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Abstract

Unsupervised Domain Adaptation aims to learn a model for an unlabelled target do-
main, given access to a single labelled but differently distributed source domain. How-
ever, often multiple labelled sources which share complementary information are present,
resulting in the more practical problem of multi-source domain adaptation (MSDA). Re-
cent works in MSDA learn a domain-invariant space from the sources and target. How-
ever, they treat each source to be equally relevant to the target and are not sensitive
towards the intrinsic statistical similarities amongst domains. In this work, we propose a
novel method for MSDA, termed WAMDA, which utilizes the multiple sources based on
their relative importance to the target. Our aim is to explore the relevance of each source-
target alignment and source-source alignment, and then perform weighted alignment of
domains by using the relevance scores. We experimentally validate the performance of
our proposed method on multiple datasets, and achieve either state-of-the-art results or
competitive performances across all these datasets.

1 Introduction
Conventional supervised learning methods assume that the test data follows the same distri-
bution as the training data. However, in practice, such an assumption is not valid as the mod-
els are often tested on related but differently distributed datasets. Due to such domain shifts
[24], the performance of the pre-trained models suffer on unseen target distributions. Since
data annotation is costly and time consuming, obtaining labelled target data is not always
feasible. Unsupervised Domain Adaptation [1] addresses such scenarios by transferring the
class-discriminative knowledge from labelled sources to the unlabelled target. Based upon
the number of sources involved, unsupervised domain adaptation is classified into: Single-
Source Domain Adaptation (SDA) [5, 14] and Multi-Source Domain Adaptation (MSDA)
[16, 17, 26].

In this work, we focus on the problem of MSDA. MSDA is a more realistic problem than
SDA, as in practice, labelled data collected from multiple, diverse sources is often available.
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Figure 1: In the above example, the target domain, Real-World, is similar to sources Art
and Product, while it is dissimilar from Clipart. a) Prior works [17, 27] perform complete
alignment of sources and target. b) In contrast, we propose to calculate source-target and
source-source relevance (Section 3.1.2) and then use them to do weighted alignment of do-
mains (Section 3.2). Here, the length of arrows indicate the degree of alignment between
domains, such that shorter length implies better alignment.

However, MSDA is also more challenging because in single source setting, domain shift
exists only between the source and the target, whereas in multi-source setting, there are
varying levels of domain shifts between each source-target pair as well as between each
source-source pair [17]. Over the past few years, deep learning based works have brought
advances in MSDA [13, 26, 28]. However, most of these methods suffer from at least one
of the following issues. a) Firstly, some works focus on learning a domain-invariant feature
space from the sources and target (Fig. 1(a)) [17, 27]. These methods treat all sources to
be equally relevant and perform complete alignment of the target with each source. Such
an alignment strategy does not regard the intrinsic source-target correlations and makes the
target vulnerable to negative transfer from uncorrelated sources [13]. Some other methods
explore source relevance [10, 26], but use these scores only to infer the target’s class by
aggregation of the outputs of source classifiers, and not to drive the source-target alignment.
Hence, the first issue is that the source-target alignment is not sensitive to source relevance.
b) Secondly, limited works probe the effect of source-source relevance [13]. Though M3SDA
[17] performed source-source alignment, they did not use source-source relevance to guide
it. c) Thirdly, although creating domain-invariant features enhances the transferability to the
target, it can also make the feature space less discriminative [28]. Transferability refers to the
ability of a feature space to be meaningful across domains, while discriminability denotes
the degree of inter-class separation and within-class similarity [3]. Hence, the need is to
preserve the discriminative information of sources, while encouraging domain-invariance.

