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Abstract

Pose guided person image generation aims to transform a source person image to a
target pose. It is an ill-posed problem as we often need to generate pixels that are in-
visible in the source image. Recent works focus on designing new architectures of deep
neural networks and have shown promising results. However, they simply adopt the loss
functions commonly used for generic image synthesis and restoration, e.g., L1-norm loss,
adversarial loss, and perceptual loss. This can be suboptimal due to the unique appear-
ance and structure patterns of person images. In this paper, we first have a comprehen-
sive study of these prior loss functions for person image generation. We also consider
the structural similarity (SSIM) index as a loss function since it is widely used as the
evaluation metric and can capture the perceptual quality of generated images. Moreover,
motivated by the observation that a person can be divided into part regions with homoge-
neous pixel values or textures, we extend the SSIM into a novel part-based SSIM loss to
explicitly account for the articulated body structure. Quantitative and qualitative results
indicate that (1) using different loss functions significantly impacts the generated person
images and (2) the proposed part-based SSIM loss is complementary to the prior losses
and helps improve the performance.

1 Introduction
Pose guided person image generation means to transform a person image from a source pose
to a target pose while retaining the appearance details. It has many valuable applications
such as movie making, image editing and data augmentation for person re-identification
and action recognition. This task is very challenging especially in the case of human body
occlusion, large pose transfer and complex textures.

Recent approaches are built on deep neural networks and have demonstrated encouraging
performance. Ma et al. [11] propose a two-stage framework based on the generative adver-
sarial network (GAN). It first generates an initial but coarse image, which is then refined
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in an adversarial way. Zhu et al. [28] introduce a simple pose-attentional transfer architec-
ture, which can generate person images progressively. Recently, Ren et al. [16] design a
differentiable global-flow local-attention framework to reassemble the input to a target pose.

As the essential component of deep learning methods, the loss function guides the neural
network to produce the desired output. However, all prior work in person image genera-
tion focuses on designing new network architectures and simply adopts the loss functions
commonly used for generic image synthesis and restoration, e.g., L1-norm loss, adversarial
loss, and perceptual loss. They have several limitations. Both the L1-norm loss and the
perceptual loss compute the elementwise difference of images or feature maps. But they are
extremely sensitive to the spatial misalignment. The adversarial loss [5] discriminates gener-
ated samples from real ones but often ignores the detailed texture. Although the combination
of different losses leads to promising results, it is still unclear how each individual loss im-
pacts the generated person images. Moreover, there is surprisingly no work on designing
loss functions to account for the unique appearance and structure patterns of person.

The goal of this paper is to study the loss functions for person image generation, which
is largely ignored by existing work. We first compare the strengths and weaknesses of prior
losses widely used in this task. Extensive ablation study is performed to demonstrate the im-
pact of different loss functions on generated person images. We also consider the structural
similarity (SSIM) index [25] as a loss function since it is widely used as the evaluation metric
and can capture the perceptual quality of generated images. By calculating the statistics on
the patch level, the SSIM value compares the local textures of two images and is invariant to
small spatial misalignments. Moreover, motivated by the observation that a person can be di-
vided into part regions with homogeneous pixel values or textures, we extend the SSIM into
a novel part-based SSIM loss to explicitly account for the articulated body structure. Quanti-
tative and qualitative results on two benchmark datasets indicate that (1) using different loss
functions significantly impacts the generated person images and (2) the proposed part-based
SSIM loss is complementary to the prior losses and helps improve the quality of generated
images. As shown in Fig. 1, the adversarial loss (GAN) makes sharper images but neglects
the detailed texture; the part-based SSIM loss (pSSIM) captures more detailed texture but
often results in blurred images. Then the combination of both two losses (GAN+pSSIM)
preserves the detailed texture and makes a clear border of persons. Further including the
perceptual loss (GAN+Per+pSSIM) makes the generated images more realistic.

