
KEWEN WANG, XILIN CHEN: PRIVILEGED MODALITY DISTILLATION NETWORK 1

PMD-Net: Privileged Modality Distillation
Network for 3D Hand Pose Estimation from a
Single RGB Image

Kewen Wang1,2

kewen.wang@vipl.ict.ac.cn

Xilin Chen1,2

xlchen@ict.ac.cn

1 Key Lab of Intelligent Information
Processing of Chinese Academy of
Sciences(CAS), Inst. of Computing
Technology, CAS,
Beijing, 100190, China

2 University of Chinese Academy of
Sciences,
Beijing, 100049, China

Abstract

3D Hand Pose Estimation from a single RGB image is a challenging task due to
the significant depth ambiguities and occlusions. In this paper, we propose a Privileged
Modality Distillation Network (PMD-Net), which improves the RGB-based hand pose
estimation by excavating the privileged information from depth prior during training.
Different from existing methods, the PMD-Net is composed of three sub-networks to
regress X, Y, and Z coordinates respectively and distills the privileged information from
the depth network to the RGB network by transferring constraints between corresponded
layers. Furthermore, a random block replacement is adopted and a refine module is added
to enhance the robustness of PMD-Net. Experiments on both synthesized and real-world
hand pose estimation datasets are conducted, and extensive results demonstrate that the
proposed PMD-Net achieves state-of-the-art results and is superior to existing methods.

1 Introduction
Hand pose estimation progresses rapidly in recent years. With the widespread use of depth
cameras, several datasets [21, 24, 25, 26, 34] are available. Benefit from deep neural net-
works and these datasets, 3D hand pose estimation becomes an active topic, and several
methods [4, 11, 17, 19, 29, 30] were proposed. These depth-based methods perform well on
hand pose estimation. However, as the accuracy of the captured depth decreases quickly at
a distance, it is hard to acquire a high-accurate depth map for hand pose estimation in un-
constrained cases. There is still a great need for RGB-based 3D hand pose estimation since
RGB cameras can easily deal with objects at a distance with a zoom lens.

Some works, such as [20] only utilizes color images for training. The performance is
much worse than depth-based methods due to the significant depth ambiguities and occlu-
sions. As an RGB image doesn’t contain explicit depth information and even our human
beings can inference depth from various hints, it’s a big challenge to estimate depth directly
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Figure 1: Concept of the proposed method.

from RGB input. Inspired by human beings, several researchers try to apply depth informa-
tion as prior to improve the accuracy of depth estimation from RGB images. The following
works attempt to utilize the depth modality information to enhance training. Gu et al. [10]
align the hand pose latent space with the depth and RGB modalities by using a cross-modal
discriminator with adversarial learning. Yuan et al. [35] exploit a pretrained depth-based
network and add a middle feature level constraint to supervise the training process of the
RGB network.

Meanwhile, privileged modality distillation has been used in challenging situations, in
which only limited training data or partially observed modalities are available. For example,
privileged modality distillation is used to tackle action detection [5, 23], image classifica-
tion [14], and vessel border detection [7]. Considering that the RGB-based 3D hand pose
estimation task suffers from the significant depth ambiguities in RGB images, we utilize the
privileged modality distillation to improve the 3D hand pose predictions in PMD-Net.

Although 2D RGB images provide rich details in texture, they lose the important depth
information of objects during the projection from 3D to 2D. However, the lost depth is still
implicitly embedded in 2D images in many aspects, such as shadow, reflection, occlusion,
motion, and even some prior hints. We human beings learn these cues from experiences.
In this work, depth maps are applied as these experiences, and to teach the RGB network
during training. More specifically, by utilizing the depth information, the PMD-Net could
distinguish the hand from the background and predict hand joints coordinates more precisely,
especially for the Z-axis. To this end, we propose to utilize a pretrained depth-based hand
pose network and an RGB-based network with privileged modality as side information from
depth-based network during training. Only RGB images are used to feed in the RGB-based
network to predict 3D hand pose during inference. In short, the PMD-Net is trained in two
stages way and makes the predictions in a single end-to-end model.