Unlike prior methods that tackle either of these issues individually, we propose to ad-
dress all drawbacks in a unified manner (Fig. 1(b)). First, we explore the relevance of each
source, and harness upon the more relevant sources to transfer the discriminative informa-
tion to the target. We also regard the source-source relations by gauging the importance of
aligning each pair of sources. Such alignment of source pairs merges the important sources
and minimizes interaction with any source that is uncorrelated to target. Finally, to make the
source features both transferable and discriminative, we learn an intermediate feature space
for each source. These spaces are designed such that the distributions of relevant sources
align with each other. This allows positive aggregation of discriminative information into the
intermediate spaces of the relevant sources. Thus, the separate intermediate spaces preserve
the discriminability of sources, while the weighted alignment of the intermediate spaces en-
hances the transferability to target. Our contributions are, therefore, summarized as follows:
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• We propose a novel method that performs weighted alignment of domains and en-
hances transfer of discriminative knowledge from the relevant sources to the target. We
calculate source relevance and source-source relevance to guide the degree of align-
ment of each source-target pair and source-source pair respectively (Section 3.1.2).
• To enhance the discriminability and transferability of the relevant sources, a separate

intermediate space is learnt per source (Section 3.2). The intermediate spaces of rele-
vant sources interact to aggregate the discriminative information present across them.
• Our target inference method is much simpler than that of prior works, which often

utilize complex rules to aggregate predictions from source classifiers (Section 3.2.3).
• Extensive experiments on benchmark datasets show the effectiveness of our approach,

as we achieve either state-of-the-art results or competitive performances across all of
them (Section 4).

2 Related Work
Single-Source Domain Adaptation. Several single-source DA methods aim at aligning
source and target by optimizing various measures of domain divergence such as MMD [9],
KL-divergence [29], and Wasserstein distance [21]. Ganin et al. [5] used adversarial-training
to obtain discriminative but domain-invariant features. GAN-based algorithms [20] are also
shown to be effective for SDA.
Multi-Source Domain Adaptation. Early works on MSDA, such as [2, 12, 16], provided a
theoretical analysis of the problem. Alongside the theoretical works, shallow learning based
techniques for MSDA were also proposed [4, 23]. Recently, deep-learning based works have
been proposed for MSDA [10, 17, 26]. Deep Cocktail Networks (DCTN) [26] is based on the
popular view that the target can be represented as a mixture of source distributions. DCTN
proposes a two-stage optimization process, such that the first stage involves adversarial adap-
tation for achieving domain-invariance, and the second stage uses pseudo-labels to make the
target features discriminative. Finally, the final target predictor is obtained by a weighted
combination of source-specific predictors, such that the weight of the source is proportional
to the domain-confusion loss for that source. In [10], Guo et al. propose to use Mahalanobis
distance between the target instance and the mean source representation to obtain weight for
that source. Recently, Peng et al. [17] proposed M3SDA, where a joint feature extractor is
trained and the marginal features distributions are aligned by applying MMD [9] on each
pair of domains. Two variants of the algorithm were proposed for imparting discriminative
properties in the representations. In the first variant, M3SDA, a single classifier per source
is learnt, while in the second variant, M3SDA-β , two classifiers are involved for each source
and they are trained using the maximum classifier discrepancy method [19]. The predictions
for the target is obtained through weighted average of classifiers per source, such that the
weights are derived from the accuracy of the classifiers on labelled source data.

3 Proposed Approach
We present a two-stage algorithm (Fig. 2), such that in the first stage of pre-adaptation
training, we obtain the relevance scores and learn the discriminative knowledge inherently
present in each source. In the second stage of multi-source adaptation training, we perform
the weighted alignment of domains and learn a classifier over this weighted aligned space.
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Figure 2: Overview of WAMDA. We propose a two-stage algorithm. a) In the first stage, we
perform source-specific discriminative learning and obtain the source relevance and source-
source relevance scores. b) In the second stage, we perform weighted alignment between
domains and transfer discriminative information from the relevant sources to target.

3.1 Pre-Adaptation Training
The objective of the pre-adaptation training to learn the source-specific discriminative knowl-
edge, and to set the ground for computing the source relevance and source-source relevance.