2 Related Work
Pose guided person image generation. Ma et al. [11] are the first to study the problem of
pose guided person image generation. They propose a two-stage generation approach with
adversarial training. Ma et al. [12] improve their method by disentangling person image into
three types of embedding features then re-compose them back to the desired image. Esser
et al. [3] disentangle the appearance and pose of a person image using a variational autoen-
coder combined with the conditional U-Net [17]. [14, 22] utilize a bidirectional strategy to
synthesize person images in an unsupervised manner. To better handle the non-rigid body
deformation in large pose transfer, Siarohin et al. [20] propose deformable skip connections
warping local image feature according a set of local affine transformations. Li et al. [8]
use the 3D appearance flow between the source and target poses calculated by an additional
3D human model to warp features of the input image. The pose transfer model proposed
by Zhu et al. [28] draws a great attention in recent years, which introduces cascaded Pose-
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Figure 1: Person images generated by models trained with different loss functions.

Attentional Transfer Blocks into the generator to transform the source data. The most recent
work by Ren et al. [16] designs a differentiable global-flow local-attention framework to
reassemble the input to a target pose. However, these prior approaches focus on new net-
work architectures and simply adopt the loss functions commonly used for generic image
synthesis and restoration.

Image quality evaluation. The image quality evaluation is essential for image genera-
tion methods to synthesize desired outputs. Recent image synthesis research [1, 4, 6, 13, 15,
24] commonly uses simple loss functions to measure the difference between the generated
image and the ground truth, e.g., L1-norm loss, adversarial loss, and perceptual loss. The
conditional approaches [6, 13] solving the image restoration task typically use the L1-norm
loss to compute the pixel-to-pixel difference in images. The adversarial loss proposed by
Goodfellow et al. [5] discriminates generated samples from real ones, which is commonly
used in image generation tasks [4, 6, 13]. The perceptual loss [7] widely used in the style
transfer task [4] computes the element-by-element difference in feature maps. However,
the adversarial loss ignores the detailed texture and the element-by-element losses are too
sensitive to the spatial misalignment.

As the most popular image quality evaluation metric, the structural similarity (SSIM) in-
dex [25] aims to compare the luminance, contrast and structure information in images based
on the assumption that the Human Visual System (HVS) is sensitive to changes in local in-
formation. However, the computation of SSIM [25] index in each corresponding pixel of two
images only looks at a fixed neighborhood patch region, which neglects the specific structure
of human body. The SSIM [25] index has also been used in image compression [24], image
reconstruction [1], denoising and super-resolution [15]. To the best of our knowledge, we are
the first to use the structural similarity (SSIM) index as a loss function for the pose guided
person image generation task. Furthermore, we observe that a person can be divided into part
regions with homogeneous pixel values or textures. This motivates us to extend the SSIM to
a novel part-based SSIM loss to explicitly account for the articulated body structure.
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3 Method

3.1 Problem statement

The source image Is and the target image It are two images of the same person in different
poses (denoted as Ps and Pt respectively). Given Is, Ps and Pt , we aim to synthesize a new
image Ît which is a prediction of It . The human pose of the source image is extracted by an
off-the-shelf human pose estimator [2]. It uses a sequence of 2D coordinates to describe the
locations of body joints in an image. In order to leverage the spatial nature of pose, we use K
heat maps making up a 3D volume in RW×H×K to represent a 2D pose, e.g., Ps or Pt , where
K, W and H are respectively the number of body joints, the width and height of the input
image. Each heat map contains a Gaussian mask centered at the corresponding body joint
location.

Prior work in pose guided person image generation simply adopts the loss functions
commonly used for generic image synthesis and restoration, e.g., L1-norm loss, adversarial
loss, and perceptual loss. The L1-norm loss calculates the L1 norm of the difference between
the synthetic image Ît and the ground truth real image It :

LL1(It , Ît) = ‖Ît − It‖1 (1)

The perceptual loss commonly calculates the L1-norm distance between two feature maps
respectively extracted from Ît and It by a pre-trained network. It can be written as:

LPer(It , Ît) = ∑
i
‖φi(Ît)−φi(It)‖1 (2)

where φi is the output of the ith layer of a pre-trained network, e.g., conv1_2 of a VGG-19
[21] pre-trained on ImageNet [18]. The adversarial loss [5] uses a discriminator to force
the distribution of generated images to mimic that of real images. Zhu et al. [28] utlize
two discriminators DA and DS to respectively ensure the appearance consistency and shape
consistency between It and Ît ≡ G(Is,Pt):

Ladv =EIs,Pt ,It [log(DA(Is, It) ·DS(Pt , It))]+

EIs,Pt [log((1−DA(Is,G(Is,Pt))) · (1−DS(Pt ,G(Is,Pt))))]
(3)

where G denotes a generator [5].

