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Abstract

Scene graph generation (SGG) aims to predict graph-structured descriptions of input
images, in the form of objects and relationships between them. This task is becom-
ing increasingly useful for progress at the interface of vision and language. Here, it
is important—yet challenging—to perform well on novel (zero-shot) or rare (few-shot)
compositions of objects and relationships. In this paper, we identify two key issues that
limit such generalization. Firstly, we show that the standard loss used in this task is unin-
tentionally a function of scene graph density. This leads to the neglect of individual edges
in large sparse graphs during training, even though these contain diverse few-shot exam-
ples that are important for generalization. Secondly, the frequency of relationships can
create a strong bias in this task, such that a “blind” model predicting the most frequent
relationship achieves good performance. Consequently, some state-of-the-art models ex-
ploit this bias to improve results. We show that such models can suffer the most in their
ability to generalize to rare compositions, evaluating two different models on the Visual
Genome dataset and its more recent, improved version, GQA. To address these issues,
we introduce a density-normalized edge loss, which provides more than a two-fold im-
provement in certain generalization metrics. Compared to other works in this direction,
our enhancements require only a few lines of code and no added computational cost.
We also highlight the difficulty of accurately evaluating models using existing metrics,
especially on zero/few shots, and introduce a novel weighted metric.1
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1The code is available at https://github.com/bknyaz/sgg.
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Figure 1: In this work, we improve scene graph generation P(G|I). In many downstream tasks, such
as VQA, the result directly depends on the accuracy of predicted scene graphs.
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Figure 2: Motivation of our work. We split the training set of Visual Genome [19] into two subsets:
those with relatively small (≤ 10 nodes) and large (> 10 nodes) graphs. (a) While each subset contains
a similar number of images (the three left bars), larger graphs contain more few shot labels (the
three right bars). (b) Baseline methods ([33] in this case) fail to learn from larger graphs due to their
loss function. However, training on large graphs and corresponding few shot labels is important for
stronger generalization. We address this limitation and significantly improve results on zero and few
shots. (c, d) Small and large scene graphs typically describe simple and complex scenes respectively.

1 Introduction
In recent years, there has been growing interest to connect successes in visual perception
with language and reasoning [27, 42]. This requires us to design systems that can not only
recognize objects, but understand and reason about the relationships between them. This
is essential for such tasks as visual question answering (VQA) [2, 5, 16] or caption gen-
eration [12, 36]. However, predicting a high-level semantic output (e.g. answer) from a
low-level visual signal (e.g. image) is challenging due to a vast gap between the modalities.
To bridge this gap, it would be useful to have some intermediate representation that can be
relatively easily generated by the low-level module and, at the same time, can be effectively
used by the high-level reasoning module. We want this representation to semantically de-
scribe the visual scene in terms of objects and relationships between them, which leads us to
a structured image representation, the scene graph (SG) [18, 19]. A scene graph is a collec-
tion of visual relationship triplets: <subject, predicate, object> (e.g. <cup, on, table>). Each
node in the graph corresponds to a subject or object (with a specific image location) and
edges to predicates (Figure 1). Besides bridging the gap, SGs can be used to verify how well
the model has understood the visual world, as opposed to just exploiting one of the biases in
a dataset [1, 3, 17]. Alternative directions to SGs include, for example, attention [24].

Scene graph generation (SGG) is the task of predicting a SG given an input image. The
inferred SG can be used directly for downstream tasks such as VQA [15, 38], image cap-
tioning [12, 36] or retrieval [4, 18, 30]. A model which performs well on SGG should
demonstrate the ability to ground visual concepts to images and generalize to compositions
of objects and predicates in new contexts. In real world images, some compositions (e.g.
<cup, on, table> ) appear more frequently than others (e.g. <cup, on, surfboard> or <cup,
under, table>), which creates a strong frequency bias. This makes it particularly challenging
for models to generalize to novel (zero shot) and rare (few shot) compositions, even though
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each of the subjects, objects and predicates have been observed at training time. The prob-
lem is exacerbated by the test set and evaluation metrics, which do not penalize models that
blindly rely on such bias. Indeed, Zellers et al. [37] has pointed out that SGG models largely
exploit simple co-occurrence information. In fact, the performance of models predicting
solely based on frequency (i.e. a cup is most likely to be on a table) is not far from the
state-of-the-art using common metrics (see FREQ in Table 1).

