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Abstract

Boundary localization is a key component of most temporal action localization frame-
works for untrimmed video. Deep-learning methods have brought remarkable progress
in this field due to large-scale annotated datasets (e.g., THUMOS14 and ActivityNet).
However, natural ambiguity exists for labeling an accurate action boundaries with such
datasets. In this paper, we propose a method to model this uncertainty. Specifically,
we construct a Gaussian model for predicting the uncertainty variance of the bound-
ary. The captured variance is further used to select more reliable proposals and to re-
fine proposal boundaries by variance voting during post-processing. For most exist-
ing one- and two-stage frameworks, more accurate boundaries and reliable proposals
can be obtained without additional computation. For the one-stage decoupled single-
shot temporal action detection (Decouple-SSAD) [11] framework, we first apply the
adaptive pyramid feature fusion method to fuse its features of different scales and op-
timize its structure. Then, we introduce the uncertainty based method and improve
state-of-the-art mAP@0.5 value from 37.9% to 41.6% on THUMOS14. Moreover, for
the two-stage proposalproposal interaction through a graph convolutional network (P-
GCN) [33], with such uncertainty method, we also gain significant improvements on
both THUMOS14 and ActivityNet v1.3 datasets. Code and more details will be avail-
able at https://github.com/shadowclouds/Uty.

1 Introduction
With advanced data acquisition technology, people are enabled to record and share videos
through various portable devices. The rapid growth of online video has driven the devel-
opment of video analysis technology. An important branch is temporal action detection for
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Figure 1: Ambiguous labels collected from THUMOS14. Left: (a) is labeled as Long Jump,
where the action instance starts from preparing to run and ends in landing; (b) is a playoff of
(a) with the latter part, starts from jumping to the highest point and ends in landing. Whereas,
(b) is still labeled as a complete Long Jump as (a). Right: In Billiards, the interval between
the start and end of the action (hitting) is only a fraction of a second, and therefore the end
boundary is difficult to locate. Frequently, one of A, B, and C is selected as the stop time.
A: The white ball moved for a short distance after having been hit by the stick. B: The white
ball hits another. C: The white ball stops moving.

untrimmed videos. Temporal action proposal generation and action classification are its two
major parts. In the former, the temporal boundary of an action instance is detected, whereas,
in the latter, the category of such an instance is recognized. Compared with action classifi-
cation, temporal action proposal generation is more fundamental and challenging, which has
greater impacts on the final performance [1, 4, 18, 32].

As most temporal localization work makes extensive use of deep learning, the quality of
the generated proposals output by the network relies heavily on the accuracy of boundary
annotations. However, the definition and labeling of temporal boundaries involve ambigui-
ties. For instance, categories are containing diverse action instances, or boundaries difficult
to locate. Some ambiguous labels collected from THUMOS14 [13] dataset are shown in
Figure 1.

In the left part of Figure 1, ambiguity in action definitions could generate unreliable pro-
posals. For example, suppose we define Long Jump as starting from preparing to run and end
in landing, the proposal starts from the highest point and ends in landing like left:(b) would
be considered unreliable. However, previous algorithms assess the quality of a proposal
based on overlap or classification score, which does not involve its reliability.

Meanwhile, traditional boundary regression loss [8] they use does not consider the am-
biguities of labeling boundaries as shown in the right part of Figure 1, which may produce
inaccurate boundaries. Thereby, affected by the ambiguity of boundary, unreliable proposals
as well as inaccurate boundaries may be produced.

Recently, in object detection, a KL (Kullback-Leibler divergence) regression loss [9] was
introduced to learn bounding box transformation and localization variance. However, this
method did not consider the reliability of proposals, and it mainly focused on the two-stage
object detector. Motivated by [9], we propose an improved KL loss for capturing 1D tempo-
ral boundary uncertainty in action localization better, in which the length of proposals varies.
By such uncertainty modeling, we could reduce the influence of ambiguous annotations.

