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Abstract

Video inpainting is more challenging than image inpainting because of the extra tem-
poral dimension. It requires inpainted contents to be globally coherent in both space and
time. A natural solution for this problem is aggregating features from other frames, and
thus, existing state-of-the-art methods rely heavily on 3D convolution or optical flow.
However, these methods emphasize more on the temporally nearby frames, and long-
term temporal information is not sufficiently stressed. In this work, we propose a novel
two-stage alignment method. The first stage is an alignment module that uses computed
homography between the target frame and the reference frames. The visible patches are
then aggregated based on the frame similarity to roughly fill in the target holes. The
second stage is an attention module that matches the generated patches with known ref-
erence patches in a non-local manner to refine the previous global alignment stage. Both
stages consist of large spatial-temporal window size for the reference and thus enable
modeling long-range correlations between distant information and the hole regions. The
proposed model can even handle challenging scenes with large or slowly moving holes,
which have been hardly modeled by existing approaches. Experiments on video object
removal demonstrate that our method significantly outperforms previous state-of-the-art
learning approaches.

1 Introduction
Video inpainting aims to fill spatial-temporal holes with plausible content in a video. It
is a practical and crucial problem as it could be beneficial for various video editing and
restoration tasks. However, it is very challenging to maintain both spatial [1, 2, 3, 4, 5, 16,
22] and temporal consistency [6, 8, 12, 18, 23]; The inpainted contents must be spatially
plausible, and temporally coherent at the same time.
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Figure 1: Comparison of two different warping methods. The yellow region indicates the part in the target frame
that can be filled up by aligning the reference frame. Note that our approach successfully aligns a distant reference
frame while the flow-based approach [12] fails.

Early works for video inpainting use a patch-based optimization technique [7, 8, 18, 26].
Among them, Huang et al. [8] proposed a global flow field-based optimization to preserve
the temporal consistency, and show the state-of-the-art quality video results. However, the
trade-off against the effectiveness is its limited practicality due to its intensive computational
cost and vulnerability to noisy optical flows. Recently, two seminal works have proposed
deep feed-forward methods for video inpainting [11, 12, 23]. Wang et al. [23] proposed
CombCN by combining 3D and 2D CNNs, but their model works on low-resolution videos
with fixed square holes, limiting its application to general video object removal. Kim et
al. [12] proposed VINet, which aggregates information by flow warping from nearby frames
to the target frame. However, its internal dependency on the optical flow restricts the size of
the temporal search window, which sometimes leads to boundary artifacts and blurry textures
inconsistent with global video contents.

To overcome the issues mentioned above, we propose a novel coarse-to-fine network for
video inpainting (see Fig. 2). We use a set of sampled video frames as the reference to take
visible contents to fill the hole of a target frame. Our proposed network consists of two
stages. The first stage is an alignment module that uses computed homographies between
the reference frames and the target frame. The visible patches are then aggregated to fill
in the target holes roughly. Despite being able to model only global transformations (e.g.,
affine, perspective), we observe that homography based alignment provides a much larger
temporal search window compared to the optical flow based counterpart (see Fig. 1). We also
empirically confirmed in Table 2(b) (Kim et al. vs Ours (+align)). The second stage consists
of an attention module that matches the generated patches with known reference patches in
space and time non-locally, and a softmax function that temporally pools the most relevant
patches. This refinement stage compensates real motions that cannot be modeled by previous
global transformations. Both stages consist of large spatial-temporal window size for the
reference and thus enable modeling long-range correlations between distant information and
the hole regions. Therefore, even challenging scenes with large or slowly moving holes
can be handled. Our network is also designed with a decoder to synthesize the content that
are never visible throughout the video and a recurrent propagation stream of encouraging
temporal consistency in video results. Finally, the video results produced by our model are
globally and locally consistent in a temporal aspect. The local consistency is achieved by the
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recurrent flow estimator which enforces each consecutive frame to have little flicker artifacts.
Meanwhile, the global consistency is more attributed to the long-range temporal aggregation
(align-and-attend). Our contributions can be summarized as follows:

• We design the effective homography-based alignment block to pick up more visible
contents from distant reference frames (Align). We provide empirical evidence that
the flow-based alignment strategy has a clear drawback in aligning distant information
in reference frames compared to the proposed method.

