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Abstract

This paper proposes Quantizable DNNs, a special type of DNNs that can flexibly
quantize its bit-width (denoted as ‘bit modes’ thereafter) during execution without further
re-training. To simultaneously optimize all bit modes, a combinational loss of all bit
modes is proposed, which enforces consistent predictions ranging from low-bit mode
to 32-bit mode. This Consistency-based Loss may also be viewed as certain form of
regularization during training. Because outputs of matrix multiplication in different bit
modes have different distributions, we further introduce Bit-Specific Batch Normalization
to reduce conflicts among different bit modes. Experiments on CIFAR100 and ImageNet
have shown that compared to quantized DNNs, Quantizable DNNs not only have much
better flexibility, but also achieve even higher classification accuracy. Ablation studies
further verify that the regularization through the consistency-based loss indeed improves
the model’s generalization performance. Source codes will be released in the future.

1 Introduction
With increasing complexity of Deep Neural Networks (DNNs), great challenges are faced
when deploying DNN models to mobile and embedded devices. As a result, model com-
pression and acceleration have received more and more attention in the machine learning
community. An important line of research is quantized DNNs, which convert both weights
and activations to discrete space. Due to the reduction in bit-width, quantized DNNs have
much smaller model size and can be inferenced with high-efficiency fixed-point computa-
tion for acceleration. However, when directly quantizing DNNs to 4 bits or less, significant
accuracy degradation occurs. To alleviate this problem, quantization-aware training, which
simulates the quantization effect with certain bit-width during training and allows the model
to adapt to the quantization noise, is widely adopted [5, 8, 22].

In real-world scenarios, different bit-widths may be supported by different devices. For
example, Tesla T4 supports 4, 8, 16, and 32 bits, and Watt A1 supports 1, 2, 3, and 4 bits.
Either for easily deploying models to different devices, or for dynamic accuracy-efficiency
trade-offs on the same device, a quantized DNN that is able to flexibly adjust its bit-width is
desirable. However, it is usually non-trivial to re-configure the bit-width of quantized DNNs,
because further quantization-aware re-training is generally required in order to guarantee
model accuracy. We here propose ‘Quantizable’ DNNs, a special type of quantized DNNs
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Figure 1: Illustration of Quantizable DNNs. Different bit modes share the same architecture
but under different numerical precision.

that can flexibly adjust its bit-width on the fly, i.e. turning on different bit mode by sim-
ply applying different quantization precision which aviods quantization-aware re-training.
Quantizable DNNs target to pursue a single optimal set of convolutional kernels and fully-
connected weights so that different bit modes achieve high accuracy at the same time.

To optimize the Quantizable DNNs, a multi-task framework, which treats the optimiza-
tion of different bit modes as a set of related sub-tasks, is adopted. Fig. 1 provides an
illustration for the Quantizable DNNs. At training, the 32-bit (full-precision) mode serves
as the ‘parent’ model for lower bit modes. For 32-bit mode, the loss function is simply the
empirical loss as that of individual quantized DNNs. However, the lower bit modes is known
to suffer from noise in gradients [19] and are easily trapped in local minima [25] during
training. To optimize the lower bit modes, a consistency loss, which encourages different
bit modes to produce consistent predictions to that of the 32-bit mode, is further introduced.
The consistency loss enforces the lower bit modes to be implicitly guided by the 32-bit mode.
Further more, the lower bit modes can be considered as providing a form of regularization to
the 32-bit mode through the consistency loss, since the lower bit modes are expected to em-
phasize on more critical information rather than the redundant details. To some extent, this
lower-bit regularization is similar to the well-known ‘Dropout’ technique [17], by removing
less significant bits during training.

Another challenge faced with optimizing the Quantizable DNNs is that outputs of con-
volutional operation in different bit modes have different distributions, which makes it diffi-
cult to properly normalize feature maps from all bit modes with a shared Batch Normaliza-
tions [6]. Inspired by [11, 21], we introduce Bit-Specific Batch Normalization, which assigns
a separate Batch Normalization to each bit mode, to alleviate this problem. The Bit-Specific
Batch Normalization introduces negligible additional weights and guarantee the Quantizable
DNNs to have approximately the same number of parameters as quantized DNNs.