Moreover, the captured uncertainty is further used to select reliable proposals and to
refine their boundaries during post-processing. Applying the uncertainty method to our pro-
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posed one-stage framework two-branch SSAD (Tb-SSAD), and the two-stage framework
P-GCN [33], we achieve remarkable improvement in both. The contributions of this paper
are summarized as follows:
(1) To the best of our knowledge, we are the first to capture the uncertainty of boundary to re-
duce the impact of ambiguity labels for temporal action localization in videos. Specially, we
introduce an improved KL loss to model uncertainty through a Gaussian distribution. The
captured uncertainty is further used to select reliable proposals, and to refine their bound-
aries.
(2) We modify the one-stage framework [10] and propose a stronger baseline two-branch
SSAD (Tb-SSAD) to evaluate our uncertainty method. When introducing such an uncer-
tainty method to our framework Tb-SSAD, we improve the one-stage state-of-the-art mAP
performance from 37.9% to 41.6% at a tIoU of 0.5 on THUMOS14. And for the two-stage
framework P-GCN, we improve mAP performance from 49.1% to 50.4% at a tIoU of 0.5 on
THUMOS14, and from 31.11% to 32.04% on ActivityNet v1.3.

2 Related Work

Action recognition. Action recognition is an important task for video understanding. Typi-
cally, a two-stream network [6, 26] learns appearance and motion clues from an RGB image
and optical flow, respectively. Whereas the 3D network [23, 29] directly obtains the required
messages from raw video sequences. In this paper, we use such pre-trained action models to
extract feature sequences from untrimmed videos.
Temporal action detection. Temporal action detection methods can be divided into two
categories: two-stage and one-stage. The former first generate action proposals and then
classify them [31, 33], which achieve high performance. In contrast, one-stage methods
integrate proposal generation and classification into an end-to-end structure, thus achieving
higher efficiency. In [11], two branches were proposed: one for regression and another for
classification, and a main stream fused with the two branches by hyper-parameters. Both
one- and two-stage methods, may be affected by boundary ambiguity, generating unreliable
proposals or inaccurate boundaries.
Uncertainty learning in deep neural networks (DNNs). Uncertainty learning involves
model and data uncertainty. In the former, the uncertainty of model parameters is esti-
mated using a given training set and can be alleviated by introducing additional training
data [7, 12, 15]. This study is based on data uncertainty [16, 17], which originates from
inherent noise in the training data, and thus adding additional datasets is meaningless [25].
Previous methods mainly focused on the uncertainty in the image task. For example, the
ambiguity of bounding box labeling in object detection [9], and ambiguity caused by blurry
pictures in face recognition [25]. For the action localization task, compared with the size of
objects in an image, the duration of the action instance in the video varies dramaticallyfrom
a fraction of a second to minutes [3], which is more difficult to locate. Meanwhile, there is
not only the ambiguity of boundary labeling, but also the ambiguity of action definition as
shown in Figure 1.
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Figure 2: The framework of the proposed network. Given an untrimmed video, (1) pyramid
features are generated by base feature extraction. This is followed by an adaptive pyramid
feature fusion (APFF) method to generate final features for the proposal and classification
branches. (2) Combining outputs of the two branches, we could obtain proposals with reli-
ability score generated by boundary uncertainty variance, and final classification score (e.g.
High Jump:0.70) obtained by multiplying the classification and overlap scores. (3) Multiply-
ing the final classification score and reliability score of the start as well as end boundaries, we
obtain the final criterion score for selecting proposals in NMS. Meanwhile, we use variance
voting to revise the boundaries of the selected proposals.

3 Approach

Herein, we introduce details of our one-stage two-branch SSAD (Tb-SSAD) framework
combining with the uncertainty method. As shown in Figure 2, the feature extraction module
separately outputs final pyramid feature maps for proposal and classification branches, which
contains base feature extraction and adaptive pyramid feature fusion (APFF) method. The
prediction anchor instances module generates proposals with the final classification score
and reliability scores by combining the output of the proposal and classification branches.
Finally, post-processing selects reliable proposals and refines their boundaries to generate
the detection result.