• To compensate for the real motions that cannot be modeled by previous global trans-
formation, we design the non-parametric attention based refinement (Attend). We
reformulate the original self-attention formulation to enable matching between the tar-
get hole and reference non-hole regions in a pixel level.

• Putting all together, we present a novel deep video inpainting framework, which lever-
ages long-range video frames via a coarse-to-fine two-stage algorithm (Align-and-
Attend).

• We conduct extensive ablation experiments to verify our proposals. Our final model
shows near real-time inference speed while significantly outperforming the state-of-
the-art learning-based approaches.

2 Proposed Algorithm

Let XT
1 := {X1,X2, ...,XT} be a set of video frames with spatial-temporal holes, and Y T

1 :=
{Y1,Y2, ...,YT} be the reconstructed ground truth frames. We aim to learn mappings G :
XT

1 → Y T
1 , such that the prediction Ŷ T

1 be as close as possible to the ground truth video
Y T

1 , while being plausible and consistent in space and time. This can also be formulated
as a conditional video generation task [10, 14, 19, 24] where we estimate the conditional
p(Y T

1 |XT
1 ). To simplify the problem, we base on a Markov assumption [10, 12, 19, 24] to

factorize the conditional into a product form, such that the generation of the t-th target frame
Ŷt is dependent on 1) current input frame Xt , 2) two previous output frames Ŷ t−1

t−2 , and 3) a
set of sampled reference frames R as:

p( ˆY T
1 |X

T
1 ) =

T

∏
t=1

p(Ŷt |Xt ,Ŷ t−1
t−2 ,R). (1)

The main idea of our approach is to use a set of sampled reference frames, R, that contains
a sufficiently large temporal search window so that the visible information in the window
can be fetched to inpaint the target frame with the globally coherent contents. According
to our preliminary experiments, we sample every 10-th frames in a video to construct R,
and this provides a much broader temporal window size than previous approaches [12, 23].
Another important design is to enforce each prediction to be temporally coherent with the
past predictions, Ŷ t−1

t−2 . With this recurrent pathway, our model runs in an auto-regressive
manner. Our proposed method outperforms existing learning-based methods [12, 23], and
performs on par with the optimization-based method [8] while running at a much faster
speed.
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Figure 2: The overview of the proposed Align-and-Attend network. The whole model can be divided into
three parts: 1) homography estimator, 2) align-and-attend video inpainter, and 3) flow estimator. First, we obtain
affine transformation parameters using the homography estimator. Second, given the homography parameters, we
accordingly align the reference frames. The following non-local attend block refines the initial coarse results.
Finally, we enforce temporal consistency using the estimated flow.

2.1 Network Design
2.1.1 Homography estimator

Given a set of reference frames and a target frame, the goal of the homography estimator
is to produce transformation parameters θ , which is to warp and align each reference frame
onto the target frame.

Homography Encoder takes an image of size 256× 256 pixels as input, and produces
an embedded feature map f ∈Rc×32×32, where c denotes the channel size . We use the same
shared encoder for both the reference and target frames. We denote features of any reference
frame by f r, and those of the target frame by f t .

Masked matching produces a measure of similarity between the reference and target
feature maps. We denote the matching function as M( f r, f t) :=C, such that M : Rc×32×32×
Rc×32×32→R1024×1024, where C is a cosine similarity map computed between channel-wise
normalized f r and f t . We constrain the matching to happen only between the visible parts
to deal with the holes regions. To this end, we use downsampled binary inpainting masks mr

and mt ∈ R32×32. With i and j denoting the spatial grid indices for f r and f t respectively,
the correlation map is computed as:

C(i, j) =

{
f r(i)T f t( j) if mr(i)mt( j) = 1
0 otherwise

(2)

The similarity C(i, j) is normalized by softmax over the spatial dimension of f r, for each
f t(i).

Transformation estimator takes the correlation map C as input and produces homog-
raphy parameters θ between the reference and target. It is trained to output 6 parameters
(affine transformation), such that Te(C) := θ , and Te : R1024×1024→ R6.
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2.1.2 Align-and-Attend Video Inpainter

Our video inpainter is an encoder-decoder model consisting of the following components
that are designed to reconstruct the target holes in a coarse-to-fine manner.

Image Encoder part follows the same architecture as in the homography estimator. Sim-
ilarly, we denote encoded features of any reference frame by xr, and those of the target frame
by xt , both of spatial size 32×32 pixels.