3.1.1 Source-Specific Discriminative Learning
During this step, the discriminative knowledge intrinsically present in each source is learnt.
For each source Si, a discriminative source feature extractor (FSi ) and source classifier
(QSi ) are trained using its labelled data through cross-entropy loss. We refer to the features
space obtained by passing source data through FSi as source feature space. This space is rich
in the source-specific discriminative information as it is obtained solely from the source data,
without any interaction with other domains. Hence, the source feature extractor and classifier
act as reservoirs of discriminative information, which shall be utilized during adaptation.
3.1.2 Learning Relevance Weightings
A source is termed relevant, if it has high statistical similarity with the target in the in-
stance space, and hence the labelled information of the source is significantly transferable to
the target. Inspired by the concept of H-divergence and domain confusion [1, 6], for each
source Si, we utilize a domain classifier, DSi to gauge source relevance. The task for do-
main classifier DSi is to discriminate between samples from Si and target. The rationale for
connecting domain classifier with source relevance is that high confusion of the domain clas-
sifier implies less domain shift between source and target, and consequently higher source
relevance. When comparing target with Si, the target features are obtained by passing target
samples through the pre-trained FSi . When a large domain gap is present between source and
target, the distribution induced by passing target through FSi shall be significantly different
from source feature space. Therefore, the ease of a domain classifier DSi in discriminating
between the source and target features is indicative of the source-target similarity and conse-
quently, of source relevance. Each DSi is trained as follows by standard binary cross-entropy
loss, where Xi denotes the set of images from Si and Xt denotes the set of target images:

LDSi
=− 1
|Xi| ∑

xi∈Xi

logDSi(FSi(xi))−
1
|Xt | ∑

xt∈Xt

log(1−DSi(FSi(xt))) (1)
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Algorithm 1 WAMDA: Proposed adaptation algorithm
Input: Unlabelled target images Xt ; Labelled source images {XSi ,YSi}K

i=1; Pre-trained source feature
extractors, category classifiers and domain classifiers {FSi ,QSi ,DSi}K

i=1
Output: Trained target encoder ET , classifier QT

1: Create separate optimizer for each loss: {Lqt ,Lalign, Lde, LT−→W }
2: while current iteration t ≤ maxIter do
3: Sample mini-batch from {XSi ,YSi}K

i=1 and Xt
4: Calculate batch-wise relevance scores: Calculate {αi}K

i=1, {βi, j}K
i=1, j 6=i

5: Learn Weighted Aligned Space: Update QT ,ET ,{ESi}K
i=1 by alternate minimization of

{Lqt ,Lalign} using loss-specific optimizers.
6: Target-Specific Learning: Update ET by alternate minimization of { Lde, LT−→W } using

loss-specific optimizers.
7: end while
8: return ET ,QT

Once the domain classifiers are learnt, relevance scores are obtained as follows:
Source Relevance. For each source Si, a source relevance score (αi) is assigned, such that
the score is proportional to the similarity of the target domain to Si. To quantify the source
relevance, we gauge the confusion of the trained domain classifier in discriminating between
source and target features. If the domain classifier can confidently discriminate, then there
would be high discrepancy between its predictions for source and target. Similarly, if the
domain classifier is confused, its outputs would be similar across the two domains. Hence,
for each Si, we measure the confusion of the classifier by the difference in the predictions

for source and target, hi = |
∑xi∈Xi DSi (FSi (xi))

|Xi| − ∑xt∈Xt DSi (FSi (xt ))

|Xt | |. These scores are then nor-

malized to obtain the source relevance, αi =
exp(−Khi)

∑ j exp(−Kh j)
, where K is the number of sources.

Source-Source Relevance. Having observed that the sources are of different relevance, a
consequence of this is that alignment of each source-pair is not equally important. This is be-
cause, if all source-pairs are equally aligned, it effectively merges all the sources uniformly
and no weighted alignment between source-target pairs can be done. Hence, the importance
of aligning each pair of sources is gauged. We further observe that for any pair of sources,
even if one of the sources involved in the pair is highly dissimilar to the target, then aligning
that source pair is not crucial. Hence, we quantify the relevance of a source-pair (Si,S j)
as βi j = min(αi,α j). This permits knowledge transfer between sources which are mutually
important for the target, and limits negative transfer from less relevant sources to the target.

