness of the proposed method by showing how
it improves the state-of-the-art for the commonly used datasets and segmentation models.

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv

preprint arXiv:1607.06450, 2016.

Citation
Citation
{Salimans, Goodfellow, Zaremba, Cheung, Radford, and Chen} 2016

Citation
Citation
{Heusel, Ramsauer, Unterthiner, Nessler, and Hochreiter} 2017

Citation
Citation
{Park, Liu, Wang, and Zhu} 2019

Citation
Citation
{Chen, Lin, Yang, and Huang} 2019

Citation
Citation
{Zhu, Park, Isola, and Efros} 2017

Citation
Citation
{Salimans, Goodfellow, Zaremba, Cheung, Radford, and Chen} 2016

Citation
Citation
{Heusel, Ramsauer, Unterthiner, Nessler, and Hochreiter} 2017



MUSTO, ZINELLI: SEMANTICALLY ADAPTIVE IMAGE-TO-IMAGE TRANSLATION 11

[2] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE transactions on pattern analysis and ma-
chine intelligence, 40(4):834–848, 2017.

[3] Qingchao Chen, Yang Liu, Zhaowen Wang, Ian Wassell, and Kevin Chetty. Re-
weighted adversarial adaptation network for unsupervised domain adaptation. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
7976–7985, 2018.

[4] Yi-Hsin Chen, Wei-Yu Chen, Yu-Ting Chen, Bo-Cheng Tsai, Yu-Chiang Frank Wang,
and Min Sun. No more discrimination: Cross city adaptation of road scene segmenters.
In Proceedings of the IEEE International Conference on Computer Vision, pages 1992–
2001, 2017.

[5] Yun-Chun Chen, Yen-Yu Lin, Ming-Hsuan Yang, and Jia-Bin Huang. Crdoco: Pixel-
level domain transfer with cross-domain consistency. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 1791–1800, 2019.

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3213–3223, 2016.

[7] P Kingma Diederik, Max Welling, et al. Auto-encoding variational bayes. In Proceed-
ings of the International Conference on Learning Representations (ICLR), 2014.

[8] Aysegul Dundar, Ming-Yu Liu, Ting-Chun Wang, John Zedlewski, and Jan Kautz. Do-
main stylization: A strong, simple baseline for synthetic to real image domain adapta-
tion. arXiv preprint arXiv:1807.09384, 2018.

[9] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backprop-
agation. In Proceedings of the 32nd International Conference on International Confer-
ence on Machine Learning-Volume 37, pages 1180–1189. JMLR. org, 2015.

[10] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. The Journal of Machine Learning Research, 17(1):2096–2030,
2016.

[11] Bo Geng, Dacheng Tao, and Chao Xu. Daml: Domain adaptation metric learning.
IEEE Transactions on Image Processing, 20(10):2980–2989, 2011.

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.



12 MUSTO, ZINELLI: SEMANTICALLY ADAPTIVE IMAGE-TO-IMAGE TRANSLATION

[14] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. Gans trained by a two time-scale update rule converge to a local nash
equilibrium. In Advances in Neural Information Processing Systems, pages 6626–6637,
2017.

[15] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell. Fcns in the wild: Pixel-
level adversarial and constraint-based adaptation. arXiv preprint arXiv:1612.02649,
2016.

[16] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,
Alexei Efros, and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adap-
tation. In Proceedings of the 35th International Conference on Machine Learning,
2018.

[17] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive
instance normalization. In Proceedings of the IEEE International Conference on Com-
puter Vision, pages 1501–1510, 2017.

[18] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised
image-to-image translation. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 172–189, 2018.

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on Machine
Learning, pages 448–456, 2015.

[20] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image trans-
lation with conditional adversarial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1125–1134, 2017.

[21] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4401–4410, 2019.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[23] Chuan Li and Michael Wand. Precomputed real-time texture synthesis with markovian
generative adversarial networks. In European Conference on Computer Vision, pages
702–716. Springer, 2016.

[24] Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. Bidirectional learning for domain adap-
tation of semantic segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 6936–6945, 2019.

[25] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. In Advances
in neural information processing systems, pages 469–477, 2016.