Alignment block is given the homography parameters computed as in Sec. 2.1.1, and
accordingly aligns the reference feature maps onto the target feature map. We denote a
reference feature map that is aligned to the target by xri→t , where i ∈ [1...n], and n denote
frame index and the number of reference frames, respectively.

After the alignment, the most relevant reference feature points are gathered that are in
the spatial-temporal search window. To do so, we present an aggregation function that can
evaluate the alignment for each reference feature maps and exclude irrelevant information
such as newly introduced scene parts. Specifically, we measure the Euclidean distances
(L2-norm) between each aligned reference frames and the target frame while ignoring the
hole regions using the binary inpainting masks, wri = ||mtmri→t(xt − xri→t)||2. The smaller
the value of wri represents better alignment of i-th reference frame. Therefore, the distance
measure (i.e., 1

wri ) is multiplied to the corresponding inpainting masks mri→t , which helps
suppressing the low-quality aligned reference information. The following softmax across
temporal dimension provides a volume, Ari . It weighs relevant pixels in the stack of xr→t and
flattens the stack into one-frame feature map as:

x̂r = ∑
i

Arixri→t , Ari =
exp(mri→t

wri )

∑i exp(mri→t

wri )
(3)

Finally, the initial coarse prediction of the target feature map x̂t is then obtained as,
x̂t = (1− m̂)xt + m̂x̂r. Here, the m̂ identifies the visible region that can be borrowed from
the reference frames. In practice, it is obtained by max-pooling the visible regions (i.e.,
(1−mt)mri→t ) along the temporal dimension.

Attend block is designed to model pixel-wise correspondences [25], e.g., non-rigid mo-
tions, that cannot be covered by the previous global alignment stage. We propose to match
the coarsely generated patches with the non-hole patches in the reference frame stack. We
reformulate the self-attention formulation. Specifically, the target frame is embedded into
the query while the reference frames are embedded into the key and value. In the module,
the query features on the (roughly-filled) hole regions of target frame will be matched to
every key feature on all non-hole regions of the reference frames. The query-key matching
produces a spatio-temporal attention map which includes information about which pixel in
which frame among the reference frames is important to refine the pixels in the target frame.
Using this attention maps, we can finally pick up the most relevant value features on the non-
hole region of the reference frames. Note we designed this module to be non-parametric, not
requiring any embedding layers.

x̂t
residual = so f tmax((x̂t

q)
T xr

k)(x
r
v)

T ,

x̂t
re f ine =

{
x̂t

residual + x̂t if mr(i)m̂( j) = 1
x̂t otherwise

(4)
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where x̂t
q is a feature x̂t is reshaped into a matrix with a shape of Rc×1024. x̂r

k and xr
v are

features that xri→t , i∈ [1...n] are reshaped into a matrix with a shape of Rc×1024n. Only x̂t
q and

x̂r
k are L2-normalized over channel axis for attention map computation. xt

residual is properly
reshaped before summation with x̂t .

Image Decoder takes the final output of align-and-attend block, together with the warped
features of the previous output frames Ŷ t−1

t−2 . Adding the intermediate representations from
the previous time steps not only provides rich training signals to the whole network but also
enhances the temporal coherency in video results. The decoder recovers the fine details for
the hole regions to generate raw output, Ŷ ′t . It is designed with nearest-neighbor upsampling
layers and successive convolutions to prevent checkerboard artifacts.

2.1.3 Optical flow estimator

Our optical flow estimator is a simple encoder-decoder model (same with the above image
encoder-decoder). It computes flow fields between the previous output frame and the current
target frame, which is used to enforce temporal consistency.

Flow Encoder takes the previous two output frames as input to propagate reusable in-
formation to the current time step. The encoded features are also fed into the decoder of the
video inpainter.

Flow Decoder outputs optical flow from time step t− 1 to t, and a composition mask.
We use the predicted flow Ŵt⇒t−1 to warp the previous output Ŷt−1 onto the current time step
Ŷ ′t . We then blend the two frames into one by the estimated composition mask m′ to obtain
the final output of our whole network as, Ŷt = (1−m′)� Ŷ ′t +m′�Ŵt⇒t−1(Ŷt−1).