3.2 Adaptation Algorithm
By virtue of our pre-adaptation training, the source-specific discriminative information is
captured in the source feature extractors and classifiers. During adaptation, we learn inter-
mediate spaces for each source, such that the spaces of relevant sources align well. This
facilitates the aggregation of the discriminative knowledge into the intermediate spaces of
the relevant sources, while limiting interactions with any uncorrelated source. Further, based
on the relevance of Si, the target is weighted aligned with the intermediate spaces of each Si.
Moreover, to efficiently perform the task of target classification, discriminative target fea-
tures are learnt by transfer of knowledge from labelled sources. To achieve these objectives,
for each Si, source weighted aligned encoder (ESi ) is introduced, which learns the inter-
mediate space for Si. The target features are learnt by a target encoder (ET ), such that its
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feature space is more aligned with the intermediate space of the relevant sources. The space
so learnt, where the target is more aligned with the relevant sources and the sources which
are mutually relevant are well aligned, is termed as weighted aligned space. To ensure that
the discriminability of this space, a weighted aligned classifier (QT ) is introduced, which is
trained by interactions with the intermediate spaces of the relevant sources.

3.2.1 Learning Weighted Alignment of Domains
We firstly discuss the method used to ensure that the desired alignment of domains is achieved.
A. Learning Weighted Aligned Classifier. The main goal of adaptation is to obtain a dis-
criminative classifier which has good generalizability on the target. To achieve this, we build
a weighted aligned classifier (QT ) that is trained using the labelled sources which are highly
similar to the target. This ensures that the decision boundaries of QT accommodate well the
relevant sources, and thereby, allows QT to be more generalizable to the target. Furthermore,
this classifier ensures that the intermediate space of each source remains discriminative, and
the weighted interaction with a common classifier enhances the knowledge transfer amongst
the relevant sources. Given labelled images for K sources {(Xi,Yi)}K

i=1, QT is trained by
weighting the per-source cross-entropy loss (Lce) by the source importance, as follows:

Lqt =
K

∑
i=1

αi

|Xi| ∑
(x,y)∈(Xi,Yi)

Lce(QT (ESi(FSi(x))),y) (2)

B. Weighted Alignment of Sources and Target. To learn the weighted alignment of do-
mains, domain matching is performed between source-target pairs and source-source pairs by
using the source relevance and source-source relevance weights. Such an alignment strategy
encourages the target to be aligned more with the relevant sources, and minimizes negative
transfer from uncorrelated sources. For performing the domain alignment, we use the popu-
lar DA loss, Deep CORAL (Lcoral) [22]. For each Si, given a batch of source images Xi, we
obtain the source activations from ESi and denote the matrix of activations by Ei. Similarly,
given a batch of target images Xt , we encode them by ET and denote the matrix of activations
by Et. Using these notations, the weighted domain alignment loss is as follows:

Lalign = ∑
i

αiLcoral(Ei,Et)+ ∑
i, j 6=i

βi j

(K−1)
Lcoral(Ei,Ej) (3)

3.2.2 Target-Specific Learning

Having performed the domain alignment of the target with sources, we introduce losses de-
signed to make the target encoder ET discriminative. In this part, for fine-grained knowledge
transfer to target, for each target datapoint xt , we use a per-instance weight wi(xt) to capture

the importance of Si for xt , defined as wi(xt) =
αiDSi (FSi (xt ))

∑ j α jDS j (FS j (xt ))
. Basically, along with the

prior of source relevance, the instance-wise score of DSi(FSi(xt)), which denotes the proba-
bility that xt belongs to Si, is used to get these fine-grained weights.