In this work, we reveal that (a) the frequency bias exploited by certain models leads to poor
generalization on few-shot and zero-shot compositions; (b) existing models disproportion-
ately penalize large graphs, even if these often contain many of the infrequent visual relation-
ships, which leads to performance degradation on few and zero-shot cases (Figure 2). We
address these challenges and show that our suggested improvements can provide benefits for
two strong baseline models [33, 37]. Overall, we make the following four contributions:

1. Improved loss: we introduce a density-normalized edge loss, which improves results on
all metrics, especially for few and zero shots (Section 3.2);

2. Novel weighted metric: we illustrate several issues in the evaluation of few and zero
shot compositions of objects and predicates, proposing a novel weighted metric which
can better track the performance of this critical desiderata (Section 3.3);

3. Frequency bias: we demonstrate a negative effect of the frequency bias, proposed in
Neural Motifs [37], on few and zero shot performance (Section 4);

4. Scaling to GQA: in addition to evaluating on Visual Genome (VG) [19], we confirm the
usefulness of our loss and metrics on GQA [16] – an improved version of VG. Differing in
its graph properties (Section 4), GQA has not been used to evaluate SGG models before.

2 Related Work
Zero shot learning. In vision tasks, such as image classification, zero shot learning has
been extensively studied, and the main approaches are based on attributes [20] and semantic
embeddings [11, 32]. The first approach is related to the zero-shot problem we address in
this work: it assumes that all individual attributes of objects (color, shape, etc.) are observed
during training, such that novel classes can be detected at test time based on compositions
of their attributes. Zero shot learning in scene graphs is similar: all individual subjects, ob-
jects and predicates are observed during training, but most of their compositions are not. This
task was first evaluated in [22] on the VRD dataset using a joint vision-language model. Sev-
eral follow-up works attempted to improve upon it: by learning a translation operator in the
embedding space [39], clustering in a weakly-supervised fashion [25], using conditional ran-
dom fields [8] or optimizing a cycle-consistency loss to learn object-agnostic features [35].
Augmentation using generative networks to generate more examples of rare cases is another
promising approach [31]; but, it was only evaluated in the predicate classification task. In our
work, we also consider subject/object classification to enable the classification of the whole
triplets, making the “image to scene graph” pipeline complete. Most recently, Tang et al.
[30] proposed learning causal graphs and showed strong performance in zero shot cases.

While these works improve generalization, none of them has identified the challenges and
importance of learning from large graphs for generalization. By concentrating the model’s
capacity on smaller graphs and neglecting larger graphs, baseline models limit the variability
of training data, useful for stronger generalization [14]. Our loss enables this learning, in-
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creasing the effective data variability. Moreover, previous gains typically incur a large com-
putational cost, while our loss has negligible cost and can be easily added to other models.

Few shot predicates. Several recent works have addressed the problem of imbalanced and
few shot predicate classes [6, 7, 10, 29, 30, 41]. However, compared to our work, these
works have not considered the imbalance between foreground and background edges, which
is more severe than other predicate classes (Figure 3) and is important to be fixed as we
show in this work. Moreover, we argue that the compositional generalization, not addressed
in those works, can be more difficult than generalization to rare predicates. For example,
the triplet <cup, on, surfboard> is challenging to be predicted correctly as a whole; even
though ‘on’ can be the most frequent predicate, it has never been observed together with
‘cup’ and ‘surfboard’. Experimental results in previous work [22, 30, 31, 35, 39] highlight
this difficulty. Throughout this work, by “few shot” we assume triplets, not predicates.