3.1 Base Feature Extraction

Action localization aims at detecting action instances in the temporal dimension. Given an
input video, we select the two-stream method [26] to extract a temporal feature sequence
F =

{
f tn

}T
n=1, where T is temporal length. Subsequently, following [11], we obtain M ={

f i
m
}3

i=1 from F through temporal pooling. With the base feature M =
{

f i
m
}3

i=1, a base

pyramid feature map
{

f i
p
}3

i=1 for the proposal branch, and another feature map
{

f i
c
}3

i=1 for
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the classification branch are generated through FPN [20]:

f i
p,c =

{
C1

(
f i

m
)

, if i = 3
C2

( 1
3C3

(
f i

m
)
+ 2

3S
(

f i+1
p,c

))
, if 1 ≤ i < 3

(1)

where C1: three Conv-ReLU units, C2: Conv-ReLU-Conv, C3: ReLU-Conv-ReLU, S: ker-
nel size 4, stride 2 for 2x up-sampling. These configurations are the same as in [11].

3.2 Proposal and Classification Branches

Adaptive Pyramid Feature Fusion. With base pyramid features
{

f i
p
}3

i=1,
{

f i
c
}3

i=1 sep-
arately for proposal and classification branches, following [27], we introduce an adaptive
pyramid feature fusion (APFF) method for better correlating features of different scales,
which could fuse pyramid features of different scales automatically. The APFF method is as
follows:

f ′l = α l · f 1→l +β l · f 2→l + γ l · f 3→l , l = 1,2,3 (2)

where f ′lp and f ′lc are the final features for the proposal and classification branch, respec-
tively. The notation f n→l indicates that the scale of the feature map resizes from n to l.
f 1, f 2, f 3 ∈ {16,8,4}× 1024. α l , β l , and γ l are learnable weights of different scales for
feature fusion. They are obtained from κ l

α , κ l
β and κ l

γ through the softmax function:

α l =
eκ l

α

eκ l
α + eκ l

β + eκ l
γ
, (3)

where κ l
α , κ l

β and κ l
γ are obtained through 1× 1 convolution layers from f 1→l , f 2→l and

f 3→l .
Proposal Branch. The proposal branch is aimed at predicting the location of action in-
stances. As in [24], a series anchors of different scale are generated to locate the default
proposal position (ac,aw) through temporal pooling, where ac and aw are the default center
and width, respectively. Using the feature map f ′lp, l = 1,2,3 obtained above, each pro-
posal outputs three predictions by 1D convolutions: 1) The proposal regression parameters
(∆ac,∆aw), which indicate the offset of the default temporal center and width. 2) The pro-
posal uncertainty parameters (σs,σe), which denote the predicted variance of the start and
end action boundaries. 3) The overlap score pov, which indicates the intersection-over-union
(IoU) score between the proposal and its closest ground-truth segment. Therefore, using the
default anchor position (ac,aw), the regressed boundaries are:

xs = ac +α1aw∆ac − 1
2 aweα2∆aw

xe = ac +α1aw∆ac +
1
2 aweα2∆aw ,

(4)

where xs and xe denote the start and end position of the action, respectively. α1 and α2 are
hyper-parameters and set to 0.1 in [11].
Classification Branch. The classification branch predicts the scores of C types of actions.
For each anchor generated in the proposal branch, the classification branch outputs C ac-
tion classification score p = [p0, p1, . . . , pC], which indicates the probability that the action
instance belongs to C categories and one background.
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3.3 Uncertainty Modeling
As mentioned above, the boundary ambiguity may generate unreliable proposals and inaccu-
rate boundaries. To reduce the impact of such ambiguity, we need to locate the coordinates
of action instances and estimate the uncertainty of boundaries. Specially, we construct a
single Gaussian model as follows:

P(yi|xi) =
1√

2πσ i
e
− (

yi−xi)
2

2(σ i)
2
, (5)

where σ i indicates the boundary uncertainty variance, and yi is the corresponding label of
the location prediction xi. Then, we estimate the learnable parameters Θ̂ that maximize the
probability P(yi|xi,Θ) over N samples:

Θ̂ = argmax
Θ

N

∏
i=1

1√
2πσ i

e
− (

xi−yi)
2

2(σ i)
2
. (6)