3.2 Structural SIMilarity (SSIM) loss

The Structural SIMilarity (SSIM) index [25] is a perceptually motivated metric which de-
composes the similarity measurement task into three comparison functions: luminance (l),
contrast (c) and structure (s). Given two signals x and y, the three comparison functions are
defined as: l(x,y) = 2µxµy+C1

µ2
x +µ2

y +C1
, c(x,y) = 2σxσy+C2

σ2
x +σ2

y +C2
, s(x,y) = σxy+C3

σxσy+C3
. Here µx, σ2

x and σxy

are the mean of x, the variance of x, and the covariance of x and y, respectively. C1, C2 and C3
are constants and stabilize the divisions. Then the general form of the SSIM index between
x and y is defined as:

SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [s(x,y)]γ (4)
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where α , β and γ are parameters to control the relative importance of the three comparison
functions. By setting C3 =C2/2 and α = β = γ = 1 [25], the formula of the SSIM index can
be reduced to the form shown below.

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
(5)

For image quality evaluation, the SSIM index is typically calculated using a sliding Gaus-
sian window. The window can be displaced pixel-by-pixel on the image to create an SSIM
quality map of the image, whose mean defines the SSIM index of two images X and Y :

MSSIM(X ,Y ) =
1
M

M

∑
i=0

SSIM(Xi,Yi) (6)

where Xi and Yi are the image contents of the ith local window; and M is the number of local
windows in the image.

In this paper, we consider a SSIM loss of the synthetic person image Ît and the ground
truth real person image It for person image generation, which can be defined as:

LSSIM(It , Ît) = 1−MSSIM(It , Ît) (7)

It has several advantages over the losses discussed earlier. Comparing the patch statistics
between two images not only makes the SSIM loss robust to local spatial misalignment but
also enables it to characterize the texture patterns. Furthermore, since the SSIM index has
been widely used to evaluate the generated person images, minimizing the SSIM loss should
directly improve the performance.

3.3 Part-based SSIM loss
The SSIM index of two images X and Y defined in Eq. (6) is computed by looking at the
neighborhood of each pixel as large as the support of a standard window. We observe that
a person in an image can be divided into part regions with homogeneous pixel values or
textures. This motivates us to extend the SSIM loss into a novel part-based SSIM loss. By
calculating the statistics in those part regions instead of the sliding windows, our new loss
explicitly accounts for the articulated body structure.

The person image X is composed of a foreground human body and some background. We
decompose the human body into L = 10 parts (i.e., head, upper arms, lower arms, upper legs,
lower legs and torso) using 18 detected 2D body joints. The head and the torso respectively
contain 6 joints and 4 joints. Each of the other parts contains 2 joints. Let {Ml : l = 0, · · · ,L}
be a set of L+ 1 masks. M0 and {Ml : l = 1, · · · ,L} respectively encode the background
region and the L body part regions. For each body part mask Ml , there is a 2D Gaussian filter
masking out the lth part according to joints contained in it. Then the masked image can be
written as X l = X⊗Ml , where ⊗ is the elementwise multiplication.