2.2 Objective functions
Homography estimation. We train the homography network using this objective function:
Lalign = ( 1

s ∑
s
i=1 ||G(θ f t )−G(θ f t∗ )||2)+(||θ f t −θ f t∗ ||) The first part is introduced by [21],

and the second part is the direct L1 loss of transformation parameters. G(θ f t ) and G(θ f t∗ )
correspond to the bilinear sampling grids that use predicted parameters and ground-truth
respectively. Here, s denotes the total number of sampling coordinates. The homography
estimation network is trained independently from the video inpainting network ( inpainting
network and the optical flow estimation network). After the training, we freeze the network’s
parameters and use it as a global affine transformer.
Video inpainting. The objective function is designed to capture pixel-wise reconstruction
accuracy, perceptual similarity, and temporal consistency. The pixel-wise reconstruction loss
is defined as follows: Lhole = ∑t

∥∥(1−mt)� (Ŷt −Yt)
∥∥

1 ,Lvalid = ∑t
∥∥mt � (Ŷt −Yt)

∥∥
1 Here,

t indexes over the number of recurrences, mt is the binary mask, Ŷt is the model output, Yt
is the ground truth, and � indicates the element-wise multiplication. To ensure perceptual
similarity between the predicted output and the ground truth, we adopt both image GAN
loss, Lim_GAN , and video GAN loss, Lvid_GAN , that are introduced by [24]. For the temporal
consistency, we use flow loss and warping loss which are defined as:

L f low =
T

∑
t=2

(
∥∥Wt⇒t−1−Ŵt⇒t−1

∥∥
1 +
∥∥Yt −Ŵt⇒t−1(Yt−1)

∥∥
1),

Lwarp =
T

∑
t=2

Mt⇒t−1
∥∥Ŷt −Wt⇒t−1(Yt−1)

∥∥
1

(5)
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where Wt⇒t−1 is the pseudo-groundtruth backward flow between the target frames, Yt and
Yt−1, extracted by FlowNet2 [9], Mt⇒t−1 is the binary occlusion mask [13]. Note that we use
groundtruth target frames in the warping operation since the synthesizing ability is imperfect
during training. We employ a curriculum learning scheme that increases the number of
recursion, T, by 6 every 5 epochs. We increase the T up to 24.

The total loss is the weighted summation of all the loss functions, L= 100 ·Lhole +50 ·
Lvalid +Lim_GAN +Lvid_GAN +20 ·L f low +20 ·Lwarp.

3 Experiments

We evaluate our method both quantitatively and qualitatively. We compare our approach with
state-of-the-art methods in three representative streams of study: deep image inpainting [29],
deep video inpainting [12, 24], and optimization-based video inpainting [8]. Two metrics are
mainly used for the evaluation. The first is the Inception score (FID) [24] extended to videos
to measure the perceptual quality in spatio-temporal dimension. The second is flow warping
errors between frames that measure temporal consistency of video results. We use public
codes to obtain baseline scores.

3.1 Training

Homography estimation. We generate synthetic data using the Places2 image dataset [30].
Given a random image IA, we generate the counterpart IB by applying an arbitrary transfor-
mation to IA. This provides us great flexibility to gather as many training data as needed,
for any 2D geometric transformation. To simulate diverse hole shapes and sizes, we use the
irregular mask dataset [17], which consists of random streaks and holes of arbitrary shapes.
During training, we apply random affine transformations ( e.g. translation, rotation, scaling,
sheering) to the mask. All images are resized to 256×256 pixels for training.
Video inpainting. We employ a two-stage training scheme; 1) We first train the video in-
painter without the alignment and the refinement stages to focus on learning a pure synthesis
ability. To synthesize the training data, we follow the same protocol mentioned above. 2)
We then add previously excluded stages along with the recurrence stream to the model. We
fine-tune the whole model using videos in the Youtube-VOS dataset [27]. It is a large-scale
video segmentation dataset containing 4000+ YouTube videos with 70+ various moving ob-
jects. Since the most realistic appearance and motion can be obtained from the foreground
segmentation masks, we use them to synthesize the training video data. All video frames are
resized to 256×256 pixels for training.

3.2 Testing

We use DAVIS dataset [20], which is widely used for video inpainting benchmarking. The
videos are very challenging since they include dynamic scenes, complex camera movements,
motion blur effects, and large occlusions. We obtain the inpainting mask by dilating the
ground truth segmentation mask. Our method processes frame recursively in a sliding win-
dow manner.
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3.3 User Study on Video Object Removal
We perform a user study to evaluate the visual quality of inpainted videos. We use 20 videos
from the DAVIS dataset and compare our method with the strong baselines [8, 12]. A total of
25 users participated in this study. During each test, a user is shown video inpainting results
by two different approaches, together with the input target video. We ask the user to check for
both image quality and temporal coherency and to choose a better one. The users are allowed
to play the videos multiple times to have enough time to distinguish the difference and make
a careful judge. We report the ratio that each method outputs are preferred in Table 1(a).
Our results are considered comparable to the [8], and much higher-quality than [12] by the
human subjects. Note that our method runs faster than both approaches (see Table 1(b)).
Some example results are shown in Fig. 3.

