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Abstract

3D scene reconstruction from multiple views is an important classical problem in
computer vision. Deep learning based approaches have recently demonstrated impres-
sive reconstruction results. When training such models, self-supervised methods are
favourable since they do not rely on ground truth data which would be needed for su-
pervised training and is often difficult to obtain. Moreover, learned multi-view stereo re-
construction is prone to environment changes and should robustly generalise to different
domains. We propose an adaptive learning approach for multi-view stereo which trains
a deep neural network for improved adaptability to new target domains. We use model-
agnostic meta-learning (MAML) to train base parameters which, in turn, are adapted
for multi-view stereo on new domains through self-supervised training. Our evaluations
demonstrate that the proposed adaptation method is effective in learning self-supervised
multi-view stereo reconstruction in new domains.

1 Introduction
Dense 3D scene reconstruction based on images from multiple view points is one of the
classical challenges in computer vision. It has widespread applications in areas such as
computer aided design (CAD), virtual tours, augmented reality, cultural heritage preserva-
tion, construction maintenance and inspection, or robotics. Given the known view poses and
camera intrinsics, multi-view geometry is typically used to find correspondences between
pixels of reference along epipolar lines. Early approaches use handcrafted similarity mea-
sures for pixels or patches such as photometric similarity or normalized cross correlation.
Deep learning has recently been demonstrated as a capable alternative for learning image
features from data which can excel handcrafted measures [15, 16, 18, 23, 31, 34].
The state-of-the-art deep learning based methods for multi-view stereo reconstruction are

supervised learning approaches which require immensive amounts of ground-truth 3D re-
construction data. Yet such data is tedious and difficult to obtain. Existing datasets such as
[1, 17, 27] lack data diversity, come with calibration artifacts between the camera and the
depth measuring device, or are synthetic. Hence, self-supervised learning methods which
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(a) Buddha scan (b) Fine tuning (c) Ours

Figure 1: Example result for adaptive meta-learning for self-supervised domain transfer.
a) 3D scan (from DTU dataset), b) Reconstruction result for pre-training on BlendedMVS
dataset without meta-learning and fine-tuning on DTU training set. c) Reconstruction result
for our approach with meta-learning on BlendedMVS and self-supervised fine-tuning on
DTU. Note the depth artifacts in the red box by the naive fine-tuning approach which do not
occur in our meta-learning approach.

can leverage large collections of camera images without the need of ground-truth 3D anno-
tations are preferable. Apart from this, the given algorithm also needs to be robust against
changes in environment or domains as it is not always possible to train a network with all
possible environments in the training data. Hence, there needs to be a learning mechanism
which can compensate for the changes in environment and quickly learn to adapt to different
domains (indoors vs outdoors, low light vs bright light, building architecture scans vs object
scans). A motivating example in our context is highlighted in Fig. 1. Recent developments in
meta learning [8] demonstrated online adaptation to new tasks of supervised regression mod-
els which have been trained on a different set of tasks. In our approach, we propose a variant
of model-agnostic meta-learning (MAML [8]) for training a multi-view stereo reconstruction
network which facilitates self-supervised adaptation to new domains. We base our method
on classical concepts from multi-view stereo (MVS) reconstruction and estimate dense depth
in a reference view. Our model extends the network architecture of MVSNet [34] which has
been demonstrated to yield state-of-the-art performance for supervised and self-supervised
learning. In a first training stage, we use our meta-learning approach to train a network on a
large dataset in several domains with ground-truth depth annotation. We train the network in
such a way that it can better adapt to new domains through self-supervised training on data
without ground-truth depth. In the second stage, we perform self-supervised fine-tuning on
data from the new domain.

Like MVSNet, our multi-view stereo reconstruction network compares image features in
cost volumes. This volume is refined with a set of 3D convolutions and we infer a preliminary
depth map by neural regression from this refined volume. Different to the probability map
for the depth as in MVSNet, we learn a confidence mask which is utilised to weight pixels
for the self-supervised loss in order to compensate for outliers such as occlusions.