To validate the effectiveness of Quantizable DNNs, we experiment with two widely used
benchmark data sets, Cifar100 [9] and ImageNet [2]. Compared with quantized DNNs,
Quantizable DNNs not only enable the on-the-fly dynamic adjustment of mode bit-widths,
but also achieve higher classification accuracy with the mutual regularization among differ-
ent bit-widths. The main contributions of this paper are summarized as follows.

• We design the Quantizable DNN, which is the first DNN model that dynamically ad-
justs its bit-widths on the fly without quantization-aware re-training.

• We propose a multi-task co-regularization framework, where the lower bit modes and
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the 32 bit mode mutually promote each other via consistency loss during training.

• We propose the Bit-Specific Batch Normalization to alleviate the distribution differ-
ence among different bit modes, so that the same parent model may be shared.

2 Related Work
2.1 Quantized DNNs
For smaller model size and higher computational efficiency, both weights and activations
of quantized DNNs lie in discrete spaces. Considering whether or not a method needs fur-
ther re-training, it can be divided into post quantization [7, 13, 23] and quantization-aware
training quantization [5, 12, 18, 22, 24]. Most post quantization methods are limited to 8-bit
values, and significant performance degradation occurs for≤ 4 bit quantization. To solve this
problem, the widely-used quantization-aware training [5] is applied, which considers quan-
tization noise during training. However, such training process is bit-specific, and converged
quantized DNN cannot directly switch to other bit-widths.

In this paper, Quantizable DNNs are implemented based on quantized DNNs, thus care-
ful selection for the base model is needed. We choose Dorefa-net [24] for the following rea-
sons. Firstly, unlike [22], it adopts uniform quantization scheme, which makes it much easier
to deploy in various embedded products, e.g. Megvii. Secondly, it is applicable to common
network architectures, while [12, 18] requires specially-designed structure. In Dorefa-Net,
the k-bit quantizer is defined as Eq.(1), which maps a real number (32-bit) r ∈ [0,1] to a b-bit
discrete value q ∈ { i

2b−1 | 0≤ i≤ 2b−1, i ∈ N}. The gradient ∂q
∂ r is approximated as 1 [5].

q = Q32→b(r) =
1

2b−1
round((2b−1) r). (1)

2.2 Dynamic Inference
Dynamic inference is the technique to flexibly adjust the network structure during inference
to satisfy requirements of computing resources or different tasks. Models allowing dynamic
inference can be viewed as an integration of a bunch of sub-DNNs. According to the dimen-
sion along which to integrate, existing integration models can be divided into three classes.
Firstly, Slimmable DNNs [20, 21] are a type of dynamic DNN that can execute at different
channel widths, which can instantly adjust their memory footprint during inference. Then,
Mult-Exit DNNs [10, 15] attach multiple classifiers to network structure at different layers,
and can decide the model depth to make predictions for fast inference. Different from dy-
namic models mentioned above, Superposition [1] integrates multiple sub-DNNs that are
targeted at different tasks, each sub-DNNs can be retrieved during inference.

3 Quantizable DNNs

3.1 Problem Statement
We first formally define Quantizable DNN under supervised learning setting. Given a train-
ing data set St = {(xi,yi)}N

i=1, where {xi}N
i=1 are the input variables and {yi}N

i=1 are the corre-
sponding target variables, a k-bit Quantizable DNN is trained as a special type of Quantized
DNN ŷ = Fk(x;Wk), where ŷ is the prediction for the corresponding target variable, k is
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the model’s bit-width, Wk is the quantized model weight in k-bit, x is the input of one data
sample. Different from existing k-bit quantized DNN which can only run with the fixed
bit width and requires further re-training to change its bit-width at run time, the Quantized
DNN can flexibly adjusts its bit-width, i.e. bit mode, on the fly. Given a desired bit mode
b(1 ≤ b ≤ k) at run-time, the k-bit Quantizable DNN can be switched to b-bit mode with
Fb(x;Wb) = Q(Fk,Wk,b)(x), where Q is a pre-defined quantizer. For Quantizable DNN, we
want to simultaneously maximize the accuracy of Fb(x;Wb),∀b ∈ (1≤ b≤ k).