“Unbiasing” methods. Our idea is similar to the Focal loss [21], which addresses the im-
balance between foreground and background objects in the object detection task. However,
directly applying the focal loss to Visual Genome is challenging, due to the large amount
of missing and mislabeled examples in the dataset. In this case, concentrating the model’s
capacity on “hard” examples can be equivalent to putting more weight on noise, which can
hurt performance. Tang et al. [30] compared the focal loss and other unbiasing methods,
such as upsampling and upweighting, and did not report significantly better results.

3 Methods
In this section, we will review a standard loss used to train scene graph generation models
(Section 3.1) and describe our improved loss, (6) (Section 3.2). We will then discuss issues
with evaluating rarer combinations and propose a new weighted metric, (8) (Section 3.3).

3.1 Overview of Scene Graph Generation
In scene graph generation, given an image I, we aim to output a scene graph G = (O,R)
consisting of a set of subjects and objects (O) as nodes and a set of relationships or predicates
(R) between them as edges (Figure 1). So the task is to maximize the probability P(G|I),
which can be expressed as P(O,R|I) =P(O|I) P(R|I,O). Except for works that directly learn
from pixels [23], the task is commonly [33, 34, 37] reformulated by first detecting bounding
boxes B and extracting corresponding object and edge features, V = f (I,B) and E = g(I,B)
respectively, using some functions f ,g (e.g. a ConvNet followed by ROI Align [13]):

P(G|I) = P(V,E|I) P(O,R|V,E, I). (1)

The advantage of this approach is that solving P(O,R|V,E, I) is easier than solving P(O,R|I).
At the same time, to compute P(V,E|I) we can use pretrained object detectors [13, 26].
Therefore, we follow [33, 34, 37] and use this approach to scene graph generation.

In practice, we can assume that the pretrained object detector is fixed or that ground truth
bounding boxes B are available, so we can assume P(V,E|I) is constant. In addition, follow-
ing [22, 33, 34], we can assume conditional independence of variables O and R: P(O,R|V,E, I)=
P(O|V,E, I)P(R|V,E, I). We thus obtain the scene graph generation loss:

−logP(G|I) =−logP(O|V,E, I)− logP(R|V,E, I). (2)
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Some models [37] reasonably do not assume the conditional independence of O and R, solv-
ing P(O|V,E, I)P(R|O,V,E, I). However, such a model must be carefully regularized, since it
can start to ignore (V,E, I) and mainly rely on the frequency distribution P(R|O) as a stronger
signal. For example, the model can learn that between ‘cup’ and ‘table’ the relationship is
most likely to be ‘on’, regardless the visual signal. As we show, this can hurt generalization.
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Eq. (2) is commonly handled as a multitask classification
problem, where each task is optimized by the cross-entropy
loss L. In particular, given a batch of scene graphs with N
nodes and M edges in total, the loss is the following:

L= Lnode +Ledge =
1
N

N

∑
i
Lob j,i +

1
M

M

∑
i j
Lrel,i j. (3)

Node and edge features (V,E) output by the detector form a
complete graph without self-loops (Figure 1). So, conven-
tionally [33, 34, 37], the loss is applied to all edges: M ≈ N2.
These edges can be divided into foreground (FG), corre-
sponding to annotated edges, and background (BG), corre-
sponding to not annotated edges: M = MFG +MBG. The BG
edge type is similar to a “negative” class in the object detec-
tion task and has a similar purpose. Without training on BG edges, at test time the model
would label all pairs of nodes as “positive”, i.e. having some relationship, when often it is
not the case (at least, given the vocabulary in the datasets). Therefore, not using the BG type
can hurt the quality of predicted scene graphs and can lower recall.

