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Abstract

Recent approaches have achieved great successes in image generation from struc-
tured inputs, e.g., semantic segmentation, scene graph or layout. Although these meth-
ods allow specification of objects and their locations at image-level, they lack the fi-
delity and semantic control to specify visual appearance of these objects at an instance-
level. To address this limitation, we propose a new image generation method that enables
instance-level attribute control. Specifically, the input to our attribute-guided generative
model is a tuple that contains: (1) object bounding boxes, (2) object categories and (3)
an (optional) set of attributes for each object. The output is a generated image where
the requested objects are in the desired locations and have prescribed attributes. Several
losses work collaboratively to encourage accurate, consistent and diverse image genera-
tion. Experiments on Visual Genome [15] dataset demonstrate our model’s capacity to
control object-level attributes in generated images, and validate plausibility of disentan-
gled object-attribute representation in the image generation from layout task. Also, the
generated images from our model have higher resolution, object classification accuracy
and consistency, as compared to the previous state-of-the-art.

1 Introduction
Controlled image generation methods have achieved great successes in recent years, driven
by the advances in conditional Generative Adversarial Networks (GANs) [4, 14, 25, 27,
29, 37, 38, 42, 43] and disentangled representations [13, 44]. The goal of these methods
is to generate high-fidelity images from various user specified guidelines (conditions), such
as textual descriptions [7, 23, 32, 36, 37], attributes [3, 11, 18, 22, 26, 41], scene graphs
[1, 10, 19], layout [31, 40] and semantic segmentation [2, 8, 9, 11, 21, 28, 34, 42, 43]. The
high-level nature of most of these specifications is desirable from ease of use and control
point of views, but severely impoverished in terms of pixel-level spatial and appearance
information, leading to a challenging image generation problem.

In this paper, we specifically focus on image generation from layout, where the input
is a course spatial layout of the scene (e.g., bounding boxes and corresponding object class
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Figure 1: Attribute-guided Image Generation from Layout. Unlike prior layout-based im-
age generation architectures, our model allows for instance-level granular semantic attribute
control over individual objects (e.g., specifying that a person should be wearing something
black (top) or red (bottom)); it also ensures appearance consistency when bounding boxes
in layout undergo translation.

labels) and the output is an image consistent with the specified layout. Compared to text-
to-image [29, 37] and scene-graph-to-image [1, 10, 19] generation paradigms, layout-to-
image provides an easy, spatially aware and interactive abstraction for specifying desired
content. This makes this paradigm compelling and effective for users across the spectrum of
potential artistic skill sets; from children and amateurs to designers. Image generation from a
layout is a relatively new problem, with earlier methods using layout only as an intermediate
representation [7, 10], but not a core abstraction or specification exposed to the user.

Layout2Im [40] was the first model proposed for image generation from layout, followed
by more recent LostGAN [31], which improved on the performance in terms of overall image
quality. However, all current image generation from layout frameworks [31, 40] are limited
in a couple of fundamental ways. First, they lack ability to semantically control individual
object instances. While both Layout2Im and LostGAN model distributions over appearances
of objects through appearance [40] or style [31] latent codes, neither is able to control these
variations semantically. One can imagine using encoded sample patches depicting desired
objects as an implicit control mechanism (i.e., generate an instance of a tree or sky that
resembles an example in a given image patch), however, this is in the very least awkward
and time consuming from the user perspective. Second, they generally lack consistency – are
not spatially equivariant. Intuitively, shifting a location (bounding box) of an object in the
layout specification, while keeping appearance/style latent code fixed, should result in the
object simply shifting by the relatively same amount in the output image (property known
as equivariance). However, current models fail to achieve this intuitive consistency. Finally,
they are limited to low-resolution output images, typically of size 64×64.

In this paper, we address these challenges by proposing a new framework for attribute-
guided image generation from layout, building on, and substantially extending, the backbone
of [40]. In particular, we show that a series of simple and intuitive architectural changes:
incorporating (optional) attribute information, adopting a global context encoder, and adding
additional image generation path where object locations are shifted – leads to the instance-
level fine-grained control over the generation of objects, while increasing the image quality
and resolution. We call this model attribute-guided layout2im (see Figure 1).