We demonstrate our adaptive learning approach by training on the BlendedMVS [36]
dataset which contains a large collection of outdoor scenes (e.g. views of buildings, archi-
tecture etc.) and indoor scenes. We fine-tune our pre-trained model using self-supervised
training on the DTU dataset [17] which consists of high resolution close scans of objects
with different environment and lighting conditions. We evaluate our method on the DTU
evaluation split and compare our approach to state-of-the-art MVS approaches and variants
of our method such as fine-tuning without meta-learning. We demonstrate that meta-learning
indeed helps to improve accuracy of MVS over naive fine-tuning. Our approach improves re-
construction results over a self-supervised baseline method. In our experiments, it does even
compare well with several previous supervised and classical methods in certain metrics.
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In summary, our contributions are
• We propose a novel meta-learning scheme for adaptive learning of multi-view stereo

reconstruction which improves self-supervised domain adaptation.
• We extend MVSNet to learn a confidence mask for per-pixel weighting for self-su-

pervised learning which handles outliers such as occlusions.
• We demonstrate that our meta-learning approach can improve self-supervised domain

adaptation performance over naive pre-training in a supervised way. Our domain-
adapted self-supervised multi-view stereo reconstruction achieves improved perfor-
mance over a self-supervised MVS baseline.

2 Related work
Optimization-based Approaches. Multi view stereo estimation is one of the classical prob-
lems in computer vision with copious amount of research literature (see for example [26]
for a survey). State of-the-art systems such as COLMAP [25], MVE [9] or PMVS [11]
perform sparse structure from motion from collections of images to estimate sparse point
cloud reconstruction, camera view poses and calibration parameters. Dense reconstruction
is typically performed in a subsequent step, for instance, using patch-based surface repre-
sentations and region-growing [11, 13, 33] or energy-minimization methods [6, 24]. Dense
3D surface reconstruction can be obtained by fusing depth maps in a 3D representation such
as volumetric signed distance functions [38] or extracting meshes using point-cloud based
surface reconstruction techniques [3, 19, 30]. A major problem of conventional multiview
stereo approaches is that they are texture dependent and handcrafting good patch similarity
measures is difficult.

Supervised Learning Approaches. Early supervised deep learning methods learn sim-
ilarity measures for patches from multiple views, for instance using Siamese network archi-
tectures [14, 37]. More recent architectures [15, 16, 34] integrate disparity plane sweeping
directly into the deep neural network architecture and compare pixel locations based on
learned deep feature representations. We also follow this approach with our architecture
which is based on MVSNet [34]. We extend the architecture with the prediction of a confi-
dence mask and use it for meta-learning a model for domain adaptation using self-supervised
training. Recently, also methods have been proposed using recurrency [35], volumetric fu-
sion [18, 23], or deep learning on point sets [5].

Self-supervised Learning Approaches. One of the major problems of supervised tech-
niques is the unavailibility of sufficiently large scale multi view stereo datasets with accu-
rate depth map ground truth. In order to compensate for that, self-supervised multi-view
stereo techniques have been developed very recently [7, 20]. The basic idea behind these
approaches is to use the predicted depth to synthesize stereo images or images in a temporal
window and train the networks for photoconsistent estimates. The camera view poses are
either known by different means or have to be estimated concurrently. One of the major
problems of both supervised and self-supervised learning approaches is that they typically
do not generalize well to novel domains.

Meta-Learning. Recent developments in meta learning [8] have demonstrated methods
that efficiently adapt to novel tasks for supervised regression and reinforcement learning. The
main idea behind model agnostic meta learning (MAML) is to train the model parameters in
such a way that the network can better generalise to a new task through fine-tuning. Previous
work on adaptive learning of stereo disparity estimation [29] has utilised this meta-learning
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Figure 2: Meta-learning for self-supervised multi-view stereo. During a meta-learning it-
eration, adaptation is performed on k multi-view stereo reconstruction tasks with a self-
supervised loss (Lsel f ). The adapted parameters θ ′k are evaluated and the base model pa-
rameters θt are optimized on a validation set using a supervised loss Lsup to learn a better
starting point for self-supervised parameter adaptation. For the new domain, the resulting
base model trained through meta-learning is fine-tuned with self-supervised training.

and have shown how feature representations can be learned for self-supervised learning and
improved generalization on new datasets. We propose to learn adaptive feature represen-
tations for self-supervised multi-view stereo reconstruction through meta-learning. We de-
velop extensions to a network architecture based on MVSNet [34] with which the model
learns to mask uncertain predictions due to outliers such as occlusions. This assists the
self-supervised fine-tuning on new domain data.