3.4 Quantitative comparison
We further compare our method with the baselines [8, 12, 24, 29] using both FID score and
warping loss. Since we need the ground truth videos for this experiment, we composite target
videos by overlaying foreground mask sequences extracted from other videos. To measure
the FID score, we take 20 videos in the DAVIS dataset. For each video, we ensure to choose
a different video out of the other 19 videos to make a mask sequence. We use the first 64
frames of both input and mask videos. To measure the flow warping errors, we use the Sintel
dataset since it provides ground-truth optical flows. We take 32 frames each from 21 videos
in the Sintel dataset and randomly select 21 videos of length 32+ from the DAVIS dataset to
create corresponding mask sequences. For both metrics, we run five trials and average the
scores over the videos and trials. We summarize the results in Table 1(c) and Table 1(d). We
observe a similar tendency to the user study result.

To show the effectiveness of our model more concretely, we analyze the inpainting
performance on two different settings: 1) fixed region inpainting (H/4×W/4 pixel area
in the center) and 2) inpainting across different hole sizes. We used 30 DAVIS masks
(avg area: 1102) and the results are summarized in Table 2(a) and Table 2(b), respectively.
The actual contents of hole regions are often discovered in reference frames, but previous
flow-based methods are vulnerable at aligning frames with large displacements and occlu-
sions [8, 12, 28]. Therefore they either produce inaccurate results for large holes or rely
on heavy optimization, resulting in prohibitively slow speed. To overcome the limitation,
we use the affine transform and the experiment (Table 2(b), Kim [12] v.s Ours (+align))
shows its effectiveness. Moreover, as demonstrated in Fig. 1, affine transformations can
successfully align distant frames. Recent work also finds similar results [15]. Though, the
homography-based alignment have difficulties in modeling complex and local motions. Our
non-local attention based refinement stage is able to compensate for these errors by modeling
pixel-wise correspondences, improving the first-stage coarse result significantly (Table 2(b),
Ours (+align) vs. Ours (+align and refine)). Our final model outperforms [12] with a notable
margin, especially when the hole becomes large (i.e., under more challenging conditions).
The experimental results in Table 2 demonstrate the advantage of the proposed two-stage
aggregation of long-range information in versatile application scenarios.

3.5 Ablation studies
We run an extensive ablation study to demonstrate the effectiveness of different components
of our method. We measure the FID score and warping error following the same protocol as
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Figure 3: Qualitative comparison with state-of-the-art video inpainting methods [8, 12] on
DAVIS.

Human Preference Score
Align-and-Attend Net (ours) / Huang et al. [8] / Tie 0.30 / 0.33 / 0.37
Align-and-Attend Net (ours) / Kim et al. [12] / Tie 0.58 / 0.19 / 0.23

(a) User study results.

Methods time
Huang et al. [8] several minutes per video
Kim et al. [12] ∼ 12 fps

Ours ∼ 15 fps

(b) Speed Comparison.

Methods FID score
Yu et al. [29] 9.6948 (± 0.708)

Huang et al. [8] 5.7032 (± 1.158)
Wang et al. [24] 8.0130 (± 0.701)
Kim et al. [12] 6.2852 (± 1.769)

Ours 5.775 (± 1.707)

(c) Spatial-Temporal Video Quality.

Methods Warping error
Yu et al. [29] 0.0037 (± 0.0003)

Huang et al. [8] 0.0017 (± 0.0001)
Wang et al. [24] 0.0030 (± 0.0001)
Kim et al. [12] 0.0019 (± 0.0002)

Ours 0.0019 (± 0.0001)

(d) Temporal consistency.