Contributions: Our contributions are three fold: (1) our attribute-guided layout2im archi-
tecture allows (but does not require) direct instance-level granular semantic attribute control
over individual objects; (2) is directly optimized to be consistent, or equivariant, with re-
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spect to spatial shifts of object bounding boxes in the input layout; and (3) allows for higher-
resolution output images of size up to 128×128 by utilizing global context encoder and
progressive upsampling. Both qualitatively and quantitatively we show state-of-the-art gen-
erative performance on Visual Genome [15] benchmark dataset, while benefiting from the
desirable control properties, unavailable in other models. The code and pretrained models
will be made available 1.

2 Related Work
Image Generation from Scene Graph: Scene graph is a convenient directed graph struc-
ture designed to represent a scene, where nodes correspond to objects and edges to the re-
lationships between objects. Recently, scene graphs have been used in many image gen-
eration tasks due to their flexibility in explicitly encoding object-object relationships and
interactions [1, 10, 19]. The typical generation process involves two phases: (1) a graph
convolutional neural network [6] is applied to the scene graph to predict the scene layout
(i.e., bounding boxes and segmentation masks); and (2) the layout is then decoded into an
image. Different from methods that generate image as a whole, Li et al. [19] propose a
semi-parametric approach and crop refining network to reconcile the isolated crops into an
integrated image. Unlike in our approach, the scene layout in these models is used as an in-
termediate semantic representation to bridge abstract scene graph input and an image output.

Image Generation from Layout: Image layout, comprising bounding box locations, often
serves as an intermediate step for image generation (see above). Zhao et al. [40] proposed
image generation from layout as a task in its own right, where the image is generated from
bounding boxes and corresponding object categories. To combine multiple objects, [40]
sequentially fuse object feature maps using a convolutional LSTM (cLSTM) network; the
resulting fused feature map is then decoded to an image. Turkoglu et al. [33], on the other
hand, divide the generation into multiple stages where objects are added to the canvas one
by one. To better bridge the gap between layouts and images, Li et al. [17] uses a shape
generator to outline the object shape and provide the model fine-grained information from
text using object-driven attention. Similarly, [31] learns object-level fine-grained mask maps
that outline the object shape. In addition, [12, 31] show that incorporating layout information
into normalization layer yields better results: adopting instance normalization technique [12]
in generator realize multi-object style control [31], whereas spatially-adaptive normalization
[28] based on segmentation mask modulates activation in upsampling layers. Taking the
inspiration from [12, 28, 31], we apply spatially-adaptive normalization in our generator to
compute layout-aware affine transformations in normalization layers.

Semantic Image Synthesis: Semantic image synthesis is an image-to-image translation
task. While most methods use conditional adversarial training [4, 24], such as pix2pix [9],
pix2pixHD [34], cVAE-GAN and cLR-GAN [43], others such as Cascaded Refinement Net-
works [2] also yields plausible results. To preserve semantic information, normalization
techniques like SPADE [28] have recently been deployed to modulate the activations in nor-
malization layers through a spatially adaptive and learned transformation. Semantic image
synthesis can also serve as an intermediate step for image modeling [35]. In addition, some
image-to-image translation tasks are achieved in unsupervised manner [8, 21, 42], but most
existing semantic image synthesis models require paired data.

1
https://github.com/UBC-Computer-Vision-Group/attribute-guided-image-generation-from-layout
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Figure 2: Overview of our Attribute-Guided Layout2Im training pipeline. Our architec-
ture has three generation paths: Image reconstruction path (top/blue), Image generation path
(middle/red) and Layout reconfiguration path (bottom/orange). Attribute classifier is used in
reconstruction path to estimate attributes of objects that do not have any attribute annotations.
Non-GT (sampled) attributes are used in image generation path and layout reconfiguration
path to disentangle attribute information from class (wi) and appearance (zob ji).

Attribute-guided Image Generation: In image generation, various attempts have been
made to specify the attributes of generated images and objects. For example, [3, 18, 22,
26] aim to edit the attributes of the generated image using natural language descriptions.
In [18, 41] authors embed a visual attribute vector (e.g., blonde hair) for attribute-guided
face generation. Li et al. [19] also incorporates object-level appearance information in the
input, but it relies on external memory to sample objects. Another line of the literature
concentrates on editing images by providing reference images (e.g., [1]) to transfer style.
Different from prior approaches, our model allows direct attribute control over individual
instances of objects in complex generative scenes.