The concept of the proposed method is shown in Figure 1. During the training stage, a
depth network is trained from depth images to form the capability of hand pose estimation.
Then, paired RGB and depth images are used by the two networks as inputs simultane-
ously. The distillation is operated between the depth network whose weights are fixed and
the RGB network by constraints from both the middle-layer features and the features before
final predictions. In this way, the RGB network learns privileged information from the depth
modality to achieve more accurate predictions. Moreover, we adopt a random block replace-
ment strategy to estimate invisible hand joints. To verify the effectiveness of PMD-Net, we
perform experiments on two public 3D hand pose estimation datasets: RHD [38] and STB
[37]. Extensive results on two datasets demonstrate that PMD-Net achieves state-of-the-art
performances.
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The main contributions of the proposed method can be summarized as follows:

• A two-stage network with privileged modality distillation. The PMD-Net utilizes priv-
ileged depth modality to teach RGB based 3D hand pose estimation. The distillation
loss constraints are employed to both the middle-layer features and the features before
the final regression layers.

• Two steps for joints’ coordinates prediction. In the first step, joints coordinates are
predicted with three sub-networks for X, Y, and Z separately. This makes the privi-
leged modality distillation more clear and specific. In the second step, a refine module
is added to utilize the correlations among X, Y, and Z.

• Augmentation in training for occlusion. A random block replacement strategy is
adopted to the RGB network during training, which enhances the generalization ability
of the model to predict invisible hand joints.

2 Related Work

3D hand pose estimation has been studied with great passion in recent years. Benefit from
the widely used depth sensor, depth-based 3D hand pose estimation has progressed rapidly.
Voxel-based methods [6, 8, 17] convert depth image into voxels and use 3D convolution to
capture the spatial representation. Instead of voxels, Ge et al. [9] utilize hand pointnet to
process the 3D point cloud that models the visible surface of the hand for pose regression.
Xiong et al. [30] propose an anchor-based approach with 2D convolutions achieving better
performance.

Meanwhile, as RGB camera is still the majority, many applications related to hand pose
estimation still depends on RGB input. To enhance pose estimation from RGB, depth images
can be used as input during training as an implicit label and only RGB images are available
in inference. Researchers propose a few approaches trying to tackle this problem and their
approaches can be categorized into generative methods and discriminative methods. Gener-
ative methods aim at modeling hand and parameters are learned to represent the hand model.
Spurr et al. [22] learn a statistical hand model represented by a co-trained latent space. A
VAE is learned to model the 3D hand representation and the KL-divergence across multiple
modalities is jointly optimized. In addition, Yang and Yao [32] propose a disentangled VAE
to learn disentangled representations of hand poses and hand images.

As for discriminative methods, researchers directly map the features or heatmaps of the
input modality to 3D hand pose predictions. Panteleris et al. [20] perform real-time hand
pose estimation from single RGB images. Zimmermann and Brox [38] propose a deep net-
work with three steps to estimate 3D hand poses. Firstly a segmentation network is used to
predict the hand mask. Next, a sub-network predicts the 2D hand pose heatmap. Finally, a
transformation matrix and PosePrior for 3D pose estimation is predicted. Similar to Zimmer-
mann and Brox, Cai et al. [2] propose a network to learn 2D heatmaps to regress 3D hand
joints and utilize depth maps as a regularizer. They adopt a weakly-supervised training strat-
egy during training and test on single RGB images. Abdi et al. [1] use a dual network model
to unveil the latent variable of depth for 3D hand pose estimation. They use unsupervised
training method with both synthetic and partially-labeled real data.

Vapnik and Izmailov [27] first introduce the concept of training with privileged informa-
tion (PI), which is similar to the teacher-student relationship in human society, the teacher
network with PI teaches the student network during training since the teacher network has
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Figure 2: Structure of PMD-Net. (1) In the first stage, a depth-based network is trained with
depth input. (2) In the second stage, paired RGB and depth images are used by the two
networks as inputs. The weights of the depth network are fixed and the privileged modality
distillation is operated between the depth network and the RGB network by constraints from
both the middle-layer features and the features before final predictions. (3) During inference,
the RGB network estimates the 3D pose from single RGB images.

additional information to teach. During test time, however, the student network should pre-
dict on its own as PI is not available. Then, several works support this idea in person re-
identification [33], classification [28] and action recognition [36]. Yuan et al. [35] utilize
a pretrained depth-based network as privileged information and add a middle feature level
constraint to supervise the finetuning of the pretrained RGB network. Hinton et al. pro-
pose the idea of knowledge distillation (KD)[13] to distill the knowledge in an ensemble of
models into a student model by adding a loss constraint between the outputs of the student
network and the high-temperature outputs of the teacher network. Lopez et al. [15] propose
a generalized version of distillation which combines knowledge distillation and PI. Luo et
al. [16] introduce privileged modality distillation to action detection. Different modalities
such as RGB, depth, and optical flow are utilized by a distillation graph layer that can dy-
namically learn to distill knowledge across multiple privileged modalities. Inspired by [16]
and [35], we propose a two-stage privileged modality distillation network to distill privileged
information in the depth modality. We argue that the middle feature level loss in [35] is am-
biguous and nothing related directly to the network output is constrained. Different to [35],
we perform privileged modality distillation by constraining the loss between both the middle
layer features and the features before the final regression layers.