Table 1: Quantitative comparison with state-of-the-art video inpainting methods [8, 12, 29] on DAVIS.

in Sec. 3.4. The results are summarized in Table 3.
Network design choices. The main components of our network design are the two-

stage feature aggregation part, together with the temporal propagation part. First, we inves-
tigate the importance of each stage in the align-and-attend network. If we drop the align-
ment stage out of the pathway, the refinement stage alone has to pick up valid reference
patches to fill in the holes. However, it is difficult for the non-local module to match the
zero patches to any reference patches without any priors. If we drop the refinement stage,
the real video dynamics (e.g., small, non-rigid motions) cannot be modeled, and the result-
ing videos would lack such fine details. To cancel out the effect of temporal propagation,
we drop the flow estimator pathway. Without the recurrence, the temporal consistency is
no longer well supported. If we remove multi-frame aggregation and the propagation parts,
our network degenerates to a single image inpainting network. As shown in Table 3(a), all
proposed components have complementary effects, and the best results are obtained when
all components are fully used.

Masked matching in non-local attention module. In our non-local attention module,
the coarsely completed region in the target hole is matched with the non-hole area in the
reference frames. By doing so, the regions that remain as the holes are ignored during the
refinement matching; Only those newly generated patches are touched during the refinement
stage. To see the effectiveness of this matching method, we show the results when there
was no such constraint ( entire patches in the target frame is matched with the entire patches
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Methods FID score warping error
Huang et al. [8] 6.8469 0.0020
Wang et al. [24] 9.4023 0.0031
Kim et al. [12] 7.5302 0.0023

Ours 6.9517 0.0022

(a) Experiments on fixed region inpainting. We used
DAVIS and Sintel datasets.

FID score by hole size
Methods small (area < 752) medium (752 < area < 1352) large (area > 1352)

Huang et al. [8] 2.1346 5.8417 6.7915
Wang et al. [24] 4.1827 8.6322 11.2268
Kim et al. [12] 2.2328 6.3428 7.6342

Ours (base) 3.1662 8.1035 9.4563
Ours (+align) 2.4551 6.0213 7.3230
Ours (+refine) 3.0151 6.9911 8.9018

Ours (+align and refine) 2.2175 5.9466 6.9132

(b) Different-sized holes inpainting experiments. The lower the better.

Table 2: Additional experiments
Multi-frame aggregation Output Propagation
Align Refine Flow estimator FID score

8.966 (±0.709)
X 8.139 (±1.017)

X 8.577 (±0.838)
X X 8.262 (±1.615)

X 7.515 (±0.608)
X X 7.196 (±1.863)

X X 7.149 (±1.753)
X X X 5.775 (±1.707)

(a) Ablations on network design.

Matching method FID score
entire-entire 7.156 (±1.818)
hole-nonhole 5.775 (±1.707)

(b) Ablations on non-local matching
methods.

Flow estimator Warping error
0.0027 (±0.0001)

X 0.0019 (±0.0001)

(c) Ablations on recurrence stream.

Table 3: Results of ablation studies.

in the reference frames). As shown in Table 3(b), we observe that our proposed matching
method is indeed useful, resulting in better video quality.

Recurrence stream. We report the flow warping errors to compare the temporal con-
sistencies of video results before and after adding the recurrence stream (flow estimator
pathway). As shown in Table 3(c), we observe the warping error is significantly reduced
when there is a recurrence. This implies that propagating the previous output significantly
improves the temporal consistency of videos. This is also consistent with the recent findings
in [10, 11, 12].

The temporal window size of R. We sample every 10th frame in a video to ensure
the reference frames contain a broad temporal context. In the meantime, we introduce a
recurrence stream that allows the model to refer to the previous output frames, enabling
the nearby information to be exploited simultaneously. We set the temporal stride of 10
empirically. We provide the FID scores of different temporal strides: 5 (5.903), 10 (5.775),
15 (5.869), 20 (6.028). The results show that temporal stride of 10 produces the best FID
score.

The effect of Image and Video GAN loss. The image and video GAN loss ensure
the spatial and temporal consistency of the outputs, respectively. If we drop any of them, we
get inferior FID scores (from 5.775 to 5.925 and 6.012).

4 Conclusion
In this paper, we present a novel deep network for video inpainting. Our model fills in
a target hole by referring multiple reference frames in a coarse-to-fine manner. First, we
propose homography-based alignment between the reference and target frames to roughly
inpaint the missing contents. Second, a non-local attention module refines the previously
generated regions. Both stages provide large spatial-temporal window sizes that have not
been achieved by existing flow-based methods. We validate the effectiveness of our approach
in real object removal scenarios.
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