The logarithm of Θ̂ is:

argmax
Θ

{
−N

2
ln2π − N

2
ln
((

σ i)2
)
− 1

2(σ i)2

N

∑
i=1

(
xi − yi)2

}
. (7)

The term N
2 ln2π does not depend on the estimated parameters Θ̂. Hence, the Gaussian

likelihood estimation can be regarded as a regression loss:

L′
reg ∝

(x− y)2

2σ2 +
1
2

ln
(
σ2) , (8)

where x and σ denote the action boundary and uncertainty variance, respectively. During
training, we predict the log variance r = ln(σ2) instead of σ to avoid gradient exploding.

We observe that L′
reg may be negative for certain small values of σ2. Because the tempo-

ral length of actions varies drastically, this situation happens sometimes and leads to training
errors. Therefore, we modify the regression loss as:

Lreg =
(x− y)2

2σ2 +
1
2

ln
(
σ2 +1

)
. (9)

This loss function is similar to the KL loss in [9] with Kullback-Leibler divergence. For
simplicity, we call it improved KL loss. Generally, the ambiguous annotation only accounts
for a small part of the total, so it often causes a large deviation between y and prediction x.
During training, relatively large σ2 is expected for large deviation. Thereby, the loss weight
of the ambiguous sample would be reduced by the effect of σ2.

3.4 Loss Function
The total loss consists of regression, classification, and overlap loss. The improved KL loss
proposed above can be written as

Lreg =
(xgs − xs)

2

2σ2
s

+
1
2

log
(
σ2

s +1
)
+

(xge − xe)
2

2σ2
e

+
1
2

log
(
σ2

e +1
)
, (10)
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where (xgs,xge) are the start and end boundaries of the ground truth closest to the proposal
(xs,xe). For classification, the conventional multi-class cross-entropy loss is applied:

Lcls =− log(softmax(pk)), (11)

where k denotes the label of the instance. The mean-square-error (MSE) loss is adopted for
the overlap loss, and it is used to predict the IoU score:

Lov = (pov −gov)
2 , (12)

where gov is the IoU between the proposal and its closest ground truth.
During training, the classification branch calculates Lcls, whereas the proposal branch

provides Lreg and Lov. Thus, the total loss can be obtained as

L = δ ·Lreg + ε ·Lcls +ζ ·Lov, (13)

where δ , ε , and ζ are hyper-parameters, and we set 0.5, 1, and 10 for the three, which are
used for balancing three losses to a similar magnitude.

3.5 Post-processing
As proposal reliability cannot be obtained, the traditional localization process multiplies the
classification and overlap scores as a detection criterion score for non-maximum suppres-
sion (NMS), where unreliable proposals with high classification or overlap scores may be
selected. However, the proposed framework outputs the uncertainty variance (σs,σe), which
denotes proposal reliability. During post-processing, (σs,σe) could be considered in con-
junction with the classification and overlap scores for selecting more reliable proposals. The
modified detection criterion S is

S = pov ×max(p)×SReliability, (14)

where max(p) is the maximum classification score. The reliability score is as follows:

SReliability = (1−g(σ2
s ))× (1−g(σ2

e )),g(σ2) =
eσ2

∑eσ2 . (15)

where g(·) is a softmax function, used to normalize the reliability score. ∑eσ2
denotes the

index summation of all input proposals’ uncertainty variance. By adding reliability score to
the detection criterion, more reliable proposals would be selected.

Moreover, we apply variance voting (var voting) [9] to produce more accurate bound-
aries. Specifically, we calculate the coordinates of proposals using neighbor locations weighted
by the predicted uncertainty variance. Thereby, proposals with lower uncertainty variance
and higher IoU are given larger weights as follows:

pi = e−(1−IoU(bi,b))
2/σt

x =
∑i pixi/σ2

x,i

∑i pi/σ2
x,i

, subject to IoU (bi,b)> 0,
(16)

where xi denotes the coordinates of the temporal boundary, and σt is a hyper-parameter,
which is 0.025 in this work. Combining the reliability score and variance voting with NMS,
we could obtain more reliable proposals and precise boundaries.