Different from the conventional SSIM, which calculates a nonlinear function of pixel
mean, variance and covariance, i.e., Eq. (5), in each of the overlapping sliding windows and
takes their average, i.e., Eq. (6). The proposed part-based SSIM calculates the nonlinear
function of these pixel statistics in each of the nonoverlapping part regions and takes their
average. Thus, SSIM compares textures or pixel statistics in each patch while Part-SSIM
compares them in each body part region. Since the number of body part regions is small, the
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computation of the part-based SSIM is efficient. Formally, the SSIM of the lth body part is
defined as:

SSIMl =
(2µX l µY l +C1)(2σX lY l +C2)

(µ2
X l +µ2

Y l +C1)(σ2
X l +σ2

Y l +C2)
(8)

where µX l , σX l and σX lY l are statistics calculated in the lth body part region.
Since the background region is unconstrained, we calculate its SSIM index using Eq. (6),

denoted by MSSIM(X0,Y 0), in sliding windows and take their average. For the foreground
human body, we calculate the SSIM values in different body part regions using Eq. (8) and
take their average. Then the proposed part-based SSIM, denoted by pSSIM(X ,Y ), can be
written as:

pSSIM(X ,Y ) =
1
2

(
MSSIM(X0,Y 0)+

1
L

L

∑
l=1

SSIMl

)
(9)

We define the part based SSIM loss of the synthetic person image Ît and the ground truth
real person image It as:

LpSSIM(It , Ît) = 1− pSSIM(It , Ît) (10)

We also consider a variant of the part-based SSIM loss. It treats the background region
as a part and calculates the structure similarity using the part-based SSIM in Eq. (8). Then
the loss function becomes:

LpSSIM∗(It , Ît) = 1− 1
L+1

L

∑
l=0

SSIMl (11)

4 Experiments

4.1 Implementation details
Baseline model. We use the Pose-Attentional Transfer Network (PATN) proposed by Zhu
et al. [28] as a baseline model due to its state-of-the-art performance. The PATN can ef-
fectively transfer the source person image Is to the target pose Pt using several cascaded
Pose-Attentional Transfer Blocks (PATBs) in the generator G. The PATN consists of an en-
coder, which takes as input Is, Ps and Pt , a cascade of 9 PATBs and a decoder to generate the
target image Ît . The loss function is a combination of the L1-norm loss, the perceptual loss
and the adversarial loss respectively defined in Eq. (1), Eq. (2) and Eq. (3).

Training Details. We use a Gaussian window with σ = 0.8 and 2µ = 7 to compute the
SSIM index of background in the part-based SSIM loss. When different loss functions are
combined together to get the final loss, we follow PATN and set the coefficients of L1-norm
loss, adversarial loss, and perceptual loss as (10, 5, 10) for both two datasets. We set the
coefficient of Part-SSIM loss as 10. This combination of coefficients achieves the overall
best performance.

4.2 Datasets and evaluation metrics
Datasets. We conduct experiments on the Market-1501 dataset [27] and the DeepFash-
ion dataset (In-shop Clothes Retrieval Benchmark) [10]. The Market-1501 dataset contains
32,668 images of 1,501 persons captured from six different surveillance cameras. The im-
ages have a low resolution (128×64) and vary in human poses, viewpoints, background and
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Table 1: Quantitative results of models trained by different loss functions.
Loss model SSIM IS mask-SSIM mask-IS DS pSSIM

L1 0.327 3.431 0.822 3.143 0.365 0.676
Per 0.311 3.339 0.820 3.25 0.480 0.668

GAN 0.192 3.623 0.731 3.723 0.628 0.508
SSIM 0.352 2.992 0.825 3.365 0.495 0.678

illumination, which makes the person image generation more challenging. The DeepFashion
dataset contains 52,712 in-shop clothes images with a high resolution (256×256) and clean
background. We collect the training and testing splits following [28].

Evaluation metrics. We use the same evaluation metrics as Def-GAN [20], including
Structural Similarity (SSIM) [25], Inception Score (IS) [19], masked version of Structural
Similarity (mask-SSIM) [11], masked version of Inception Score (mask-IS) [11] and Detec-
tion Score (DS) [20]. IS computes the classification score of generated images using the
Inception Net [23] trained on ImageNet [18]. Mask-SSIM and Mask-IS are respectively the
masked versions of SSIM and IS. Note that the masks have been built following the proce-
dure proposed in [26]. DS computes the person-class detection scores using SSD [9] on each
generated image, which measures the sharpness of an image to some extent. We additionally
use the proposed Part-SSIM (pSSIM) as a new evaluation metric to measure the generated
image quality.