3 Approach
Let us start by formally defining the problem. Let Λ be an image canvas (e.g., of size
128×128) and let L = {(`i,attri,bboxi)

m
i=1} be a layout consisting of m labeled object in-

stances with class labels `i ∈ C, attributes attri = {ai j}ni
j=1, and bounding boxes defined by

top-left and bottom-right coordinates on the canvas, bboxi ⊆Λ, where |C| is the total number
of object categories and ai j ∈ A is the j-th attribute of i-th object instance; A is the attribute
set. Note that each object might have more than one attribute. Let zob ji be the latent code
for object instance (`i,attri,bboxi), modeling class- and attribute-unconstrained appearance.
We denote the set of all object instance latent codes in the layout L by Zob j = {zob ji}m

i=1.
Attribute-guided image generation from a layout can then be formulated as learning a

generator function G which maps given input (L,Zob j) to the output image I conforming to
specifications:

I = G(L,Zob j;ΘG), (1)
where ΘG parameterizes the generator function G and corresponds to the set of parameters
that need to be learned.
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Different from previous layout to image generation methods is explicit, but optional (atti
can be /0 or sampled from the prior), inclusion of the attributes. Further, we specifically aim
to learn G which is, at least to some extent, equivariant with respect to location of objects
bboxi in the layout. Our attribute-guided layout2im formulation builds on and improves [40],
as such it shares some of the basic architecture design principles outlined in Zhao et al. [40].

Training: The overall training pipeline of the proposed approach is illustrated in Figure 2.
Given the input image I and its layout L = {(`i,attri,bboxi)

m
i=1}, our model first creates a

word embedding wi for each object label `i and multi-hot attribute embedding ei ∈ {0,1}|A|
for object attribute(s)2 attri, and form a joint object-attribute embedding M(wi⊕ei) where⊕
is the vector concatenation and M is a MLP layer, composed of three fully connected layers
that map the concatenated vector to a lower dimensional vector. A set of object latent codes
Zob j = {zob ji}m

i=1 are sampled from the standard prior normal distributionN (0,1), and a new
Lshi f t = {(`i,attri,bboxshi f t

i )m
i=1} is constructed, where bboxshi f t

i represents bounding boxes
that are randomly shifted in the canvas Λ. The shifts are horizontal to maintain consistency.
Then, our model estimates another set of latent codes Zr

ob j = {zr
ob ji}

m
i=1, where zr

ob ji is sam-
pled from the posterior Q(zr

ob ji |Oi) conditioned on CNN features of object Oi cropped from
input image I. We effectively end up with three datasets:

Set 1: (L, Zr
ob j) for reconstruction of the original image. Mapping this input through genera-

tor G should result in an image Irec, which is a reconstruction of the training image I
serving as the source of the layout L;

Set 2: (L, Zob j) for generation of a new image sharing the original layout. The output of G
here should be image Irand that shares the layout with above, but where appearance of
each object instance is novel (sampled from the prior).

Set 3: (Lshi f t , Zob j) which is used to generate an image from reconfigured layout (i.e., recon-
figuration path, see Suppl. Sec. 1.1 for details). The output should be a corresponding
shifted image Ishi f t , which shares latent appearance codes with those from Set 2.

The same pipeline is applied to all three input sets simultaneously: multiple object feature
maps Fi are constructed based on the layout Li and (zob ji ⊕M(wi⊕ ei)), and then fed into
the object encoder and the objects fuser sequentially, generating a fused hidden feature map
H containing information from all specified objects. Lastly, we incorporate a global context
embedding g onto H to form a context-aware feature canvas Hg, and decode it back to an
image with a combination of deconvolution, upsampling and SPADE normalization layers
[28]. For generated object Oi in Irand and Ishi f t , we make the object estimator regress the
sampled latent codes zob ji based on Oi to encourage Oi to be consistent with the latent code
zob ji , and use an auxiliary object classifier and attribute classifier to ensure Oi has the de-
sired category and attributes. To train the model adversarially, we also introduce a pair of
discriminators, Dimg and Dob j, to classify results as being real/fake at image and object level.