8 CHEN ET AL: REFINEMENT OF BOUNDARY REGRESSION USING UNCERTAINTY

4 Experiments

4.1 Experimental Settings
Datasets. We use two challenging datasets in the experiments: THUMOS14 [13] and Activ-
ityNet v1.3 [10]. The former contains 13320 trimmed videos of 101 categories in the training
set UCF-101 [28]. For the temporal action detection task, the training set is commonly used
for pre-training, in which only 20 categories are temporarily labeled and involved. Besides,
200 validation and 213 test videos with temporal annotation are used for training and testing,
respectively. ActivityNet [10] is another large-scale dataset used for action localization. It
contains 10,000 training videos and 5,000 validation videos. There are 200 different action
categories in ActivityNet v1.3. Following [33], we train the proposed framework on the
training set and test it on the validation videos.
Implementations. The configuration of our Tb-SSAD is almost the same as Decouple-
SSAD [11] for fair comparison. The number of training epochs is 30, with a batch size
of 48, and the learning rate is 10−4. The base feature M =

{
f i

m
}3

i=1 ∈ {16,8,4}× 1024,
separately. And the dimensions of three feature maps generated by APFF for proposal and
classification branches are the same as M.

As the results of Decouple-SSAD (De-SSAD) [11] on ActivityNet have not been pub-
lished, we verify our uncertainty method using the two-stage framework P-GCN on Activi-
tyNet. On THUMOS14, we combine the proposed methods with both Tb-SSAD and P-GCN
to perform a comprehensive verification.

4.2 Comparison with State-of-the-art Methods
Table 1 shows the results of some state-of-the-art methods on THUMOS14, with tIoU rang-
ing from 0.3 to 0.7. Comparable performance is achieved by combining Tb-SSAD with our
uncertainty method. The proposed framework achieves 41.6% at a tIoU of 0.5, which leads to
a gain of 3.7% and 1.8% compared with the advanced one-stage GTAN and two-stage DBG,
respectively. Compared with our base Tb-SSAD, the highest gain corresponds to a tIoU of
0.5, where the mean Average Precision (mAP) performance of Tb-SSAD is improved from
38.0% to 41.6%.

For two-stage method P-GCN with I3D [2] backbone, which inputs proposals generated
by BSN [18]. Performance at a tIoU of 0.5 gains from 49.1% to 50.4% on THUMOS14.
As shown in Table 2, for ActivityNet v1.3, the baseline we reproduce is 26.90%, almost

One-stage Method 0.3 0.4 0.5 0.6 0.7

GTAN [22] 56.9 46.5 37.9 - -
De-SSAD [11] 49.9 44.4 35.8 24.3 13.6

Tb-SSAD 49.9 45.5 38.0 28.0 16.5
Tb-SSAD+Uty 52.7 48.1 41.6 31.5 19.3

De-SSAD(Kinetics) 60.2 54.1 44.2 32.3 19.1
Tb-SSAD(Kinetics) 61.2 56.3 47.8 34.7 22.2

De-SSAD+Uty(Kinetics) 60.3 55.6 48.2 35.9 22.0
Tb-SSAD+Uty(Kinetics) 64.3 58.9 49.9 38.0 24.2

Two-stage Method 0.3 0.4 0.5 0.6 0.7

BSN [18] 53.5 45.0 36.9 28.4 20.0
MGG [21] 53.9 46.8 37.4 29.5 21.3
BMN [19] 56.0 47.4 38.8 29.7 20.5
DBG [5] 57.8 49.4 39.8 30.2 21.7

P-GCN [33] 63.6 57.8 49.1 - -
P-GCN +Uty 66.3 59.8 50.4 37.5 23.5

Table 1: Action localization results on THUMOS14, measured by mAP(%) at different tIoU
thresholds α , varies from 0.3 to 0.7. Uty represents our uncertainty method. Left: The
performance of one-stage method. (Kinetics) denotes network pre-trained on Kinetics [14]
dataset. Right: The performance of two-stage.
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the same as 26.99% in P-GCN [33]. Compared with our baseline, we lead 1.75% gains
from 26.90% to 28.65% by adding our uncertainty method. Whereas, when combined with
video-level labels from UntrimmedNet [30] as well as BSN localization score [18], our base
is 1.11% lower than the benchmark of P-GCN* in [33]. Based on our baseline 30.00% on
average, we improve the performance to 32.04%, from 1.74% to 4.35% at tIoU of 0.95, and
only 0.24% at a tIoU of 0.5. Commonly, our method achieves better performance at a higher
tIoU threshold, where our method focuses on selecting more accurate proposals and revising
their boundaries.