3.2 Hyperparameter-free Normalization of the Edge Loss
Baseline loss as a function of graph density. In scene graph datasets such as Visual
Genome, the number of BG edges is greater than FG ones (Figure 3), yet the baseline loss (3)
does not explicitly differentiate between BG and other edges. If we assume a fixed probabil-
ity for two objects to have a relationship, then as the number of nodes grows we can expect
fewer of them to have a relationship. Thus the graph density can vary based on the num-
ber of nodes (Figure 4), a fact not taken into account in Eq. (3). To avoid this, we start by
decoupling the edge term of (3) into the foreground (FG) and background (BG) terms:

Ledge =
1
M

M

∑
i j
Lrel,i j =

1
MFG +MBG

[
∑

MFG
i j∈E Lrel,i j︸ ︷︷ ︸
FG edges

+∑
MBG
i j/∈E Lrel,i j︸ ︷︷ ︸
BG edges

]
, (4)

where E is a set of FG edges, MFG is the number of FG edges (|E|) and MBG is the num-
ber of BG edges. Next, we denote FG and BG edge losses averaged per batch as LFG =
1/MFG ∑

MFG
i j∈E Lrel,i j and LBG = 1/MBG ∑

MBG
i j/∈E Lrel,i j, respectively. Then, using the definition

of graph density as a proportion of FG edges to all edges, d = MFG/(MBG +MFG), we can
express the total baseline loss equivalent to Eq. (3) as a function of graph density:

L= Lnode +dLFG +(1−d)LBG. (5)

Density-normalized edge loss. Eq. (5) and Figure 4 allow us to notice two issues:

1. Discrepancy of the loss between graphs of different sizes. Since d exponentially de-
creases with graph size (Fig.4, left), FG edges of larger graphs are weighted less than edges
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of smaller graphs in the loss (Fig.4, middle), making the model neglect larger graphs.

2. Discrepancy between object and edge losses. Due to d tending to be small on average,
Ledge is much smaller than Lnode, so the model might focus mainly on Lnode (Fig.4, right).

We propose to address both issues by normalizing FG and BG terms by graph density d:

L= Lnode + γ
[
LFG +MBG/MFGLBG

]
. (6)

where γ = 1 in our default hyperparameter-free variant and γ 6= 1 only to empirically analyze
the loss (Table 4). Even though the BG term still depends on graph density, we found it to
be less sensitive to variations in d, since the BG loss quickly converges to some stable value,
performing a role of regularization (Figure 4, right). We examine this in detail in Section 4.

3.3 Weighted Triplet Recall
The common evaluation metric for scene graph prediction is image-level Recall@K or R@K
[33, 34, 37]. To compute it, we first need to extract the top-K triplets, TopK , from the entire
image based on ranked predictions of a model . Given a set of ground truth triplets, GT, the
image-level R@K is computed as (see Figure 5 for a visualization):

R@K = |TopK ∩GT|/|GT|. (7)
There are four issues with this metric (we discuss them in detail in Supp. Material):

(a) The frequency bias of triplets means more frequent triplets will dominate the metric.

(b) The denominator in (7) creates discrepancies between images with different |GT| (the
number of ground truth triplets in an image), especially pronounced in few/zero shots.

(c) Evaluation of zero (n = 0) and different few shot cases n = 1,5,10, ... [31] leads to many
R@K results [31]. This complicates the analysis. Instead, we want a single metric for all n.

(d) Two ways of computing the image-level recall [23, 37], graph constrained and uncon-
strained, lead to very different results and complicate the comparison (Figure 5).