3.2 Overall Framework
We denoteFk(x;Wk) as the k-bit Quantizable DNN. During training, a 32-bit mode is trained,
which serves as the ‘parent’ model for other bit modes, i.e. mode listtrain = {1,2, ...,k,32}.
The ‘parent’ model is jointly optimized by all bit modes in mode list under multi-task frame-
works. For a mini-batch of training data, the Quantizable DNN conducts forward and back-
ward computations in each bit mode and accumulates the gradient. Weights are updated after
traversing all bit modes. In the following section, we first introduce the Consistency-based
Training Objective to optimize the model, which enforces lower bit modes to produce con-
sistent performance with 32-bit mode. To resolve the conflicts between different bit modes,
we propose Bit-Specific Batch Normalization to normalize outputs in different modes with
corresponding learnable affine functions, which is crucial for the performance of Quanti-
zable DNNs. For smaller model size, the ’parent’ model can be discarded after training,
and the k-bit Quantizable DNN can be directly retrieved from the 32-bit ‘parent’ model
with pre-defined k-bit quantizer Qk(·), i.e. Fk(x;Wk) = Q32→k(F32,W32)(x). In this case,
to switch to b-bit mode from Fk(x;Wk), the quantizer should satisfy Qk→b(Fk,Wk)(x) =
Q32→b(F32,W32)(x), which is crucial to ensures the consistency between training and test-
ing. To achieve this, we re-design the pre-defined quantizer via Thresholds Alignment trick.

3.3 Consistency-based Training Objective
In this section, we introduce the overall optimization objective of the Quantizable DNN.
Since 32-bit mode is introduced as the ‘parent’ model for training, we denote the Quantizable
DNN as F32(x,W32) accordingly. Training a Quantizable DNN can be formulated as a multi-
task problem, where each bit mode is treated as a sub-task. The sub-loss function attached
to i-bit mode is denoted as Li. Integrating these sub-loss functions, we can obtain the overall
training objective Lall :

Lall = ∑
k∈mode list

αkLk + γ||Q||2, (2)

where αk denotes pre-defined weights, and γ is the balancing hyper-parameter between
empirical loss and regularization, ||Q||2 denotes weight decay. A higher value of αk encour-
ages the Quantizable DNN to put more attention on k bit mode. In this paper, we treat each
bit mode equally and set αk = 1 for all k. In classification tasks, for k = 32, Lk is simply the
widely-adopted cross-entropy loss supervised by ground-truth y. However, for k < 32, we
instead introduce consistency loss to ensure their performance, which utilizes predictions of
32 bit mode F32(x,W32) as supervision for Fk(x,Wk). Note that Fk(x,Wk) can be directly
obtained from F32(x,W32). Such strategy is adopted because there should be certain inter-
nal consistency between predictions of different bit modes since they are integrated into a
unified structure. The consistency loss is expressed as Eq.(3):

Lk(k<32) = KL(σ(
F32(x,W32)

T
), σ(

Fk(x,Wk)

T
)), (3)
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where KL(·) and σ(·) denote Kullback-Leibler divergence and softmax function respec-
tively. Inspired by Knowledge Distillation [4], we introduce a hyper-parameter T to control
the smoothness of the supervision, which can explore the ‘dark’ knowledge between classes.
Note that gradients from consistency loss to F32(x,W32) are ignored.

3.4 Bit-specific Batch Normalization

Batch Normalization [6] is proposed to normalize the channel-wise features y with a set of
parameters (γ,β ,µ,σ):

BN(y) = γ
y−µ√
σ2 + ε

+β , (4)

where γ and β are learnable parameters, ε is a small value which can be neglected. µ and
σ2 are means and variances of channel-wise features. Batch Normalization is crucial for
quantized DNNs, which maps activations to approximate Gaussian distributions N (0,1) to
make most values lie in quantization interval. However, for Quantizable DNNs, since matrix
multiplication outputs produced by different bit modes have different distributions, shared
Batch Normalization cannot properly normalize outputs for all bit modes.