Inference: At inference time, the model is able to synthesize a realistic image from a given
(user specified) layout L and object latent codes Zob j sampled from the prior normal object
appearance distributionN (0,1). The attributes can be specified by the user or sampled from
prior class distributions of object-attribute co-occurrence counts, which we also estimate
from data during training. In this way, attribute can be treated as “optional" at individual
instance level; i.e., one can specify sub-set of attributes for any sub-set of instances.

2Note exactly ni elements of ei will be 1 and the rest are 0.
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Figure 3: Global Context Encoder. The aggregated feature map H is fed into a set of conv
layers; then it is down-sampled, spatially expanded and concatenated to H itself to form
context-aware Hg feature map that can then be decoded into an image.

3.1 Attribute Encoder

Visual Genome [15] dataset provides attribute descriptions for some objects. For example,
a car object might have attributes red and parked, and a person object might have
attributes smile and tall. There are over 40,000 attributes in the datasets. We only keep
the most common 106 attributes for simplicity. In other words, |A|= 106. Each object might
have more than one attribute, hence we adopt multi-hot embedding for the attribute encoder.
If no attributes are specified for the object, the attribute embedding would be a vector of
zeros, i.e., ei = 0. We concatenate the multi-hot embedding with object word embedding
and pass it through an MLP layer to obtain the final object-attribute embedding M(wi⊕ ei),
which is then concatenated with (prior sampled) latent code zob ji to construct the object
feature map Fi. The feature map Fi is therefore constructed by filling bboxi of the feature
canvas with M(wi⊕ ei)⊕ zob ji .

Attribute Disentanglement: For two novel image generation paths, mainly (L, Zob j) and
(Lshi f t , Zob j) we further entice the model to use attribute embedding ei to determine appear-
ance of corresponding objects. To explicitly disentangle attribute information from zob ji and
wi during training, we randomly choose a subset of training objects and replace their GT at-
tributes with new attributes sampled from the attributes frequency distribution for the object
class. By doing this, we force the generator to use the attributes code ei to generate objects
with corresponding attributes, instead of encoding attribute information into zob ji and/or wi.

3.2 Global Context Encoder

At the last stage of the generation process, the fused feature map H is decoded back to the
output image by a stack of deconvolution layers. However, the generated image obtained
from simply decoding H often contains objects that are not coherent within a scene. For
example, it is observed that some generated objects and the background appear incoherent
and exhibit sharp transitions (image patch pasting effect). Hence, it is desirable to explicitly
incorporate global context information g in each receptive field of the feature map H, so that,
locally, object generation is more informed. Since H contains the information for all objects,
it itself is a natural choice for encoding the global context g (Figure 3). To encode g, we feed
the 8x8 feature map H through two convolution layers to downsample it to a 2x2 feature
map, which is average pooled to a global context vector. We then expand the vector to the
size of the fused feature map H. This concatenation, Hg = (g⊕H), is the final feature map
used to decode the image.
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3.3 SPADE normalization
Spatially-adaptive (SPADE) normalization [28] is an improved normalization technique that
prevents semantic information from being washed away by conventional normalization lay-
ers. In SPADE normalization, the learnable transformation (i.e., scale and shift) is learned
directly from the semantic layouts. In our model, the feature map H resembles the seman-
tic layout because H encodes both spatial and semantic information. Hence, we add SPADE
normalization layers between the deconvolution layers in our image decoder where H is used
as the semantic layout. As we show later, in the ablation study (Table 3), the object accuracy
of generated results improves when we adopt SPADE.

3.4 Loss Function
The structure of our discriminator D follows the discriminator proposed in layout2im [40]
(see Supplemental 1.2 for details), but adds an additional term for attribute classifier clsatt ,
which predicts the attribute of cropped objects and is used to train the generator to synthesize
objects with correct attributes. It is trained on real objects O and their attributes A.

Our GAN model utilizes two adversarial losses: Image Adversarial Loss Limg
adv and Object

Adversarial Loss Lob j
adv. Five more losses, including KL Loss LKL, Image Reconstruction

Loss Limg
1 , Object Latent code Reconstruction Llatent

1 , Auxiliar Object Classification Loss
Lob j

AC and Auxiliar Attribute Classification Loss Latt
AC, are added to facilitate the generation of

realistic images. Due to lack of space we provide details of the loss terms in Supplemental
Material (Section 1.3). As the result, the generator G minimizes:

LG = λ1Limg
adv +λ2Lobj

adv +λ3Lobj
AC +λ4Latt

AC +λ5LKL +λ6Limg
1 +λ7Llatent

1 (2)

and the discriminator D minimizes:

LD =−λ1Limg
adv −λ2Lobj

adv +λ3Lobj
AC +λ4Latt

AC (3)

where λi are weights for different loss terms.