To address issue (a), the predicate-normalized metric, mean recall (mR@K) [6, 29] and
weighted mR@K were introduced [41]. These metrics, however, only address the imbalance
of predicate classes, not whole triplets. Early work [9, 22] used triplet-level Recall@K (or
Rtr@K) for some tasks, which is based on ranking predicted triplets for each ground truth
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subject-object pair independently; the pairs without relationships are not evaluated. Hence,
Rtr@K is similar to top-K accuracy. This metric avoids issues (b) and (d), but the issues
of the frequency bias (a) and unseen/rare cases (c) still remain. To alleviate these, we adapt
this metric to better track unseen and rare cases. We call our novel metric Weighted Triplet
Recall wRtr@K, which computes a recall at each triplet and reweights the average result
based on the frequency of the GT triplet in the training set:

wRtr@K = ∑
T
t wt [rankt ≤ K], (8)

where T is the number of all test triplets, [·] is the Iverson bracket, wt =
1

(nt+1)∑t 1/(nt+1) ∈
[0,1] and nt is the number of occurrences of triplet t in the training set; nt + 1 is used to
handle zero-shot triplets; ∑t wt = 1. Since wRtr@K is still a triplet-level metric, we avoid
issues (b) and (d). Our metric is also robust to the frequency-bias (a), since frequent triplets
(with high nt ) are downweighted proportionally, which we confirm by evaluating the FREQ
model from [37]. Finally, a single wRtr@K value shows zero and few shot performance
linearly aggregated for all n≥ 0, solving issue (c).

4 Experiments
Datasets. We evaluate our loss and metric on Visual Genome [19]. Since it is a noisy dataset,
several “clean” variants were introduced. We mainly experiment with the most common
variant (VG) [33], which consists of the 150 most frequent object and 50 predicates classes.
An alternative variant (VTE) [39] has been often used for zero-shot evaluation. Surprisingly,
we found that the VG split [33] is better suited for this task, given a larger variability of
zero-shot triplets in the test set (see Supp. Material). Recently, GQA [16] was introduced,
where scene graphs were cleaned to automatically construct question answer pairs. GQA
has more object and predicate classes, so that zero and few shot triplets are more likely to
occur at test time. To the best of our knowledge, scene graph generation (SGG) results have
not been reported on GQA before, even though some VQA models have relied on SGG [15].

Training and evaluation details. We experiment with two models: Message Passing (MP) [33]
and Neural Motifs (NM) [37]. We use publicly available implementations of MP and NM2,
with all architecture details and hyperparameters kept the same (except for the small changes
outlined in Supp. Material). We perform more experiments with Message Passing, since our
experiments revealed that it better generalizes to zero and few shot cases, while performing
only slightly worse on other metrics. In addition, it is a relatively simple model, which makes

2https://github.com/rowanz/neural-motifs

GT triplets:
1. cup on surfboard
2. surfboard with flower
3. table made of surfboard
4. head of man
5. man in shirt
6. chair behind surfboard
7. plant near door

Recall@100 = 2/7 ? 30%

No Graph Constraint

Top model predictions     Score
1. man wearing shirt 0.10
2. cup on table 0.08
3. man has head 0.07
4. chair behind surfboard 0.04
5. sufrboard near man 0.03
6. man near surfboard 0.02
...
100. plant near house  0.01

Recall@100 = 1/7 ? 14%

Graph Constraint
keep only top-1 prediction 
between 'man' and 'shirt' 
(same for other pairs of objects)

wRecall@100 = ? t wt [rankt ? 100]= (35+0.08+0.06+7+...+0.30) x 10-6 ? 28.2%

Weighted Triplet Recall

Image Level Triplet Level

Top model predictions     Score
1. man wearing shirt 0.10
2. man in shirt 0.09
3. cup on table 0.08
4. man has head 0.07
5. chair behind surfboard 0.04
6. sufrboard near man 0.03
7. man near surfboard 0.02
...
100. man holding cup 0.01

multiple prediction between 
'man' and 'shirt'  are ranked

GT triplets Triplet-level rankt nt wt x 10-6

1. cup on surfboard >100 0 70
2. surfboard with flower 99 1 35
3. table made of surfboard >100 0 70
4. head of man 5 859 0.08
5. man in shirt 2 1205 0.06
6. chair behind surfboard >100 0 70
7. plant near door 85 9 7
...
183642. man holding phone 70 233 0.30

This metric treats triplets of all images as a joint set.