Instead of sharing Batch Normalization layers, we propose Bit-specific Batch Normal-
ization, which has two variants. For variant A, we assign private (µk,σk) for each bit mode.
When training or inference in different modes, channel-wise feature maps can be mapped to
the same distribution with respective (µk,σk) for further quantization. Formally, we denote
yk = conv(wk,ak), where ak represents the k-bit activations from the previous layer and wk
is the k-bit weights in the current convolution layer. conv denotes convolution operation and
yk is its output. Note that the output yk is not limited to k-bit. The variant A of Bit-specific
Batch Normalization can be defined as:

BSBNA(yk) = BSBNA
k (yk) = γ

yk−µk√
σ2

k + ε

+β , (5)

where γ and β are shared learnable parameters. µk and σ2
k are private statistical parame-

ter for k-bit mode, which can be either updated as other parameters or directly estimated dur-
ing inference via post-training strategy [20]. With such strategy, variant A can introduce no
additional parameters and enable Quantizable DNNs to achieve usable performance. Based
on variant A, we further introduce a variant B, which assigns not only private (µk,σk), but
also private (γk,βk) to each mode:

BSBNB
k (yk) = γk

yk−µk√
σ2

k + ε

+βk. (6)

The variant B can bring more flexibility to each bit mode and further ease their con-
flicts. For example, channels that have texture-rich information in higher bit modes may
convey negligible information in low-bit modes, and the latter can assign a lower value to
the corresponding γk to reduce their interference. Though variant B introduces additional
parameters, the cost can be neglected, because the parameters in Batch Normalization are
usually less than 2% of the total model. And it has no effect on inference speed, since in
each mode, only the corresponding normalization operation is included in inference graph.
Variant B is adopted in our experiments unless otherwise stated.
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3.5 Quantizer Re-design by Thresholds Alignment
Equipped with components introduced above, the b-bit mode can be directly retrieved from
the trained 32-bit ‘parent’ model via pre-defined quantizer,Fb(x;Wb) =Q32→b(F32,W32)(x).
However, it may fail to be retrieved from a k-bit (b < k < 32) Quantizable DNN, because the
pre-defined quantizer, e.g. Eq.(1), may not satisfy Qk→b(Fk,Wk)(x) = Q32→b(F32,W32)(x).
To solve this problem, we re-design the pre-defined quantizer with ‘thresholds alignment’
constraint, i.e. the quantization thresholds of Q32→b are forced to a subset of Q32→k. The ne-
cessity of this constraint is proved in Section 1 of Supplementary material. With ‘thresholds
alignment’ trick, we re-design the quantizer Eq.(1) to Eq.(7):

Qb(r) =

{
Q32→b(r) = 1

2b−1 clamp (round (2br−0.5),0,2b−1), r is 32 bit,

Qk→b(r) = 1
2b−1 round

(
2k−1
2k−b r−0.5

)
, r is k(k < 32) bit.

(7)

With Eq.(7), we can safely discard the 32-bit ‘parent’ model and only store the k-bit
Quantizable DNN in testing phase for small model size. Note that the k-bit Quantizable
DNN can switch to exactly the same b-bit (b < k) mode with that derived from ‘parent’.

4 Experiments
4.1 Implementation Details
To validate the performance of Quantizable DNNs, we compare it with individual quantized
DNNs on Cifar100 [9] and ImageNet [2] datasets, in terms of classification accuracy. Our
implementation are based on PyTorch [14]. Cifar100 has 40,000 training images, 10,000
validation images and 10,000 test images. Note that since there is no official split, we divide
training/validation set by ourselves. ImageNet has 1,280,000 training images and 50,000
validation images. Results on CIFAR100 are average of 3 runs. All ‘±’ in tables denotes
standard deviation. To ensure fairness, Both Quantizable DNNs and corresponding quan-
tized DNNs are trained from scratch for the same epochs, with the same batch size and
learning rate. Common data augmentation techniques, e.g. Random Resized Crop and Ran-
dom Horizontal Flip are adopted for both models. The hyper-parameter T for consistency
loss is empirically set to 2 for all experiments, which is selected based on the validation set
of CIFAR100.

4.2 Classification Performance
Table 1 and Table 2 provide the results on CIFAR100 and ImageNet, respectively. On CI-
FAR100, we experiment with a Resnet variant which removes the first pooling layer due to
the small image size (32×32). All models in Table 1 are trained for 100 epochs with the
batch size of 128. On ImageNet, Quantizable DNNs are implemented based on standard
AlexNet and Resnet-18. All experiments are trained for 45 epochs with a batch size of 256.