4.3 Ablation study

Loss analysis. In order to analysis the impact of different losses on the person image gen-
eration task, we train different image generation models on Market-1501 by using different
losses separately (L1 loss, perceptual loss,adversarial loss, and SSIM loss). Tab. 1 shows
that the model trained by the adversarial loss (GAN) has the highest IS scores and DS score
but performs worst under the SSIM metric. The model trained by the SSIM loss (SSIM) has
the highest SSIM scores but the lowest IS score. Models trained by the L1 loss (L1) and
the perceptual loss (Per) have moderate performance in all metrics. We also present some
qualitative results in Fig. 2. The adversarial loss often produces distortions in the generated
images but keeps their sharpness. The rest three losses often result in blurred images but the
images generated via the SSIM loss look better than those generated by the L1 loss model
and the perceptual loss model. Note that the IS metric and DS metric respectively use a
classification model and a detection model trained by a deep neural network based on an en-
tropy loss, while the discriminator used in the adversarial loss is also trained via an entropy
loss. Thus, the model trained by the adversarial loss is more likely to capture the semantic
information which are easily recognized by a classification model or a detection model. This
explains why the model trained by the adversarial loss has the highest IS score and DS score.
For the same reason, the model trained by the SSIM loss can achieve the highest SSIM score.

Then we combine different loss functions for further study. Considering the strengths and
weaknesses of different loss functions analyzed above, we combine the adversarial loss with
each of the other three loss functions to train person image generation models, denoted by
GAN+L1, GAN+Per and GAN+SSIM, respectively. Quantitative results in Tab. 2 indicate
that DS scores of all models improve greatly, which means the generated images are sharper.
The model trained by GAN+L1 has higher IS scores. The model trained by GAN+Per has a
higher DS score. The model trained by GAN+SSIM has higher SSIM scores.
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Figure 2: Qualitative results of models trained by different loss functions.

Table 2: Quantitative comparison of different models trained by three loss combinations.
Loss model SSIM IS mask-SSIM mask-IS DS pSSIM
GAN+L1 0.275 3.616 0.794 3.898 0.731 0.611
GAN+Per 0.299 3.313 0.804 3.791 0.761 0.619

GAN+SSIM 0.308 3.410 0.807 3.723 0.713 0.626

Part-based SSIM loss analysis. We make a series of loss function combinations to
verify the effectiveness of the proposed part-based SSIM loss and all models are trained
on Market-1501. Tab. 3 shows the quantitative comparison. We first compare the models
trained by GAN+L1 and GAN+L1+pSSIM. Results show that the model with the part-based
SSIM loss has a higher SSIM score but a lower IS score. We also compare GAN+Per and
GAN+Per+pSSIM. Results show that both the SSIM and IS metrics improve when we train
the model with the part-based SSIM loss. However, when the model is trained via the com-
bination of the adversarial loss, perceptual loss, part-based SSIM loss and L1-norm loss, the
performance degrades under most metrics. The quantitative comparison also shows that the
model trained with the part-based SSIM loss always performs better than that without the
part-based SSIM loss. The model trained with the perceptual loss always performs better
than the model trained with the L1-norm loss. Finally, the comprehensive comparison shows
that the model trained by the adversarial loss, perceptual loss and part-based SSIM loss is
the best model because it has comparable quantitative results under all evaluation metrics.

We also compare the performance of models trained with LpSSIM , LSSIM and LpSSIM∗ .
Quantitative results in Tab. 4 show that the model trained with the proposed part-based SSIM
loss has the best performance under most evaluation metrics because it helps the model
capture the articulated body structure. We also make a qualitative comparison in Fig. 3.
Results show that the model trained with the part-based SSIM loss produces more realistic
person images than the model trained with the other two losses.

Table 3: Quantitative comparison of models trained by different loss combinations with or
without part-based SSIM loss.