3 Methodology
Meta learning aims at training a learning architecture for fast adaptability to new tasks. To
this end, the model is trained on a set of different tasks during the meta learning phase.
In our context, tasks correspond to self-supervised learning in different environments and
conditions (i.e. domains).

The methodology can be summarized in two stages. The model is trained on a larger
dataset with ground-truth depth in the first stage using meta-learning. In our experiments,
we use the BlendedMVS dataset [36] which consists of indoor and outdoor scenes with
varying environment conditions - making it ideal for domain adaptation. The model is trained
on the training split by first updating cloned model parameters using the self-supervised
photometric losses for k ’tasks’, where a task refers to multi-view reconstruction of one of the
k different scenes. The actual model parameters are then in turn updated using the supervised
loss in Eq. (2) on the validation split, which involves the cloned and updated parameters from
the previous step. The model trains network parameters to adapt well by self-supervised
training. This is guided through the outer-loop supervised training (see Alg. 1). The second
stage involves fine-tuning the model obtained in the first stage using self-supervised learning
on the training data of the target domain dataset (DTU [17] in our experiments). We provide
detailed explanation of the methodology in the following subsections.

3.1 Meta Learning for Self-supervised Multi-View Stereo
Our meta-learning algorithm for self-supervised multi-view stereo is summarized in Alg. 1
and illustrated in Fig. 2. We split the training dataset D into a training and a validation split
Dtrain and Dval, the latter with m multi-view examples. Each example consists of a reference
view (image with camera pose) and N neighbouring views.
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We adapt the base model parameters θ for k multi-view examples Btrain,i ⊂ Dtrain each
consisting of one reference view and N neighbouring views of a scene using a self-supervised
loss (Lsel f , eq. (3)). Starting from the base parameters θ ′0 = θ , for each multi-view example
i we perform the gradient update steps

θ
′
i = θ

′
i−1−α∇θ ′i−1

Lsel f (θ
′
i−1,Btrain,i), (1)

where α is a learning rate.
The base model parameters are optimized to improve the quality of the updated model

parameters θ ′k with a supervised loss Lsup (eq. (6)) on a sampled multi-view example Bval ⊂
Dval consisting of one reference view and N neighbouring views from the validation split,

minθ (Lsup(θ
′
k,Bval)). (2)

Note that θ ′k is a function of θ through the updates in Eq. (1). The supervised loss measures
the discrepancy between the predicted and the ground-truth depth.

The intuition behind this two-step update scheme is that the base model parameters are
changed to a better starting point for learning model parameters on different domains with
the self-supervised loss. For a new dataset, we use the base parameters θ for fine-tuning to
the new domain (i.e an entirely unseen dataset with different conditions and environment)
using self-supervised training.

Algorithm 1: Adaptive learning for self-supervised multi-view stereo.
Data: Dataset split Dtrain, Dval , hyperparameters k, α , β

Initialize base model parameters θ ;
while not converged do

Sample k multi-view examples Btrain,i ⊂ Dtrain ;
Initialize model parameters θ0 = θ ;
for i ∈ [1, . . . ,k] do

Compute adapted model parameters θ ′i = θ ′i−1−α∇θ ′i−1
Lsel f (θ

′
i−1,Btrain,i) ;

// Adaptation

Sample batch Bval ⊂ Dval ;
Perform gradient descent step on base model parameters θ to minimize
Lsup(θ

′
k,Bval) with learning rate β ; // Optimization

3.2 Network Architecture

While our adaptation module is model-agnostic, we base our network architecture on the
MVSNet [34] model. MVSNet has demonstrated state-of-the-art performance for both su-
pervised and self-supervised [20] training. Besides changing the training schemes with our
meta-learning approach, we also augment the network with predicting confidence masks
which are in turn used for self-supervised fine-tuning on novel domains (additional details
can be found in the supplementary material). For details on the base network, readers are
encouraged to refer to MVSNet [34].
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Figure 3: From left to right: reference image frame, first neighbouring frame, predicted
confidence mask for first frame, second neighbouring frame and predicted confidence mask
for second view. Different pairs of reference and neighbouring frames have different outliers
such as occlusions, reflections, etc. We learn a confidence mask during meta-learning to
downweight uncertain pixels for the self-supervised training and fine-tuning on new domains
(darker color correspond to lower confidence in the visualization).