It can be seen that a single Quantizable DNN can even achieve higher overall classifica-
tion accuracy than a bunch of individual quantized DNNs. On CIFAR100, Low bit modes
in Quantizable DNNs outperforms quantized DNNs by 2.81% to 3.29% . And 32-bit mode
achieves 0.71% gains due to the regularization from lower bit modes. Similar results are
also observed for Alexnet on ImageNet. The accuracy gains verify the effectiveness of the
co-regularization scheme in Quantizable DNNs. When experiment with Resnet-18 on Ima-
geNet, the performance of 32-bit mode is degraded by−1.33%, we attribute it to its compact
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Model Top1 Acc(%) Model Top1 Acc(%)

32-bit Resnet-Cifar 70.66 ± 0.16 71.37 ± 0.25
4-bit Quantized Resnet-Cifar 68.26 ± 0.12 71.25 ± 0.17
3-bit Quantized Resnet-Cifar 67.87 ± 0.19 Quantizable Resnet-Cifar 71.16 ± 0.29
2-bit Quantized Resnet-Cifar 67.69 ± 0.26 70.50 ± 0.59
1-bit Quantized Resnet-Cifar 61.92 ± 0.30 64.95 ± 0.16

Table 1: Top-1 test accuracy on CIFAR100.

Model Top1 Acc(%) Model Top1 Acc(%)

32-bit Alexnet 61.38% 62.86%
4-bit Quantized Alexnet 60.67% 61.68%
3-bit Quantized Alexnet 58.88% Quantizable Alexnet 60.76%
2-bit Quantized Alexnet 52.58% 56.66%
1-bit Quantized Alexnet 38.97% 39.98%

32-bit Resnet-18 68.60% 67.27%
4-bit Quantized Resnet-18 65.93% 66.94%
3-bit Quantized Resnet-18 65.03% Quantizable Resnet-18 66.28%
2-bit Quantized Resnet-18 61.73% 62.91%
1-bit Quantized Resnet-18* 50.67% -

Table 2: Top-1 validation accuracy on ImageNet.

network architecture, which is more likely to be over-regularized. Note that 1-bit mode is
not included in mode list for Quantizable Resnet-18 due to its unique incompatibility, which
will be further explained in Section 4.3.

4.3 Analysis of Aggressive 1-Bit Mode
When conducting experiments under (ImageNet, Resnet-18) setting, we observe that the per-
formance of 1-bit mode is significantly worse than 1-bit quantized Resnet-18 (by ≈ −7%).
In response to this phenomenon, we conduct a special analysis for 1-bit mode in this sec-
tion. Compared to 2-4 bit modes, the most notable feature of 1-bit mode is the mutation
of distribution characteristics, which is demonstrated in Fig. 2. When quantized to 2-4 bit,
the quantized weights still hold a Gaussian-like (bell-shaped) distribution. However, when
further quantized to 1-bit, weights then turn into Bernoulli distribution, which may make it
difficult for 1-bit mode to be compatible with other bit modes when integrated into a unified
model.

However, for experiments under (ImageNet, Alexnet) and (CIFAR100, Resnet) settings,
no degradation is observed for 1-bit mode. We conjecture it is the redundant capacity that al-
lows the model to tolerate the incompatibility from 1-bit mode, because Alexnet (239M) has
much more parameters than Resnet-18 (46M) and the task of CIFAR100 is much easier than
ImageNet. To validate this hypothesis, we conduct experiments on CIFAR100 using Quan-
tizable Resnet-Cifar with different channel numbers (1×,0.75×,0.5×,0.25×). The fewer
channels there are, the less redundancy there is in the model. Fig. 3 shows the accuracy
gains compared with quantized DNNs. It can be seen that as the channel number decreases,
performance gains of 1-bit mode decreases rapidly compared with 2-4 bit modes. This phe-
nomenon reveals that the more compact the model is, the more obvious the incompatibility
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Figure 2: Visualization of weight distributions in different bit modes. 1 bit mode has funda-
mental difference with other modes.

from 1-bit mode is. On this basis, we further speculate that 1-bit mode can bring negative
impacts on other bit modes when integrated in a compact model, and Table 3 verifies our
speculation. Therefore, the 1-bit mode is discarded for Quantizable Resnet-18 (Table 2).
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Figure 3: Gain of test accuracy for different
bit modes on models with different channel
numbers.

Mode Model A (%) Model B (%)

32-bit 61.88 ± 0.77 63.73 ± 0.34
4-bit 62.03 ± 0.67 63.60 ± 0.41
3-bit 61.32 ± 0.44 63.01 ± 0.24
2-bit 57.99 ± 0.13 58.34 ± 0.10
1-bit 37.37 ± 0.22 -

Table 3: Impacts of 1-bit mode on other bit
modes. Model A and Model B are Quantiz-
able Resnet-Cifar (0.25×) with and without
1-bit mode respectively.