4.3 Ablation Study
On the left side of Table 3, we introduce three frameworks to evaluate the effectiveness of
our uncertainty method and the APFF: Tb-SSAD that only contains two branches without
APFF, Decouple-SSAD (De-SSAD) [11], and main stream (main) in Decouple-SSAD [11].
Uncertainty Method. De-SSAD and Tb-SSAD exhibit an improvement of 4.9% and 3.5%,
respectively, by adding our uncertainty method. The main stream (main) increases by 1.8%,
which is slightly lower than the improvement of the other two. This observation accords with
the conclusion of Decouple-SSAD [11] that applying classification and location in a single
branch may affect detection accuracy.

On the right side of Table 3, the effectiveness of three parts that consist of our uncertainty
method are evaluated separately, which are improved KL loss, variance voting (var voting),
and reliability score. It is seen that improved KL loss results in the greatest performance
improvement, with a gain of approximately 2.5%. Var voting and reliability score lead to a
gain of 1.1% in total (from 40.5% to 41.6% for mAP@0.5). The former revises the temporal
boundary, whereas the latter takes the reliability of proposals into final selecting scores.
Visible examples are shown in Figure 3.
Adaptive Pyramid Feature Fusion. Regarding APFF, the two-branch backbone Tb-SSAD
leads to a gain of 5.7%, which is approximately twice as much as the improvement by a
single main stream. However, the performance of De-SSAD drops from 35.8% to 35.5%
by APFF. This is due to the conflict between APFF and the hyper-parameter that is used for
fusing the two branches with its main stream. Therefore, we remove the main stream in our
Tb-SSAD to make the model more concise.

5 Conclusion
In this paper, we propose an uncertainty method, which consists of improved KL loss, relia-
bility score, and variance voting, for reducing the affects of boundary ambiguity. Our method
is combined with both one- and two-stage networks, thereby improving the performance of

Method 0.5 0.75 0.95 Average

SSN [34] 39.12 23.48 5.49 23.98
P-GCN 42.90 28.14 2.47 26.99

ours(base) 43.94 28.80 1.63 26.90
ours(base)+Uty 44.65 29.29 4.23 28.65

Method(*) 0.5 0.75 0.95 Average

BSN* 46.45 29.96 8.02 30.03
P-GCN* 48.26 33.16 3.27 31.11

ours*(base) 47.93 32.57 1.74 30.00
ours*(base)+Uty 48.17 33.79 4.35 32.04

Table 2: Action localization results on the validation set of ActivityNet v1.3. The average
mAP calculated by tIoU thresholds ranges from 0.5 to 0.95. Uty represents our uncertainty
method. Left: The performance of methods without any external label. Right: methods
combine with external video labels from UntrimmedNet (*) [30].
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Figure 3: Detection results on THUMOS14 with the effects of variance voting and relia-
bility score in post-processing. Top: Variance voting can revise proposals with inaccurate
boundaries. Bottom: The reliability score can avoid selecting inaccurate proposals with a
higher classification score. Without adding the reliability score, the inaccurate proposal with
a CleanAndJerk score of 0.59 is selected, whereas the other two are filtered in NMS.

one-stage Tb-SSAD from 38.0% to 41.6%, and that of the two-stage P-GCN from 49.1% to
50.4% for mAP@0.5 on THUMOS14. On ActivityNet, P-GCN combined with the proposed
method achieved an improvement from 30.00% to 32.04% on average mAP.
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improved KL loss × ✓ ✓ ✓ ✓
Var voting × × ✓ × ✓

Reliability score × × × ✓ ✓
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