3 Methodology
The proposed PMD-Net is illustrated in Figure 2. The training of PMD-Net is comprised
of two stages. In stage I, we train a depth-based network with depth images from the given
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dataset. In stage II, an RGB-based network is trained under the supervision of the depth
network and hand joints coordinates. The paired depth and RGB images are used as inputs to
the networks and both regression and distillation losses are utilized to constrain the training
of the RGB-based network. During inference, the RGB network predicts 3D hand poses
from single RGB images.

3.1 Network Architecture

The architecture of PMD-Net is shown in Figure 2. The RGB-based network and the depth-
based network share the same structure except for the channels of the input image.

Feature Extractor. Without bells and whistles, we simply exploit a ResNet backbone
with a Global Average Pooling (GAP) layer to obtain the feature vector. The input size of
the network is 64×64 and a backbone network ResNet-34 [12] is used as a feature extractor.
Then we get a feature tensor with the shape of 8×8×512 and a GAP is operated. After the
GAP operation, we extract a middle-layer feature vector of 512 dimensions.

Regression Module. Previous works always predict 3D coordinates together in one
single stream network. However, we find that in this situation the prediction of Z coordinates
tends to have larger deviations than the X and Y coordinates. In order to make more precise
predictions and make the privileged modality distillation more specific, we separate the hand
joints coordinates prediction into three sub-networks for X, Y, and Z coordinates regression.
Each sub-network is composed of three fully connected layers with 256, 64, and 21 units
respectively.

3.2 Privileged Modality Distillation

Given network f and input modality m, we define the regression loss lreg( f , m) as:

lreg( f , m) = ( || f X
−1(xxx

m)−yyyX ||22 + || f Y
−1(xxx

m)−yyyY ||22 + || f Z
−1(xxx

m)−yyyZ ||22 )
1
2 , (1)

where f i
j denotes the activation value in the j-th layer of the sub-network which predicts i

(i ∈ {X , Y, Z}) coordinates and the subscript number −1 denotes the last layer; xxxm indicates
input sample in m modality and yyyk indicates 3D hand pose label in k-axis.

In stage I, we train a depth-based network with the input of the depth modality. Let the
depth-based network be ϕ and depth modality be D, the training loss of stage I is simply the
regression loss:

LossI = lreg(ϕ , D)

= ( ||ϕ X
−1(xxx

D)−yyyX ||22 + ||ϕY
−1(xxx

D)−yyyY ||22 + ||ϕ Z
−1(xxx

D)−yyyZ ||22 )
1
2 .

(2)

In stage II, we freeze the parameters in the depth network. To distill the privileged
information in the depth modality, the loss constraints are employed to both the middle-layer
features and the features before the final regression layers between the network of the RGB
and depth modalities. To be more specific, given depth and RGB network ϕ and ψ , the
imitation loss of distillation is defined as:

Ldis = λ1||ψ f eat(xxxR)−ϕ f eat(xxxD)||1 +λ2||ψX
−2(xxx

R)−ϕ X
−2(xxx

D)||1
+λ3||ψY

−2(xxx
R)−ϕY

−2(xxx
D)||1 +λ4||ψZ

−2(xxx
R)−ϕ Z

−2(xxx
D)||1,

(3)
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where λ1, λ2, λ3, and λ4 are hyperparameters to balance the four parts. D and R represent
depth and RGB modalities. The subscript f eat and −2 denote the 512-dimension feature
layer in the middle of the network and the second last layer.

Similar to Eq. 2, the regression loss in stage II is:

Lreg = lreg(ψ, R)

= ( ||ψX
−1(xxx

R)−yyyX ||22 + ||ψY
−1(xxx

R)−yyyY ||22 + ||ψZ
−1(xxx

R)−yyyZ ||22 )
1
2 .

(4)

The final loss function of stage II is a combination of regression loss and imitation loss
of distillation with hyperparameter α:

LossII = Ldis +α ·Lreg. (5)

3.3 PMD-Net with Refine Module
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Figure 3: Architecture of PMD-Net with refine module. A refine branch is added on the
stage II of PMD-Net to estimate the residual.