4.4 Ablation Study
We propose Bit-Specific Batch Normalization to enable Quantizable DNNs to converge, and
optimize it with Consistency-based Training Objective. To verify the effectiveness of these
two components, ablation study is conducted on CIFAR100.
4.4.1 Effectiveness of Bit-specific BN

In this section, we make a comparision between Batch Normalization [6], Bit-Specific Batch
Normalization varaint A and varaint B. Results are presented in Table 4. Since BN fails to
resolve the conflict between different bit modes, it has poor overall performance as expected.
For BSBNA, since we normalize feature maps from different bit modes with private (µk,σk),
significant improvement is observed for all bit modes. It futher verifies that the differences
in output distribution is the main conflict among different bit modes. On this basis, BSBNB

further assigns more flexibility to each bit mode via private (γk,βk,µk,σk) and brings more
performance gains to the model. In different situations, we can choose to use a particular
variant as needed.
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Mode BN(%) BSBNA(%) BSBNB(%)

32-bit 1.10 ± 0.17 70.04 ± 0.32 71.37 ± 0.25
4-bit 6.36 ± 1.59 69.73 ± 0.37 71.25 ± 0.17
3-bit 20.99 ± 3.45 69.84 ± 0.35 71.16 ± 0.29
2-bit 62.38 ± 0.68 69.39 ± 0.54 70.50 ± 0.59
1-bit 2.95 ± 0.28 64.54 ± 0.11 64.95 ± 0.16

Table 4: Ablation study for Bit-Specific
Batch Normalization(BSBN).

Mode Cross-entropy(%) Consistency loss(%)

32-bit 70.02 ± 0.29 71.37 ± 0.25
4-bit 69.75 ± 0.31 71.25 ± 0.17
3-bit 69.63 ± 0.07 71.16 ± 0.29
2-bit 68.50 ± 0.18 70.50 ± 0.59
1-bit 61.01 ± 0.23 64.95 ± 0.16

Table 5: Ablation study for Consistency-
based Training Objective.

4.4.2 Effectiveness of Training Objective

During training, each low bit mode is attached with a consistency loss rather than widely-
used cross-entropy loss. The consistency loss enforces Quantizable DNNs to produce con-
sistent predictions when degraded to low bit modes. Comparison between these two loss
functions is presented in Table 5, and the consistency loss brings significant accuracy gains
for all bit modes.
5 Efficiency Analysis
A Quantizable DNN can be viewed as the integration of multiple quantized DNNs. In this
section we make a further comparision between a set of quantized DNNs and the correspond-
ing Quantizable DNN from the following aspects.

Training time The time occupied by data reading and augmentation cannot be ignored
during training. For Quantizable DNNs, less time is taken for training since all bit modes
share the same training data. In our implementation (GTX 1080 Ti, 20 Cpu cores), Quan-
tizable Alexnet consumes 0.9× training time per epoch than individually trained quantized
DNNs.

Memory footprint & Speed Each bit mode in Quantizable DNNs is identity to a quantized
DNN, therefore both models can inference with the same memory footprint and high speed,
e.g. 1-bit model can achieve 58× acceleration [16].

Model size For m quantized DNNs with different bit-widths {Q1, · · · ,Qm}, the total model

size is
m
∑

i=1
model size(Qi), while the model size of the Quantizable DNN is approximately

max
i

model size(Qi), which is only 40% of the former when bit modes = {1,2,3,4}.

Switch time To switch to different bit-widths with quantized DNNs, extra time is needed
to re-load the new model, which is determined by the specific hardware system. However,
Quantizable DNNs can turn on different bit modes on the fly and achieve instant accuracy-
efficiency trade-off.

6 Conclusion
We propose the first DNN model that can adjust its bit-width on the fly, namely Quantizable
DNNs. Compared with quantized DNNs, Quantizable DNNs can be instantly converted
to different bit modes as needed, which provides much more flexibility in real application
scenarios. Besides, the proposed model can even achieve higher accuracy than individual
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quantized DNN due to the co-regularization effects between 32-bit mode and low-bit mode.
In the future, Quantizable DNNs can be combined with AutoML [3] to efficiently explore
optimal bit-width for different layers.
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