Model SSIM IS mask-SSIM mask-IS DS pSSIM
GAN+L1 0.275 3.616 0.794 3.898 0.731 0.611

GAN+l1+pSSIM 0.291 3.454 0.799 3.801 0.718 0.630
GAN+Per 0.299 3.313 0.804 3.791 0.761 0.619

GAN+Per+pSSIM 0.312 3.326 0.810 3.807 0.742 0.642
GAN+Per+l1+pSSIM 0.306 3.338 0.807 3.779 0.733 0.633
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Table 4: Quantitative results of the models trained with three types of SSIM-based losses.
Model SSIM IS mask-SSIM mask-IS DS pSSIM

GAN+Per+SSIM 0.307 3.306 0.808 3.756 0.776 0.627
GAN+Per+pSSIM∗ 0.303 3.376 0.807 3.786 0.760 0.636
GAN+Per+pSSIM 0.312 3.326 0.810 3.807 0.742 0.642
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Figure 3: Qualitative results of models trained with different types of SSIM-based losses.

4.4 Comparison with state-of-the-art methods

We give qualitative and quantitative comparisons in this part to verify the effectiveness of
our proposed part-based SSIM loss.

Quantitative results. Quantitative results on Market-1501 [27] and DeepFashion [10]
are shown in Tab. 5. Several state-of-the-art methods including PG2 [11], Def-GAN [20] and
PATN [28] 1 are compared with our best model trained by the combination of the adversarial
loss, part-based SSIM loss and perceptual loss. Considering both datasets, our method is
comparable with PG2 and Def-GAN under IS but outperforms them under all other metrics.
Tab. 5 shows the IS of PATN is much lower than PG2 or Def-GAN, and after adding the
Part-SSIM loss, the IS improves on both datasets, which demonstrates the effectiveness of
the proposed method. While our DS is lower than PATN on Market1501 but higher on
DeepFashion, both their scores are higher than real data, which means the images generated
by both methods are as good as real images under this metric. In addition, our method
outperforms PATN under all other metrics.

Table 5: Quantitative comparison with state-of-the-art methods.
Model Market-1501 DeepFashion

SSIM IS mask-SSIM mask-IS DS pSSIM SSIM IS DS pSSIM
PG2 0.261 3.495 0.782 3.367 0.390 - 0.773 3.163 0.951 -

Def-GAN 0.291 3.230 0.807 3.502 0.720 - 0.760 3.362 0.976 -
PATN (baseline) 0.281 3.162 0.799 3.737 0.796 0.6186 0.771 3.201 0.976 0.799

Ours 0.312 3.326 0.810 3.807 0.742 0.6415 0.776 3.262 0.982 0.813
Real Data 1.000 3.890 1.000 3.706 0.740 1 1.000 4.053 0.968 1

Qualitative results. We further visualize some typical qualitative examples of our method
and PATN [28] in Fig. 4. Qualitative comparison indicates that our part-based SSIM loss not
only keeps the person structure of synthetic images but also preserves the detailed texture to
some extent. The right eight examples in the blue rectangle are performed on the Market-
1501. We can clearly see that our model produces synthetic images with sharper borders of

1We reproduce the results of PATN using the code provided by the authors.
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Figure 4: Qualitative comparison with state-of-the-art methods.
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Figure 5: Failure cases on Market-1501 and DeepFashion.

persons and preserves more detailed texture of the human body. For the eight typical exam-
ples obtained on the DeepFashion shown in the green rectangle, our model produces more
realistic images with the accurate person postures, clean background and detailed texture.
We also provide some failure cases in Fig. 5. As we can see, our method generates low qual-
ity images with coarse texture and blurred postures when the source image has complicated
texture or large pose transfer. Our code and trained models are publicly available 2.

5 Conclusion
In this paper, we first make a comprehensive study of the loss functions ( e.g., L1-norm
loss, adversarial loss, and perceptual loss) for pose-guided person image generation. We
also propose a novel part-based SSIM loss function to account for the unique appearance
and structure patterns of person. Experimental results demonstrate the effectiveness of the
proposed approach.
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