...

Figure 5: Existing image-level recall metrics versus our proposed weighted triplet recall. We first
make unweighted predictions rankt ≤ K for all GT triplets in all test images, then reweight them
according to the frequency distribution (8). Computing our metric per image would be noisy.
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at
a

-s
et Model Loss Scene Graph Classification Predicate Classification

R@100 RZS@100 Rtr@20 wRtr@20 mR@100 R@50 RZS@50 Rtr@5 wRtr@5 mR@50

V
is

ua
l

G
en

om
e

FREQ [37] − 45.4 0.5 51.7 18.3 19.1 69.8 0.3 89.8 31.0 22.1

MP [33, 37] BASELINE (3) 47.2 8.2 51.9 26.2 17.3 74.8 23.3 86.6 51.3 20.6
OURS (6) 48.6 9.1 52.6 28.2 26.5 78.2 28.4 89.4 58.4 32.1

NM [37]
BASELINE (3) 48.1 5.7 51.9 26.5 20.4 80.5 11.1 91.0 51.8 26.9
OURS (6) 48.4 7.1 52.0 27.7 25.5 82.0 16.7 92.0 56.4 34.8
OURS (6), NO FREQ 48.4 8.9 51.8 28.0 26.1 82.5 26.6 92.4 60.3 35.8

KERN? [6] BASELINE (3) 49.0 3.7 52.6 27.7 26.2 81.9 5.8 91.9 49.1 36.3
RelDN? [41] BASELINE (3) 50.8† − − − − 93.7† − − − −

G
Q

A MP [33, 37] BASELINE (3) 27.1 2.8 31.9 8.9 1.6 59.7 34.9 96.4 88.4 1.8

G
Q

A
-n

L
R

OURS (6) 27.6 3.0 32.2 8.9 2.8 61.0 37.2 96.9 89.5 2.9

MP [33, 37] BASELINE (3) 24.9 3.0 30.2 12.4 2.8 58.1 21.7 71.6 47.0 4.6
OURS (6) 25.0 3.2 29.4 12.6 7.0 62.4 26.2 77.9 55.0 12.1

Table 1: Results on Visual Genome (split [33]) and GQA [16]. We obtain particularly strong results in
columns RZS, wRtr and mR in each of the two tasks. denotes cases with ≥ 15% relative difference
between the baseline and our result; denotes a difference of ≥ 50%. Best results for each dataset
(VG, GQA and GQA-nLR) are bolded. GQA-nLR: our version of GQA with left/right spatial rela-
tionships excluded, where scene graphs become much sparser (see Supp. Material for dataset details).
?Results are provided for the reference and evaluating our loss with these methods is left for future
work. †The correctness of this evaluation is discussed in [28].

the analysis of its performance easier. We evaluate a trained model on two tasks, according
to [33]: scene graph classification (SGCls), in which the model must label objects and rela-
tionships between them given ground truth bounding boxes, i.e. P(O,R|I,B); and predicate
classification (PredCls), in which the model only needs to label a predicate, i.e. P(R|I,B,O).
Results on SGGen, P(G|I), which includes detecting bounding boxes first, directly depend
on SGCls, and are reported and discussed in Supp. Material.

4.1 Results
Table 1 shows our main results, where for each task we report five metrics: image-level
recall on all triplets (R@K) and zero-shot triplets (RZS@K), triplet-level recall Rtr@K and
our weighted triplet recall (wRtr@K), and mR@K. We compute recalls without the graph
constraint since, as we discuss in Supp. Material, this is a more accurate metric. We denote
graph-constrained results as SGCls-GC, PredCls-GC and report them only in Tables 2, 3.