A. Distillation and Entropy Minimization. During the initial stages of training, discrimina-
tive information is contained only in the pre-trained source-specific modules {FSi ,QSi}K

i=1.
Thus, an initial discriminative guidance can be obtained for each target image xt by the
weighted aggregation of the outputs of source-specific classifiers (Fig.3). Inspired by dis-
tribution weighted combining rule [16], for each xt , we aggregate the source-wise class pre-
dictions to obtain a pseudo-softmax denoted by Φ(xt) = ∑i wi(xt)QSi(FSi(xt)). To distill the
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Figure 3: Weighted combination of source-classifiers is used to distill discriminative knowl-
edge into ET . Lentropy ensures that target falls in confident regions of QT . Contribution of
Lentropy is increased over iterations, and that of Ldistill is decreased.

discriminative signals from the relevant sources into ET , we introduce a distillation loss
(Eq. 4) which minimizes the difference between predictions of QT and the pseudo-softmax:

Ldistill = ‖QT (ET (xt))−Φ(xt)‖1 (4)

However, for successful adaptation to happen, QT should be a better predictor for target
than an aggregation of pre-trained source classifiers. This means, as training progresses, the
decision boundaries of QT should become better suited for the target. Therefore, inspired
by works such as [8], an entropy minimization constraint (Lentropy) is introduced (Eq. 5), to
ensure that the target samples fall into the high-confidence regions of the classifier. Since
in the beginning, QT is random, entropy minimization can hamper the learning. Hence, we
gradually increase the weight for Lentropy as training progresses, and keep decreasing the
weight of Ldistill , to ensure that Φ(xt) does not act as a bottleneck. At any iteration t, the
weight of Ldistill , denoted by µt ∈ [0,1], is formulated as µt = min(1,mt), where m is a
hyperparameter. The combined loss, termed distill-entropy loss (Lde), at any iteration t is
formulated as follows, where H(.) denotes the entropy function:

Lentropy = H(QT (ET (xt))) (5)
Lde = (1−µt) Ldistill +µt Lentropy (6)

B. Guidance from Source Weighted Aligned Spaces. In this loss, we guide the output
of ET by referring to the source weighted aligned encoders {ESi}K

i=1. This is because the
encoders of the relevant sources are discriminative and have high transferability to target.
Since the feature obtained from the relevant sources shall be more informative, for each
target instance xt , we minimize the distance between ESi(xt) and ET (xt), weighted by the
relevance of Si. This loss, which guides the target’s projection onto the weighted aligned
space, is referred to as target to weighted aligned space loss (LT−→W ), and is defined as
follows:

LT−→W =
K

∑
i=1

wi(xt)‖ET (xt)−ESi(FSi(xt))‖2
2 (7)

3.2.3 Target Predictions
Post training, final predictions for any target sample xt are obtained by QT (ET (xt)). This
prediction rule is much simpler than the aggregation rules in prior literature [17, 26].
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Method Acc. (%)
Lqt +LT→W 79.3
Lqt +LT→W +Lalign 80.0
Lqt +LT→W +Lalign +Ldistill 81.1
Lqt +LT→W +Lalign +Lde 82.3

Table 1: Loss-wise ablations
on Office-Home on ACP −→ R.

Alignment ACP→ R ACR→ P
Uniform 81.7 82.4
Weighted 82.3 84.1

Table 2: Effect of weighted
alignment on accuracy (%)
of Office-Home.

Values ACR→ P
K=1 83.1
K=3 84.1
K=5 84.0

Table 3: Effect of K used
in αi on accuracy (%) of
Office-Home.