3.3 Learning Confidence Masks for Self-supervised Domain
Adaptation

A major problem in learning multi-view stereo is to handle (dis-)occlusions and out-of-image
projections correctly when quantifying the loss on the predicted depth maps. We take inspi-
ration from [29] to learn a confidence mask during meta-learning which is used to improve
the fine-tuning of the network on the new domain. While the approach in [29] has been pro-
posed for learning dense reconstruction from stereo images of a constant-baseline stereo rig,
multi-view stereo poses additional challenges due to the varying baselines between reference
image and neighbouring frames.

Our network learns a confidence mask for each pair of reference image and neighbor-
ing frame in a multi-view training set. Fig. 3 provides an example of the confidence masks
learned by our approach for different neighbouring views. The out-of-image projection mask
Cproj : Ω→ [0,1] can be directly determined from the relative camera pose between the views
and the predicted depth map. We train an additional component of our network architecture
during meta-learning which predicts a confidence mask Cτ : Ω→ [0,1] with learnable pa-
rameters τ for learning to downweight pixels in the loss at occlusions and other outliers. The
final per-pixel mask is obtained by the product of the two masks at each pixel. The masks
are used for the self-supervised loss to compensate for occlusions due to view pose changes.
Note that the parameters τ are included into θ and updated during the meta-learning stage.
They are held fixed when fine-tuning on a new domain dataset in the second stage.

The confidence mask network is a 4-layer CNN with sigmoid activation at the end to
generate values between 0 and 1. The photometric warping error between reference Ire f and
neighboring image Ii, and the out-of-image projection mask are concatenated and used as
an input to the network that predicts the confidence mask. Please refer to the supplementary
material for further details on the confidence mask subnetwork details and how it is integrated
in our network architecture.

3.4 Training Losses

Self-supervised Losses. Self-supervised losses are used for adaptation during meta-learning
and for fine-tuning on the new domain. The self-supervised loss comprises two components,

Lsel f (θ ,B) = Lrecon(θ ,B)+ γsmoothLsmooth(θ ,B), (3)
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a reconstruction loss Lrecon and a smoothness loss Lsmooth, where θ are network parameters
and B is a data example consisting of a reference frame and N neighbouring frames.

The reconstruction loss measures the image-based consistency between the reference and
the N neighbouring views given their relative camera pose and the predicted depth map,

Lrecon(θ ,B) =
N

∑
i=1

γphoto
∥∥Ci

τ(θ ,B)�Ci
proj�

(
Ire f − Ii

warped(θ ,B)
)∥∥

1
+

γssim
∥∥1−SSIM(Ci

proj� Ire f ,Ci
proj� Ii

warped(θ ,B))
∥∥

1
, (4)

where γphoto and γssim are weighting factors and� denotes pixel-wise multiplication. We use
a combination of a photoconsistency measure and the structural similarity index (SSIM [32]).
The reference image is Ire f , Ii

warped(θ ,B) is the ith neighbouring frame warped to the refer-
ence frame given the predicted depth by the network and known camera parameters. Ci

proj
is the out-of-image projection mask which excludes the out of bound pixels while warping
and Ci

τ(θ ,B) is the predicted confidence mask for the ith frame. The structural similarity
index [32] quantifies the similarity between Ire f and Iwarped in patches centered at the pixels,
and has been used in the literature [12, 20] since it measures texture similarity while being
more robust to lighting changes than the photometric L1-loss.

An edge-dependent smoothness prior on the predicted depth maps with respect to the ref-
erence image is applied in order to encourage smoothness of the depth map. The smoothness
loss for the predicted depth map D(θ ,B) is

Lsmooth(θ ,B) = ∑
(x,y)

∣∣∂xDx,y(θ ,B)
∣∣e−‖∂xIx,y‖2 +

∣∣∂yDx,y(θ ,B)
∣∣e−‖∂yIx,y‖2 , (5)

where x,y range over the pixels in the reference frame.
Supervised Loss. For evaluation during meta-training, we use an L1 supervised loss on

the depth map D(θ ,B) predicted by the network to compare it with the ground truth Dgt,

Lsup(θ ,B) =
∥∥D(θ ,B)−Dgt

∥∥
1 . (6)

4 Experiments
We evaluate our approach on a large-scale MVS dataset with ground-truth for the meta-
learning stage and demonstrate domain adaptation on a smaller-scale MVS dataset from a
different domain. For meta-learning, we use the BlendedMVS dataset [36] which has a mix
of outdoor and indoor scenes. The dataset contains over 17k high-resolution images covering
a variety of scenes, including cities, architectures, sculptures and small objects. The dataset
is divided into training and validation sets which we use for the meta-learning. Domain
adaptation is tested on the DTU [17] dataset, where we fine-tune the model on the training
split and evaluate its final performance on the test split. The DTU scans consist of different
objects in a different indoor environment with varied lighting conditions.