As illustrated in Figure 3, in order to further utilize features of RGB input and improve
the relevance between X, Y, and Z coordinates, we add a refine module in stage II of PMD-
Net.

Refine Module. A refine branch is added on the middle layer of PMD-Net, which has
three fully connected layers to predict the residual between XYZ coordinates estimated by
PMD-Net and the ground truth. By estimating the residual we can achieve more precise
predictions.

Loss Functions. The loss function in stage I is same as PMD-Net which is shown in
Eq. 2. In stage II, as shown in Figure 3, the regression loss is composed of two parts: Lreg1
and Lreg2. We use a hyperparameter β to balance the two regression losses:

Lreg = β ·Lreg1 +Lreg2. (6)

The distillation loss function and final loss function are the same as Eq. 3 and Eq. 5.
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Figure 4: Random block replacement.
The pixel values in solid red frame is re-
placed by the values in dotted red frame.

Figure 5: Hand pose normalization. The
middle finger MCP joint is shifted to ori-
gin and the yellow line is set to 1.

3.4 Random Block Replacement

3D hand pose estimation from RGB images is challenging because of self-occlusion and
input ambiguity. Prior work [31] demonstrates that data-distortion operation used in knowl-
edge distillation can improve the performance of the model. By transferring knowledge
between different distorted versions, the potential capacity of the network is excavated.

To improve the capability of the RGB network to estimate invisible hand joints and the
generalization ability, we propose a random block replacement strategy which is illustrated
in Figure 4. We randomly choose a block of K ×K size(the solid red frame in the figure)
in the input RGB image and replace its pixel values with the adjacent block on the right(the
solid dotted frame in the figure). In this way, the network is guided to learn from distorted
images to handle invisible hand joints issues.

4 Experiments

4.1 Dataset and Evaluation Metrics

We evaluate our proposed models on two public datasets: the Rendered Hand Pose Dataset
(RHD) [38] and the Stereo Hand Pose Tracking Benchmark (STB) [37].

RHD is a synthesized dataset of rendered hand images from 20 different characters per-
forming 39 actions with various hand sizes. It contains 41238 samples for training and 2728
samples for testing, with a resolution of 320×320. For each pair of RGB and depth images,
3D annotations for 21 hand joints and intrinsic camera parameters are provided.

STB is a real hands dataset. It is composed of a single person’s left hand in front of
six real-world indoor backgrounds. The dataset has 18000 pairs of RGB and depth images
with 3D annotations in 12 sequences. Each of the 12 sequences contains 1500 frames with a
resolution of 640×480. In our experiments, we follow [2, 3, 35, 38] and use 10 sequences
(15000 samples) for training and the other 2 sequences (3000 samples) for testing.

Evaluation Metrics. To evaluate the accuracy of the estimated 3D hand poses, we use
the common metrics: 1) mean end-point-error (EPE) 2) Area Under the Curve (AUC) on the
Percentage of Correct Keypoints (PCK) curve. EPE measures the average Euclidean distance
between the predicted hand joints and the ground truth hand joints in millimeters. PCK is
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the joint success rate that presents the percentage of predicted keypoints that fall within a
given threshold range of the Euclidean distance.

4.2 Implementation Details
Hand Pose Normalization. We follow the assumption that the hand root position and the
global hand scale are already known, which is used in [2, 22, 32, 35]. As is shown in
Figure 5, we perform hand pose normalization that the middle finger metacarpophalangeal
(MCP) joint is shifted to the origin and the distance between the wrist joint and the middle
MCP joint is set to 1 as in [18].

Data Augmentation. In our experiments, we only use image flip augmentation. The
image is flipped horizontally and vertically in the RHD dataset and not in the STB dataset.

Random Block Replacement. In our experiments, this module reaches its best perfor-
mance when the block length k=14 for STB and k=5 for RHD, and the replacement proba-
bility is set to 0.5.

We use Pytorch to implement the PMD-Net and train it using an NVIDIA TITAN Xp
GPU. We set the hyperparameters λi (i from 1 to 4) to (1/16, 5/16, 5/16, 5/16) and α to 100
for all our experiments. In our experiments, we use ADAM as the optimizer with a weight
decay of 0.0005 and a learning rate decay strategy is adopted. For the RHD dataset, we set
the learning rate as 1e-4 and we decay the learning rate by a factor of 10 after 60K iterations.
For the STB dataset, we set the learning rate as 7e-5 and we decay the learning rate by a
factor of 10 after 10K iterations.