4 Experiments and Analysis
4.1 Experimental Setup

A. Datasets. The experiments are conducted on standard unsupervised visual DA bench-
marks: Office-31, Office-Caltech and Office-Home. Office-31 [18] is a popular DA dataset,
consisting of 31 object classes in 3 distinct domains: Amazon (A), DSLR (D) and Webcam
(W). Office-Caltech [7] comprises of 10 classes captured in 4 domains: Amazon (A), Caltech
(C), DSLR (D) and Webcam (W). The third benchmark, Office-Home [25], is a more chal-
lenging one as the domain shifts are much severe in it. It contains 65 categories and 4 diverse
domains: Art (A), Clip Art (C), Product (P) and Real World (R). We have also presented the
analysis of our method on the latest benchmark, DomainNet [17], in the supplementary.
B. Implementation Details. For each source Si, FSi comprises of ImageNet pre-trained
ResNet-50 backbones [11] followed by four ELU-activated linear layers. Similarly, ESi con-
sists of four linear layers with ELU activations. The target encoder ET comprises of a pre-
trained ResNet-50 backbone followed by ELU-activated linear layers. For each adaptation
loss {Lqt , Lalign, Lde, LT−→W}, we create a separate Adam optimizer with a learning rate
of 1e-4 and optimize them as specified in Algorithm 1. In the pre-adaptation stage (Fig. 2),
the validation set of source is used for the model selection of FSi and QSi . In the adaptation
stage, we follow the standard model selection technique [17, 26] to obtain the final model of
ET and QT . More implementation details are presented in the supplementary.
C. Baselines. We follow the conventional baselines used to analyse the performance of
MSDA methods, which are described as follows. (1) No Adapt: Source classifiers are di-
rectly used to get target predictions, and the best result is reported. We report the numbers
obtained from ResNet models trained on source data. Since our source feature extractor has
a few extra layers after ResNet, we also report the accuracy obtained by using our source-
specific classifiers. (2) Single-Source Best: In this setting, conventional single-source meth-
ods [5, 6, 15, 22] are used to perform single-source DA between each source-target pair,
and the best result is reported. (3) Source Combine: All the sources are unified into a single
domain, and then single-source DA methods are applied for obtaining target predictions. (4)
Multi-Source: We compare our approach with state-of-the-art MSDA works, such as DCTN,
M3SDA, and MFSAN [17, 26, 28]. Since DCTN had used AlexNet, to get a fair comparison,
we follow the strategy of M3SDA, and report numbers by employing ResNet in their model.

4.2 Results and Ablations
A. Loss-wise ablations. We firstly analyse the effect of each proposed loss (Table 1). Our
baseline of Lqt (Eq. 2) +LT→W (Eq. 7) +Lalign (Eq. 3) yields 80.0%, which is better than our
no-adaptation baseline of 73.2%. Further, we analyse the effect of Lde (Eq. 6) by conducting
two experiments: first where only Ldistill is used, and second where both Ldistill and Lentropy
are used. The enhancement obtained in each ablation justifies our formulation of Lde. These
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Standard Method ACD −→W ACW −→D ADW −→C CDW −→A Avg
No Adapt Ours 100.0 100.0 89.6 95.5 96.3

Single Best DAN 99.5 99.1 89.2 91.6 94.8
MCD 99.5 99.1 91.5 92.1 95.6

Source Combine DAN 99.3 98.2 89.7 94.8 95.5

Multi-Source

DCTN 99.4 99.0 90.2 92.7 95.3
M3SDA 99.5 99.2 92.2 94.5 96.4
MFSAN 99.0 98.7 93.3 95.3 96.6

Ours 100.0 100.0 94.7 96.2 97.7
Table 4: Classification accuracy (%) on Office-Caltech dataset.

Standard Method CPR −→A APR −→C ACR −→P ACP −→R Avg

No Adapt ResNet 65.3 49.6 79.7 75.4 67.5
Ours 65.6 53.8 78.6 73.2 67.8

Single Best
D-CORAL 67.0 53.6 80.3 76.3 69.3
RevGrad 67.9 55.9 80.4 75.8 70.0

DAN 68.2 56.5 80.3 75.9 70.2

Source Combine RevGrad 68.4 59.1 79.5 82.7 72.4
DAN 68.5 59.4 79.0 82.5 72.4

Multi-Source MFSAN 72.1 62.0 80.3 81.8 74.1
Ours 71.9 61.4 84.1 82.3 74.9

Table 5: Classification accuracy (%) on Office-Home dataset.