VG results. We can observe that both Message Passing (MP) and Neural Motifs (NM)
greatly benefit from our density-normalized loss on all reported metrics. Larger gaps are
achieved on metrics evaluating zero and few shots. For example, in PredCls on Visual
Genome, MP with our loss is 22% better (in relative terms) on zero shots, while NM with
our loss is 50% better. The gains arising from other zero shot and weighted metrics are also
significant. GQA results. On GQA, our loss also consistently improves results, especially
in PredCls. However, the gap is lower compared to VG. There are two reasons for this: 1)
scene graphs in GQA are much denser (see Supp. Material), i.e. the imbalance between FG
and BG edges is less pronounced, which means that in the baseline loss the edge term is not
diminished to the extent it is in VG; and 2) the training set of GQA is more diverse than
VG (with 15 times more labeled triplets), which makes the baseline model generalize well
on zero and few shots. We confirm these arguments by training and evaluating on our ver-
sion of GQA: GQA-nLR with left and right predicate classes excluded making scene graph
properties, in particular sparsity, more similar to those of VG.
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Figure 6: Ablating FREQ. FREQ only
marginally improves results on R@50.
At the same time, it leads to large drops
in zero-shot recall RZS@50 (and our
weighted triplet recall, see Table 1).

Effect of the Frequency Bias (FREQ) on Zero and
Few Shot Performance. The FREQ model [37] sim-
ply predicts the most frequent predicate between a
subject and an object, P(R|O). Its effect on few shot
generalization has not been empirically studied be-
fore. We study this by adding/ablating FREQ from
baseline MP and NM on Visual Genome (Figure 6).
Our results indicate that FREQ only marginally im-
proves results on unweighted metrics. At the same
time, perhaps unsurprisingly, it leads to severe drops
in zero shot and weighted metrics, especially in NM.
For example, by ablating FREQ from NM, we improve
PredCls-RZS@50 from 11% to 25%. This also high-
lights that the existing recall metrics are a poor choice to understand the effectiveness of a
model.

25 30 35 40 45 50 55 60
Weighted triplet recall, %

SG
Cl

s@
20

Pr
ed

Cl
s@

5

Small train graphs
Large train graphs
All train graphs

Baseline
Ours

Figure 7: Learning from small (N ≤
10) vs. large (N > 10) graphs. Our
loss makes models learn from larger
graphs more effectively, which is im-
portant for generalization, because such
graphs contain a lot of labels (see Fig-
ure 2).

Why does loss normalization help more on few and
zero shots? The baseline loss effectively ignores edge
labels of large graphs, because it is scaled by a small
d in those cases (Figure 4). To validate that, we split
the training set of Visual Genome in two subsets, with
a comparable number of images in each: with rela-
tively small and large graphs evaluating on the origi-
nal test set in both cases. We observe that the baseline
model does not learn well from large graphs, while our
loss enables this learning (Figure 7). Moreover, when
trained on small graphs only, the baseline is even bet-
ter in PredCls than when trained on all graphs. This is
because in the latter case, large graphs, when present
in a batch, make the whole batch more sparse, down-
weighting the edge loss of small graphs as well. At
the same time, larger graphs predictably contain more labels, including many few shot la-
bels (Figure 2). Together, these two factors make the baseline ignore many few shot triplets
pertaining to larger graphs at training time, so the model cannot generalize to them at test
time. Since the baseline essentially observes less variability during training, it leads to poor
generalization on zero shots as well. This argument aligns well to the works from other do-
mains [14], showing that generalization strongly depends on the diversity of samples during
training. Our loss fixes the issue of learning from larger graphs, which, given the reasons
above, directly affects the ability to generalize.

Alternative approaches. We compare our loss to ones with tuned hyperparameters α,β ,λ :
L= Lnode+αLFG +βLBG, (9)
L= Lnode+λLedge. (10)

Our main finding (Table 4) is that, while these losses can give similar or better results in
some cases, the parameters α , β and λ do not generally transfer across datasets and must be
tuned every time, which can be problematic at larger scale [40]. In contrast, our loss does
not require tuning and achieves comparable performance.
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Model SGCls-GC PredCls-GC

VTE [31, 39] − 16.4
STA [35] − 18.9
ST-GAN [31] − 19.0
MP, baseline (3) 2.3 20.4

MP, ours (6) 3.1 21.4

Table 2: Zero-shot results (RZS@100)
on the VTE split [39].