4 Experiments
Datasets: We evaluate our proposed model on Visual Genome [15] datasets. We preprocess
and split the dataset following the settings of [10, 31, 40]. In total, we have 62,565 training,
5,506 validation and 5,088 testing images. Each image contains 3 to 30 objects from 178
categories, and each object has 0 to 5 attributes from 106 attribute set. We are unable to train
on COCO [20] because it does not provide attribute annotations.

Experimental setup: Our experiments use the pre-trained VGG-net [30] as the base model
to compute the inception score for generated image. For object classification loss and the
attribute classification loss, our experiments adopted the ResNet-50 model [5] and replace
its last f c layer with the corresponding dimensions. Both object and attribute classifier are
trained using the objects cropped from real training images. For attribute accuracy, we esti-
mate the attributes of generated objects using a separately trained attribute classifier which
consists of five residual blocks, and compute the recall and precision against the GT attribute
annotations. Lastly, we generate two sets of test images and use LPIPS metric [39] to com-
pute the diversity score. More specifically, we take the activation of conv1 to conv5 from
AlexNet [16], and normalize them in the channel dimension and take the L2 distance. We
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Method FID Inception Obj Acc Diversity Attribute Score ↑ Consistency ↑
(64×64) ↓ ↑ ↑ Recall Precision bg fg
Real Images - 13.9 ± 0.5 49.13 - 0.30 0.31 -
sg2im [10] 74.61 6.3 ± 0.2 40.29 0.15 ± 0.12 0.07 0.15 0.87 0.84
Itr. SG [1] 65.3 5.6 ± 0.5 28.23 0.18 ± 0.12 0.04 0.09 0.82 0.81
layout2im [40] 40.07 8.1 ± 0.1 48.09 0.17 ± 0.09 0.09 0.22 0.87 0.85
LostGAN [31] 34.75 8.7 ± 0.4 27.50 0.34 ± 0.10 0.17 0.06 0.63 0.61

Ours 33.09 8.1 ± 0.2 48.82 0.10 ± 0.02
0.20 ± 0.01

0.26 0.30 0.90 0.89

Table 1: Performance of 64× 64 image generation on Visual Genome [15] dataset) For Di-
versity Score of our model, we have two versions of attribute use: GT attribute specification
(top), and sampled attributes from prior class distributions of object-attribute co-occurrence
counts (bottom). For Attribute Score, we predict the attributes of generated objects and cal-
culate recall and precision against GT attributes. We trained Interactive SG without the GT
object mask. ↑: higher is better; ↓: lower is better; bg: background, fg: foreground.

then average across spatial dimension and across all layers to get the LPIPS metric. 1-LPIPS
metric is also used for consistency score, where we compute the foreground diversity be-
tween each object before and after it is shifted, and compute the background diversity for the
rest of the image which did not undergo the shift. Higher consistency for both is better.

Baselines: We compare our model with Sg2Im [10], Interactive Scene Graph [1], Layout2im
[40] and LostGAN [31].

4.1 Quantitative Results

Table 1 and 2 shows the image generation results when trained using different models. For
64 × 64 images, our attribute-guided image generation from layout outperforms all other
models in terms of object accuracy, attribute score and consistency score. Notably, our at-
tribute classification score (recall and precision) outperform other models with a substantial
margin, demonstrating our model’s capability to control the attributes of generated objects.
For consistency in layout reconfiguration, our consistency score is the highest for both back-
ground and foreground in the generated images, reflecting the effectiveness of the layout
reconfiguration path. Note, as expected, specifying attributes limits the diversity of output
objects (0.10± 0.02). However, sampled from prior class distributions of object-attribute
co-occurrence counts leads to much higher diversity of generated images (0.20±0.01).

We also conduct experiments at 128 × 128 resolution and compare with LostGAN [31].
Our model obtains better results on the object accuracy, attribute score and consistency score.