4.1 Training Details
The number of neighbouring frames N is 2 for meta-learning and fine-tuning. The model is
tested with N = 4 frames. The number of depths (d = 256), input resolution (H = 512,W =
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640) and output depth resolution (H = 128,W = 160) are initialized as in the original MVS-
Net setup for fair comparison [34]. Learning rates are selected as α = 10−4 and β = 10−4.
The model is fine-tuned with a learning rate of 10−7 and a batch size of 4 multi-view ex-
amples with one reference frame and N neighbouring frames each. The self-supervised loss
weights are set to γphoto = 5,γssim = 1 and γsmooth = 0.01. For meta-learning we use k = 3
multi-view examples in each update cycle. The meta-training and testing have been per-
formed on the same hardware configuration (4 NVidia Titan RTX GPUs) using a PyTorch
implementation. We used the Learnable [2] library for implementing first-order MAML.

4.2 Depth Map Fusion

Similar to MVSNet [34], we fuse the predicted depth maps into point cloud reconstructions
using [22]1. The method determines a subset of the images using the view selection score of
COLMAP [25]. Their depth maps are projected to 3D points in a common coordinate frame.
Matches of points in neighboring views are found through reprojection into the images.
Points with reprojection distance error with threshold < 1 and relative depth difference with
threshold < 0.01 are averaged to obtain the final point cloud. We reconstruct point clouds by
fusing the generated depth maps for those pixels with confidence above threshold > 0.8.

4.3 Quantitative Results

The fine-tuned model is evaluated on the DTU test split [18, 34]. We use the evaluation met-
rics as in [1]. The accuracy distance metric is measured as the distance from the estimated
reconstruction to the ground-truth, encapsulating the accuracy of the estimated points. The
completeness is measured as the distance from the ground-truth reconstruction points to the
estimated reconstruction, encapsulating how much of the surface is captured by the MVS
reconstruction. Overall is the mean of accuracy and completion (see Table 1). Additionally,
we report the overall F-score metric [21] at inlier thresholds of 1 mm and 2 mm. We uti-
lize [39] for calculating the precision and recall (see Table 1: %-age (percentage) columns ).
The F-score is the harmonic mean of precision and recall.

The results in Table 1 demonstrate that our method can improve results over its self-
supervised baseline MVSNet in [20]. It is second to [7] in terms of overall metric among
self-supervised methods. Filtering with the confidence mask can lead to higher accuracy
in favor of lower completeness. Note that our method achieves state-of-the-art results in the
overall F-score measures at 1 mm and 2 mm inlier threshold compared to self-supervised and
classical methods. Remarkably it fares similar to one of the supervised methods (SurfaceNet)
in several metrics.

4.4 Qualitative Results

Figure 4 display the qualitative evaluation of our proposed method with respect to supervised
methods ( [18, 34]). Our method provides a superior completeness and as it can be observed
from the reconstruction, some surrounding structures are also reconstructed which are not
present in the ground truth.

1We use the open-source implementation at https://github.com/xy-guo/MVSNet_pytorch with
its default parameter setting
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method acc. comp. over. prec. rec. over. F prec. rec. over. F

(1 mm) in % (2mm) in %

Camp [4] (C) 0.835 0.554 0.695 71.75 64.94 66.31 84.93 69.93 74.36
Furu [10](C) 0.612 0.939 0.775 69.55 61.52 63.26 77.3 64.06 70.06
Tola [28](C) 0.343 1.19 0.766 90.49 57.83 68.07 92.35 60.01 72.75
MVSNet [34](Sup DTU) 0.396 0.527 0.462 86.46 71.13 75.69 91.06 75.70 80.25
Ours (Sup PT bMVS, Sup FT DTU) 0.441 0.387 0.414 83.55 74.25 76.93 88.56 77.63 81.09
Surfacenet [18](Sup DTU) 0.450 1.043 0.746 83.8 63.38 69.95 87.44 67.87 74.81