Model SGCls-GC PredCls-GC

NM+SUM+TDE [30] 4.5 18.2
NM, baseline (3) 1.7 9.5
MP, baseline (3) 3.2 20.1

NM, no Freq, ours (6) 3.9 20.4
MP, ours (6) 4.2 21.5

Table 3: Zero-shot results (RZS@100) on the
VG split [33]. Tang et al. [30] uses ResNeXt-101
as a backbone, which helps to improve results.

Testing on VG Testing on GQA

Tuning dataset Hyperparams Loss SGCls@100 PredCls@50 SGCls@100 PredCls@50

No tune (baseline) − (3) 47.2/8.2 74.8/23.3 27.1/2.8 59.7/34.9

VG λ = 20 (10) 48.9/9.2 78.3/27.9 26.6/2.6 60.4/36.9
VG α = 0.5,β = 20 (9) 49.1/9.4 78.2/27.8 27.1/2.9 60.5/36.3
GQA λ = 5 (10) 48.8/9.2 78.0/26.8 27.8/2.9 60.5/36.1
GQA α = 1,β = 5 (9) 48.6/8.7 77.4/27.8 27.5/2.9 60.7/36.6

No tune (ours, independ. norm) α = β = 1 (9) 47.5/8.4 74.3/25.3 27.4/2.9 59.5/35.4
No tune (ours, no upweight) γ = 0.05/0.2 for VG/GQA (6) 48.7/9.6 78.3/28.2 27.4/2.9 61.1/36.8
No tune (ours) γ = 1 (6) 48.6/9.1 78.2/28.4 27.6/3.0 61.0/37.2

Table 4: Comparing our loss to other approaches using MP [33, 37] and R/RZS@K metrics.

Finally, to study the effect of density normalization separately from upweighting the edge
loss (which is a side effect of our normalization), we also consider downweighting our edge
term (6) by some γ < 1 to cancel out this upweighting effect. This ensures a similar range
for the losses in our comparison. We found (Table 4) that the results are still significantly
better than the baseline and, in some cases, even better than our hyperparameter-free loss.
This further confirms that normalization of the graph density is important on its own. When
carefully fine-tuned, the effects of normalization and upweighting are complimentary (e.g.
when α,β or γ are fine-tuned, the results tend to be better).

Comparison to other zero shot works. We also compare to previous works studying zero
shot generalization (Tables 2 and 3). For comprehensive evaluation, we test on both VTE and
VG splits. We achieve superior results on VTE, even by just using the baseline MP, because,
as shown in our main results, it generalizes well. On the VG split, we obtain results that
compete with a more recent Total Direct Effect (TDE) method [30], even though the latter
uses a more advanced detector and feature extractor. In all cases, our loss improves baseline
results and, except for RZS@100 in SGCls, leads to state-of-the-art generalization. Our loss
and TDE can be applied to a wide range of models, beyond MP and NM, to potentially have
a complementary effect on generalization, which is interesting to study in future work.

5 Conclusions
Scene graphs are a useful semantic representation of images, accelerating research in many
applications, such as visual question answering. It is vital for the SGG model to perform
well on unseen or rare compositions of objects and predicates, which are inevitable due to an
extremely long tail of the triplets distribution. We show that strong baseline models do not
effectively learn from all labels, leading to poor generalization on few/zero shots. Moreover,
current evaluation metrics do not reflect this problem, exacerbating it instead. We also show
that learning well from larger graphs is essential to enable stronger generalization. To this
end, we modify the loss commonly used in SGG and achieve significant improvements and,
in certain cases, state-of-the-art results, on both the existing and our novel weighted metric.
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