4.3 3D Hand Pose Estimation from RGB images
Effectiveness of Privileged Modality Distillation. We compare our proposed PMD-Net
with the RGB baseline network and the depth-based network. The network architectures
of the RGB baseline and the Depth baseline are the same as the RGB and the Depth part
of the proposed model. Figure 6 shows the PCK curves and AUC values on the 3D hand
pose estimation task. The visualization results are shown in Figure 7. Privileged modality
distillation improves the performance on the basis of the RGB network and closing the gap
to the depth network. This experiment demonstrates convincingly the effectiveness of the
privileged modality distillation.

(a) RHD (b) STB

Figure 6: Comparison to baseline networks. The AUC between 20mm and 50mm is showed
on the figure legend.
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(a) RHD (b) STB

Figure 7: 3D hand pose estimation results on RHD and STB datasets. From top to bottom:
RGB images, predictions of RGB baseline network, predictions of PMD-Net, ground truth
poses. Note that the center point in RHD dataset is the wrist joint while in STB is the hand’s
centroid point.

Ablation Study. Firstly, we evaluate the PMD-Net with refine module in different hy-
perparameters settings. The results are summarized in Table 1 and we compare them with
vanilla PMD-Net. In our experiment, we set the hyperparameter β in Eq. 6 to 0.1, 0.3, 0.5,
1, 2 and the network with β = 0.5 has the best performance.

Method PMD-Net
PMD-Net with refine module

β = 0.1 β = 0.3 β = 0.5 β = 1 β = 2

EPE mean (mm) 7.46 7.26 7.12 6.92 6.94 7.16

Table 1: EPE mean comparison with different settings.

Then, we conduct an ablation study for different settings on RHD and STB datasets.
The results are summarized in Table 2. Compared with the RGB baseline network, the
EPE mean is improved by 4.57mm and 2.16mm on RHD and STB, respectively. PMD-Net
performs better than the network without 3 sub-networks. The refine module improves the
performance on the STB dataset for 0.54mm while decreasing the performance slightly by
0.19mm on the RHD dataset. We think this inconsistent performance is probably because
the RHD is a synthesized dataset which has very precise depth information while the STB is
a real-world dataset where the captured depth information is not so accurate. As a result, the
refine module which relies on RGB features may reduce the effect of distillation from depth
on the RHD dataset. Moreover, our PMD-Net has achieved further accurate predictions with
the refine module and random replacement strategy.

The test time comparison with different experiment settings is shown in Table 3. The
result shows that the three sub-networks and refinement designs only take an extra 0.11ms
and 0.08ms per image, respectively, while really contribute to performance a lot. These
structures are not very time-consuming because they only use the FC layers with several
units.
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Method
EPE mean (mm)

RHD STB

RGB Baseline Network 20.83 9.62

PMD-Net without 3 sub-networks 16.52 7.60
PMD-Net 16.26 7.46
PMD-Net + Refine 16.45 6.92
PMD-Net + Refine + Random Replacement 16.14 6.80

Table 2: EPE mean comparison with different settings. PMD-Net without 3 sub-networks
denotes the network which predicts XYZ coordinates together.

Method Test time (ms/img)

PMD-Net without 3 sub-networks 5.90
PMD-Net 6.01
PMD-Net + Refine 6.09

Table 3: Test time comparison with different settings.

Comparison to state-of-the-art. We compare our method with the state-of-the-art meth-
ods in recent years on both the RHD and STB datasets. The comparison results are reported
in Table 4. On both datasets, our method achieves better results than all other current meth-
ods.

Method
EPE mean (mm)

RHD STB

Zimmermann and Brox [38] 30.42 8.68
Yang and Yao [32] 19.95 8.66
Gu et al. [10] 17.11 7.27

PMD-Net 16.14 6.80

Table 4: Comparisons to state-of-the-art on the RHD and STB with EPE mean.

5 Conclusion

In this paper, we propose an end-to-end network, PMD-Net, which utilizes privileged modal-
ity distillation to enhance 3D hand pose estimation from single RGB images. To overcome
the problem of the curse of dimensionality, we separate the hand joints predictions into three
sub-networks. Moreover, We adopt a random block replacement and a refine module in order
to improve robustness to occlusion. Our experimental results demonstrate the effectiveness
of the privileged modality distillation as well as refine and replace modules. Compared to
existing methods, PMD-Net has achieved better performance and outperforms the previous
state-of-the-art ones.
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