MVSNet [20] (Self DTU) 0.881 1.073 0.977 61.54 44.98 51.98 85.15 61.08 71.13
MVS2 [7](Self DTU) 0.760 0.515 0.633 70.56 66.12 68.27 - - -

Ours (Meta PT bMVS, Self FT DTU) 0.5942 0.7787 0.6865 80.18 63.58 68.67 90.95 69.08 76.22

Table 1: Evaluation scores for reconstruction metrics (C: classical, Sup: supervised, Self:
self-supervised, Meta: meta-learning). PT: pre-trained, FT: fine-tuned. bMVS: trained on
Blended MVS. DTU: trained on DTU. Lower score is better for accuracy (acc.), complete-
ness (comp.) and overall (over.) metrics. Higher score is better for precision (prec.), recall
(rec.) and overall F-score (over. F) metric. Blue indicates best among all methods. Best
results among methods trained self-supervised on DTU are shown in bold. Our approach
demonstrates improved results over its self-supervised baseline MVSNet [20]. Our method
achieves state-of-the-art results in the overall F-score measures at 1 mm and 2 mm inlier
threshold compared to self-supervised and classical methods. We even fare similar to a su-
pervised approach (SurfaceNet) in several metrics.

method acc. comp. over. F prec. rec. over. F

(1 mm) in %

Self DTU(d=128) 0.881 1.073 0.977 61.54 44.98 51.98
Self DTU (d=256) 1.159 0.6083 0.8837 64.85 64.68 63.57

Self PT bMVS, Self FT DTU 0.9448 0.6345 0.7896 68.43 63.38 64.42
Sup PT bMVS, Self FT DTU 0.7808 0.6769 0.7288 74.54 64.35 67.49

Ours (Meta PT bMVS, Self FT DTU, no conf. mask) 0.7242 0.8422 0.7832 75.22 60.25 65.31
Ours (Meta PT bMVS, Self FT DTU) 0.5942 0.7787 0.6865 80.18 63.58 68.67

Table 2: Ablation study (bold shows best results). Acronyms follow Table 1. Our meta
learning approach achieves better overall scores than the other training variants.

4.5 Ablation Studies

We perform ablation studies on the following training conditions:
• Self-supervised MVSNet setup (Self DTU (d=256)) similar to [20], with twice the

depth discretization level (d=256). It was trained on DTU train split, and has different
loss hyperparameters (such as reprojection loss weights as proposed in [20]).
• Similar as the previous setup, but pre-trained (PT) on BlendedMVS using self-supervi-

sed learning ((Self PT bMVS, Self FT DTU)) and supervised learning (Sup PT bMVS,
Self FT DTU)). The model is fine-tuned (FT) on DTU using self-supervised learning.
• Our meta-training setup without the confidence mask training (Ours (Meta PT bMVS,

Self FT DTU, no conf. mask)).
• Our proposed meta-training setup with the confidence mask training (Ours (Meta PT

bMVS, Self FT DTU)).
Table 2 shows the results for these variations of our model. The overall scores highlight

that meta learning outperforms the straightforward fine-tuning strategy (PT bMVS) with the
same sequence of datasets, even if it is pre-trained supervised. Confidence weight masks are
effective for decreasing the effect of outliers during learning which improves performance.
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Ground Truth MVSNet (Sup) SurfaceNet (Sup) Ours (Meta, Self)

Figure 4: Point cloud reconstructions. From left to right: ground truth, MVSNet, SurfaceNet
and ours. Our reconstruction results provide a better completeness than SurfaceNet and
appear similar to the supervised MVSNet results.

5 Conclusions

Adaptability to new domains through self-supervision is a powerful property, especially for
a multi-view stereo learning module where dense ground-truth depth data is tedious and
difficult to obtain. We propose a meta learning approach which trains a network for self-
supervised adaptation to a novel data domain with changes in environment and conditions.
Our approach learns a loss confidence mask for self-supervised learning. In our experi-
ments, we demonstrate that our meta-learning helps to train the network for adapting to new
domains using self-supervision. Our approach can improve self-supervised domain adapta-
tion performance over naive pre-training using depth supervision. It achieves reconstruction
results which well compare with a previous supervised method and classical methods, and
can improve performance over a self-supervised baseline.

Meta learning and multi-view stereo learning is a popular topic in the field of machine
learning and computer vision. In the future, we will investigate architectures for high reso-
lution images for an improved and more detailed reconstruction.
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