4.2 Qualitative Results

Figure 4 demonstrates our model’s ability to control the attributes of generated objects. For
each image, we pick an object and replace its current attribute with a different one, while
keeping the rest of the layout unchanged. It can be seen from Figure 4 that our model is able
to change the attributes of the object of interest, and keep the rest of the image unmodified.

Figure 5 compares the results before and after some object bounding boxes in the canvas
are horizontally shifted. For each images pair, the image on the left is generated from the
GT layout, and the image on the right from the reconfigured layout. Our model shows better
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Method FID Inception Obj Acc Diversity Attribute Score ↑ Consistency ↑
(128 × 128) ↓ ↑ ↑ Recall Precision bg fg
Real Images - 26.15 ± 0.23 41.92 - 0.27 0.27 -
LostGAN [31] 29.36 11.1 ± 0.6 25.89 0.43 ± 0.09 0.19 0.04 0.54 0.51
Ours 39.12 8.5 ± 0.1 31.02 0.15 ± 0.09 0.10 0.25 0.84 0.80

Table 2: Performance of 128 × 128 images on Visual Genome [15] dataset. We note that
images generated by LostGan [31] contains too many attributes signals, which explains its
high recall and low precision. ↑: higher is better; ↓: lower is better.

Method Inception Accu. Diversity Attribute Score ↑ Consistency ↑
(64 × 64) ↑ ↑ Recall Precision bg fg
w/o attribute specification 7.9 ± 0.05 48.01 0.19 ± 0.08 0.08 0.13 0.88 0.87
w/o location change 7.8 ± 0.1 48.96 0.12 ± 0.05 0.25 0.30 0.86 0.84
w/o SPADE [28] 7.9 ± 0.1 45.05 0.15 ± 0.07 0.23 0.29 0.89 0.88
w/o context encoder 7.7 ± 0.1 47.96 0.13 ± 0.15 0.24 0.30 0.89 0.87
full model 8.0 ± 0.2 48.82 0.10 ± 0.02 0.26 0.30 0.90 0.89

Table 3: Ablation study of our model on Visual Genome [15] dataset by removing different
objectives. Inception is the inception score, Accu. is the object classification accuracy, and
Diversity is the diversity score. ↑: higher is better; ↓: lower is better.

layout reconfigurability than other methods. For example, in Figure 5(b’) the boat is moved,
in (d’) two human are moved, and in (e’) the horse is moved. In contrast, layout2im [40] and
LostGan [31] either change the theme of the image (see 5(f’)), or have missing objects (see
5(d’)) for reconfigured layouts. This is also reflected in their much lower consistency score.

Additional examples at 128 × 128 resolution are in Supplemental, Figure 1 and 2. Sup-
plemental Figure 4 shows generated images obtained using different SoTA models. Our
method consistently outperforms baselines in quality and consistency of generated images.
LostGan [31] fails to generate plausible human faces, and layout2im [40] does not generate
realistic objects such as food.

4.3 Ablation Study
We demonstrate the necessity of our key components by comparing scores of several ablated
models trained on Visual Genome [15] dataset. As shown in Table 3, removing any compo-
nents is detrimental to the model’s performance. Not surprisingly, attribute specification is
the key to the successful attribute classification. The absence of layout reconfiguration path
decreases the inception score by 0.2, slightly increases the classification accuracy and, more
importantly, reduces the consistency for reconfigured layouts. SPADE [28] is beneficial for
object classification accuracy, and global context encoder improves inception score by 0.3.

5 Conclusions
This paper proposes attribute-guided image generation from layout, an effective approach to
control the visual appearance of generated images in instance-level. We also showed that
the model ensures visual consistence of generated images when bounding boxes in layout
undergo translation. Qualitative and quantitative results on Visual Genome [15] datasets
demonstrated our model’s ability to synthesize images with instance-level attribute control
and improved level of visual consistence.
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Buidling: white → red Pant: black → white Tree: leady → leafless Sky: clear → overcast 

(a) (c) (d) (e) (f)(a') (c') (d') (e') (f')

Man: walking → skiing 

(b) (b')

Grass: (none) → sandy Shirt: change 2 instances  

(g) (g')

Figure 4: Examples of 64 × 64 generated images with modified attributes on Visual
Genome [15] datasets obtained by our proposed method.
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Figure 5: Examples of 64 × 64 generated images with horizontally shifted bounding
boxes on Visual Genome [15] datasets
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