[26] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image transla-
tion networks. In Advances in neural information processing systems, pages 700–708,
2017.



MUSTO, ZINELLI: SEMANTICALLY ADAPTIVE IMAGE-TO-IMAGE TRANSLATION 13

[27] Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo Aila, Jaakko Lehtinen, and
Jan Kautz. Few-shot unsupervised image-to-image translation. In IEEE International
Conference on Computer Vision (ICCV), 2019.

[28] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3431–3440, 2015.

[29] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning transferable
features with deep adaptation networks. In Proceedings of the 32nd International Con-
ference on International Conference on Machine Learning-Volume 37, pages 97–105.
JMLR. org, 2015.

[30] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Unsupervised do-
main adaptation with residual transfer networks. In Advances in Neural Information
Processing Systems, pages 136–144, 2016.

[31] Yawei Luo, Liang Zheng, Tao Guan, Junqing Yu, and Yi Yang. Taking a closer look at
domain shift: Category-level adversaries for semantics consistent domain adaptation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2507–2516, 2019.

[32] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen
Paul Smolley. Least squares generative adversarial networks. In Proceedings of the
IEEE International Conference on Computer Vision, pages 2794–2802, 2017.

[33] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spec-
tral normalization for generative adversarial networks. In International Conference
on Learning Representations, 2018. URL https://openreview.net/forum?
id=B1QRgziT-.

[34] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image syn-
thesis with spatially-adaptive normalization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2337–2346, 2019.

[35] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropa-
gation and approximate inference in deep generative models. In International Confer-
ence on Machine Learning, pages 1278–1286, 2014.

[36] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data:
Ground truth from computer games. In European conference on computer vision, pages
102–118. Springer, 2016.

[37] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M
Lopez. The synthia dataset: A large collection of synthetic images for semantic seg-
mentation of urban scenes. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3234–3243, 2016.

[38] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans. In Advances in neural information
processing systems, pages 2234–2242, 2016.

https://openreview.net/forum?id=B1QRgziT-
https://openreview.net/forum?id=B1QRgziT-


14 MUSTO, ZINELLI: SEMANTICALLY ADAPTIVE IMAGE-TO-IMAGE TRANSLATION

[39] Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain, Ser Nam Lim, and Rama Chel-
lappa. Learning from synthetic data: Addressing domain shift for semantic segmenta-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 3752–3761, 2018.

[40] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[41] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain
adaptation. In European Conference on Computer Vision, pages 443–450. Springer,
2016.

[42] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang,
and Manmohan Chandraker. Learning to adapt structured output space for semantic
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7472–7481, 2018.

[43] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep trans-
fer across domains and tasks. In Proceedings of the IEEE International Conference on
Computer Vision, pages 4068–4076, 2015.

[44] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discrimina-
tive domain adaptation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7167–7176, 2017.

[45] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor S Lempitsky. Texture
networks: Feed-forward synthesis of textures and stylized images. In ICML, volume 1,
page 4, 2016.

[46] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The
missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[47] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Improved texture networks:
Maximizing quality and diversity in feed-forward stylization and texture synthesis. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 6924–6932, 2017.

[48] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. High-resolution image synthesis and semantic manipulation with condi-
tional gans. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[49] Zuxuan Wu, Xintong Han, Yen-Liang Lin, Mustafa Gokhan Uzunbas, Tom Goldstein,
Ser Nam Lim, and Larry S Davis. Dcan: Dual channel-wise alignment networks for un-
supervised scene adaptation. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 518–534, 2018.

[50] Yang Zhang, Philip David, and Boqing Gong. Curriculum domain adaptation for se-
mantic segmentation of urban scenes. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 2020–2030, 2017.



MUSTO, ZINELLI: SEMANTICALLY ADAPTIVE IMAGE-TO-IMAGE TRANSLATION 15

[51] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-
image translation using cycle-consistent adversarial networks. In Proceedings of the
IEEE international conference on computer vision, pages 2223–2232, 2017.

[52] Yang Zou, Zhiding Yu, BVK Vijaya Kumar, and Jinsong Wang. Unsupervised domain
adaptation for semantic segmentation via class-balanced self-training. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 289–305, 2018.