Standard Method DW −→A AD −→W AW −→D Avg

No Adapt ResNet 62.5 96.7 99.3 86.2
Ours 64.7 96.8 98.8 86.7

Single Best
RevGrad 68.2 96.9 99.1 88.1

DAN 66.7 96.8 99.5 87.7
RTN 66.2 96.8 99.4 87.5

Source Combine RevGrad 67.6 97.8 99.6 88.3
D-CORAL 67.1 98.0 99.3 88.1

Multi-Source
DCTN 64.2 98.2 99.3 87.2

MFSAN 72.7 98.5 99.5 90.2
Ours 72.0 98.6 99.6 90.0

Table 6: Classification accuracy (%) on Office-31 dataset.

ablations, thus, show that each loss is contributing to the performance of our model.
B. Analysis of weighting scheme. Next, we study the effect of doing weighted alignment
instead of uniform alignment between domains. To obtain the results for uniform align-
ment, each relevance weight is replaced by (1/K), where K is the number of sources. As
shown in Table 2, weighted alignment gives better results compared to uniform alignment.
In ACP−→R, R is similar to both A and P, and highly dissimilar to C. This ordering can
be verified by checking the accuracy of target by source classifiers, more details of which
are presented in the Supplementary. In this split, the gains in performance is due to the de-
creased interaction with C. In ACR−→P, R has high relevance while both A and C are less
relevant. Here, we see that uniform weighting gave a bigger drop because it increases the
interactions with A and C. Hence, these experiments validate the benefits of our weighted
alignment method, in comparison to the strategy of learning a fully domain-invariant space.
C. Results on Office-Caltech. The results on Office-Caltech are shown in Table 4. With an
average accuracy of 97.7%, we obtain improved results over the state-of-the-art methods.
D. Results on Office-Home. We analyse the performance of our method on Office-Home,
which has the more significant domain shifts. As shown in Table 5, for the target P, it can be
observed that source combine setting underperforms compared to single-source best base-
line. This is indicative that the target P is prone to negative transfer. In this split, we achieve
a jump of 3.8% over MFSAN. Overall, we achieve state-of-art performance of 74.9%. We
also checked the sensitivity of K used in calculating αi on the accuracy. As shown in Table
3, the selected value of K = 3 is optimal for ACR−→P.
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(a) (b)

Figure 4: Visualization of weighted alignment: (a) DW→A of Office-31: D (pink) and W
(red) are equally relevant to A (blue). Plot shows equal alignment of domains, and formation
of class-wise clusters. (b) AD−→W of Office-31: A (orange) is less relevant than D (blue)
for the target W(red). We see that partial alignment of domains, such that W (red) is better
aligned with D (blue) than with A (orange). Best viewed in color.

E. Results on Office-31. The results on Office-31 are presented in Table 6. In DW−→A, both
the sources are equally relevant to the target. In this split, MFSAN performed better than our
method, but we significantly outperform DCTN. In the other splits of AW−→D and AD−→W,
we obtain better results than MFSAN. On average, MFSAN performed slightly better.
F. Visualization. To visualize the weighted alignment of domains, we study the t-SNE plots
of the features from ET and each ESi , shown in Fig. 4. We firstly visualize the features for
DW−→A (Fig. 4(a)), which is a split where both sources are equally relevant to the target. As
required, the target aligns well with both the sources and distinct clusters are formed for each
class. We next visualize the split of AD−→W. In this split, A is less similar to W than D. The
visualization (Fig. 4(b)) shows that weighted alignment of domains is performed, such that
W is better aligned with D, and less aligned with A. We also observe that a cluster is formed
per class. This shows that the intermediate spaces of the sources retain class information,
and the target learns discriminative information by the weighted interaction.

5 Conclusion
In this work, we perform weighted alignment of domains, which leverages the source-target
and source-source similarities for effective multi-source domain adaptation. We learn highly
discriminative source-specific intermediate spaces and then, through the adaptation process,
perform the weighted alignment of domains. This allows the learnt weighted aligned space
to be optimally designed for the target. We motivate and formulate novel losses for the adap-
tation step and showcase the effectiveness of each contribution. In future, we shall extend
our approach to MSDA in the presence of category shift.
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